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Using extended assembly algorithm in finite element method in
building dynamic equation process of flexible robot
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Abstract

Dynamic equations of flexible robot in this paper are built by using finite
element method (FEM) and Lagrange’s equations of the second kind approach.
The generalized displacement vector in dynamic equations includes motion and
elastic displacement variables. Generalized inertia matrices and stiffness
matrices are established from assembling components matrices of elements.
Traditional assembly method is unsuitable to assemble for generalized inertia
and stiffness matrices of moving multi-body systems which have this
generalized displacement vector, especially when the number of elements is
incremental. Therefore, it is crucial to establish an extended general assembly
algorithm for building generalized matrices based on generalized displacement
vectors. This study proposed the extended general assembly algorithm which is
improved based on FEM theory. This algorithm is used temporarily for single
flexible link robot and two-link flexible robot with rotational or translational
joints. These configures robot are also used as illustrated examples. This
algorithm can serve as an useful tool for dynamics modeling of robots having
flexible links with different configurations and large amount of elements.
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Tir khoa:
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H¢ phuong trinh dong luc
hoc; Véc to suy rong;
Phuong phap phan tir hiru
han; RS bt dan hoi.

Trong bai bao nay, phuong phap phén tir hitu han (FEM) va hé phuong trinh
Lagrange loai 2 dugc su dung dé mo hinh héa dong lyc hoc cho hé r6 bdt co
khau dan hoi. Cac bién sb cua hé phuong trinh vi phén chuyen dong khoéng chi
¢6 cac thanh phan chuyén vi dan hdi ma con c6 cac thanh phén bién khdp nén
véc to bién ciia hé 1a véc to bién suy rong. Hé s clia hé phuong trinh 1a cic ma
tran khéi luong va ma tran do clng suy rong dugc hinh thanh tir viée lap ghép
tir cac ma tran phan tir. Phuong phap lap ghép truyén thong tro nén kho khan
khi ap dung cho truong hop c6 bién suy rong nay dac biét 1a khi s6 lugng phan
tir ting lén. Chinh vi vay, can thiét phai phat trién thuat toan 1ip ghép méi va
mang tinh tong quat dé phuc vu viéc xay dung cac ma tran khéi luong va ma
tran do cing toan hé thong. Bai bdo nay trinh bay viéc xay dung thudt toan lap
ghép tong quat cho ting khau va cho toan hé thong cta ré bot dan hdi c6 hai
khau ndi tiép. M6 hinh r6 bot 1 khau quay, mé hinh 1 khau tinh tién va mé hinh
r0 bt 2 khau dan hoi toan khép quay duoc 1dy 1am vi du minh hoa. Thuat toan
nay c6 thé dung 1am céng cu rat hiru ich trong viéc mo hinh héa dong luc hoc
céc hé r6 bét c6 khau dan hdi véi cac ciu hinh khac nhau, sé lugng phan tir 16n.
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1. INTRODUCTION

In recent decades, flexible robot is very attented by researchers [1], [2], [3]. There are
challengers in dynamic modeling and control because of mentioning effect of elastic
displacement in motion. Lumped Parameters Method (LPM) [4], Assumed Modes Method
(AMM) [5] and Finite Element Method (FEM) [6], [7], [8] are mostly used to dynamic model of
flexible robot. LPM and AMM method are suitable for configures which have constant area
cross-section along length of links and number of links is small normally single link or two links.
Dynamic modeling problem is become complex with increasing number of links and continuous
changing area cross-section. FEM is the numerical method and developed recently with the
advancement of computational science. It is commonly used in mechanical structures analysis
and durable calculation, analyzing dynamic behavior of system, etc. Because of development of
simulation softwares, it is simple for durable and stress analyzing with FEM even through
variable payload for static system. In the one hand, using FEM in dynamic modeling of motion
system is complicated because of appearing of the generalized variables especially for dynamic
modeling in the field of robot and flexible robot. Dynamic equations of flexible are nonlinear,
many variables and complex when using FEM. Solving differential equation system is difficult,
waste of time and depend on the solving method before. These problems are significantly
reduced because of computational science. In the other hand, FEM is more suitable than LPM
and AMM method in dynamic modeling of flexible robot with increasing number of links and
continuous changing area cross-section because of dividing technique the object to multiple
small elements. Dynamic equations are more simply building by combining FEM with energy
Lagrange method especially configures as hybrid system (combining rigid links with flexible
links, rigid joint with flexible joint, rotational joints with translational joints). Besides, using
FEM in modeling is suitable for designing control system. These advantages of FEM are better
than other methods.

The main problem of FEM is assembling displacement vectors, inertia and stiffness
matrices of system from components vectors and matrices of elements. Assembling is simply
implemented with static system because of only having elastic displacement variables but is
complicated with motion system like flexible robot because of appearing generalized
displacement variables. Most of flexible robot studies which used FEM are chosen each flexible
link with only element or have not presented clearly assembly algorithm. Developing assembly
algorithm for mechanical systems which have extra generalized variables is important meaning
in modeling and building dynamic equation process of flexible robot by using FEM. This paper
proposes that general assembly algorithm based on FEM theory. This algorithm is used
temporarily for single flexible link robot and two-link flexible robot with rotational or
translational joint. These configures robot are also used as illustrated examples. Without loss of
generality, proposed assembly algorithm is presented for generalized inertia matrix. Stiffness
matrix can be assembled similarly. The aim of this study is proposed assembly algorithm for
generalized inertia matrix and stiffness matrix. So, dynamic modeling and building equations of
motion process is not much mentioned in this study. It was clearly presented in [9], [10].

2. ILLUSTRATED FLEXIBLE ROBOTS

Considering three configures of flexible robot with rotational/translational joints and are
shown in fig.1. The coordinate system XOY is the fixed frame. Coordinate system X,0,Y, is

attached to first point of link 1. Coordinate system X,0,Y, is attached to first point of link 2. The
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rotational joints variable q,,q, are driven by t,,t, torques and translational joint is driven by F.
Joints are assumed rigid. Flexible link 1 and link 2 are divided n,,n, elements, respectively. The

elements are assumed interconnected at certain points, known as nodes. Each element jk,
j=1+n,,k=1+n, has two nodes. Each node of element j has 2 elastic displacement variables

which are the flexural displacement (uzjfl,uzjﬂ) and the slope displacements (uzj,u2j+2).

Similarly, node k and k+1 of element k have (VZk_1 ,VZk) and (VZk+1 ,V2k+2).
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Fig. 1. Configures of illustrated flexible robot

The dynamic equation of motion relies on the Lagrange equations with Lagrange function

L=T-P given by
d(aLY" (oLY
dt(an _(an ) W

where T and P are the kinetic and potential energy of the system. Vector 'r(t) is external
generalized torques with rotational joints or force with translational joint acting along
components of the generalized coordinate Q(t) . Assumed that robot motions in horizontal plane,

effect of gravity is can be ignored. The equations of motion can be expressed as

M(Q)Q+C(Q.Q)Q+DQ+KQ=1(t) ()
Where, D is the structural damping matrix which is can be determined in [8] and the Coriolis
and centrifugal matrix is C which is correspondingly calculated as in [11]. The generalized
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inertia matrix M and the stiffness matrix K are calculated by proposed assembly algorithm
based on FEM theory. All of steps building Eq. (2) can be clearly considered in [9] and [10].

3. PROPOSED GENERAL EXTENDED ASSEMBLY ALGORITHM

3.1. Assembling generalized inertia matrix of the first link

T
Considering the flexible link 1, q1].=[q1 Uy g Uy Uy u2j+2] is generalized elastic
displacement vectors of elements j. Generalized inertia matrices of elements j can be described

in [6] and size of that is 5x5. Generalized elastic displacement vector of link 1 is as shown
below

T
Q1=[q1 Up Uy v Uy Upyp vv Uy g u2n1+2:| 3)

Generalized inertia matrix of link 1 is M, and calculated by assembling elements matices.
The size of vector Q, is (2n,+3)x1 and M, is (2n,+3)x(2n,+3).

Firstly, considering first link with two elements (n,=2), so the size of vector Q,=Q? is
7x1 and M, is 7x7 . We implement ticking the index for each element of Q* vector. Using

these indices for q,, and q,, which are generalized vectors of element 1% and 2"’. We have

5
Q q, u, v, u, u, u, SG]T;qH:[clh 5w, u4]T;qL2:[clh u, u, ug u] (4)
The position of q, variable is constant in all of generalized displacement vectors of
elements. So, the value of element M,(1,1) in matrix M,=M, ,, is sum of M, (1,1) and
M,,(1,1). Positions 4" and 5" in q,, are 2" and 3" in q,,. However, their indices must be kept
stable in assembly process. Values of positions which have duplicate index are adding. Note that
position (2,6),(6,2),(2,7),(7,2) and (3,6),(6,3),(3,7),(7,3) of matrix M, ,, are zero because there
are no indices respectively in vectors q,, and q,, . Besides, generalized inertia matrix and

stiffness are symmetric matrices. The matrix M, ,, is manually assembled and shown as below

Index — » 1 2 3 4 5 6 7
mijemy mp; mimpemi mitmi mg mg |
m,  m, my;  m, m, 0 0|2
mi omimi omi mi 0 0:
M, miemt md md mEemE miems mE m | ©)
Mgy +My) Mg, Mg Mg +My; Mo +mys my; myg |
mEo0 0 miomiomimile
mi; 0 0 m3g mg  mg mg| 7

Based on FEM theory and results of assembly above, we proposed a generally assembly
algorithm for n, elements which is presented as below Tab. 1. (using language programing
MAPLE).
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3.2. Assembling generalized inertia matrix of the second link and of system

All of generalized displacement vectors on link 2 include first joint variable q, and

elastic displacements at the end point of link 1(u2n1+1,u2n1+2) [6]. Generalized vectors q,, of
element k can be described as below
T
q =|:q1 Uynvr Yonez A2 Vorar Vo Vaka Vzmz} (6)

Generalized inertia matrix of element k are shown as in ® and size of that is 8x8.
Generalized displacement vector Q, of link 2 are given as [6]

Q2=[q1 Upg Upniz Qo Vi Vo o v Vo g V2n2+2:|T (7)

Generalized inertia matrix of link 1 is M, and calculated by assembling elements matices,
respectively. The size of vector Q, is (2n,+6)x1 and M, is (2n,+6)x(2n,+6). Assumed that
the second link has two elements (n,=2). Ticking the indices for elements of q,,,q,, which are

generalized vectors of elements 1% and 2™ following indices of Q,, we have
1 2 3 4 5 6 7 8 1 2 3 4 7 8 9 10

T T
q21:|:q]_ u2nl+1 u2nL+2 q, v, vV, Vv, V4:| q22_|:q1 uZnL+L u2n1+2 q, V; V, Vg Vg

1 2 3 4 5 6 7 8 9 10 (8)

& T
Qz:[q1 Upnor Uznso 92 Vi Yy V3 Vy V5 V6:|
Assembly results of generalized inertia matrix M,=M:° which is implemented by the

same way for first link.

1 2 3 4 s 6 7 8 ° 10 _
mj;+m;; my+m;; mp+m;; mp+mp; mi; mi mi-+m; mj+mi mp; mg |t
m3;+mg; mp+mi] my4my; mi mi; mi4mi; mi+mi my; myg | 2
m;+my] mi+mg; mg; m;, mg+ml mi+mi; m3 mi; | 3
mij+m my m2 mleml mimg me m |
. mimioomdomE o0 0|
mg m;  mg mg; 0 0]s¢
mmEmi w2
SYM m’+m2 mi mi.| s
m; my; | o
L m;; | 10

The proposed assembly algorithm for link 2 has a different point with algorithm which is
used for first link. That is the appearing of q,,u,, ,,u,, ,, variables in all of generalized
displacement vectors on link 2. Following q,,,q,,,Q,, positions from 1% to 4™ in these vectors
are constant. Those positions are added by components matrix after loops, respectively. Values
of positions which have duplicate index are added likely the first link. Splitting up M,, for 4
parts (fig. 2) to assemble generalized inertia matrix M, . Each part is a small matrix which sizes

4x4 . The algorithm for link 2™ is presented in Tab. 1.
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Part 2 Part 1

2k

Part 3 Part 4

Fig. 2. Generalized inertia matrix of element K

Generalized displacement vector of whole system include all of joint and elastic
displacement variables. It can be written as [6]

T
Qz[q1 Up Uy o Uy g Wppp 42 Vi Vo v s Vi V2n2+2:| (10)

Generalized inertia matrix of system M can be assembled from M, and M, respectively.
The size of vector Q is (2n,+2n,+6)x1 and M is (2n,+2n,+6)x(2n,+2n,+6) . Assembling

the matrix of system is simpler than other. The matrix of system is declarated with size
(2r11+2r12 +6)><(2r11 +2n, +6) and then assembling generalized matrix of each link into this. Note

that the index of positions in Q, and Q, vectors must be as same in Q vector. Assumed that
n,=1 and n,=1, the size of Q,,Q, and Q is 5x1, 8x1 and 10x1. We have

i £ 3 4 5 4 5 6 7 8 9 10
le T. le T
Q; _[ql i, W, 114] Q. _[ql i, i, g, v, ¥, ¥, v4]
o (11)

3 4 5 ¢ 7 8 9 T

1 2
Q=[q, u, u, u; u, q, v, v, v; v,

The matrix M is manually assembled and shown as below

1 2 + . 5

Ay A - - Agg 1 : 3 4 5 6 7 8 9 10
Ay, Ay .« dyg a;+by; a;, a;; a;t+b;, a+by; by bys by by, b1s‘ 1
B | a,, a, a,, a,c 0O 0 0 0 02
A = agg 0O 0 0 0 03
Agy Agy « - Agg |, agtby, a;g by by by by by [ 4
M= ags+by; by, by by by by | 5 (12)
1 4 .10 R
b.. b b.. ] by byg byg by; byg | 6
11 D12+ + Dyg b b. bo b
b.. b b 55 -5 57 -s58 | '
21 Y2 28 SYM Biis BB K
M,= i i
¢ by, by | 9
L b | 10
_b81 b82 o bBS_B,,B

The size of M,,M,and M is 5x5, 8x8 and 10x10. Applying proposed algorithms with

n,=2,n,=2, the result is completely coincident with above result which is implemented
manually.
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Table 1. The extended assembly algorithm for link 1%, link 2™ and system

Algorithm for first link

Algorithm for second link

Algorithm for system

Step 1: Declarating the size of M,
dm, :=5+2(n, -1);
# Note that (2n, +3)=5+2(n, 1)
M, :=Matrix(dm, ,dm, ,0);
M
Step 2: Loop setup
for j from 1 to n, do
M, ., :=Matrix(dm, ,dm,,0);
M, =M
#thLoop setup for assembly from 2™ to
f# position in each element matrix

for p from 2 to S do
for q from 2 to 5 do

M, [p+2(j-1).9+2(j-1) =M, [p.q}
end;

end;

# Assembling the 1% row and 1%

columm

> # This matrix is calculated

1j’

# except M,(1,1) position

for q from 2 to 5 do

M, [19+2(j-1) =M, [Lq];

M, [a+2(-1)1]=M, [1,q+2(j-1) ;
end;

# Ml(l,l) position

M, [11]=M[11];

# Updating total matrix M,

M, =M, +M
end;

le’

Step 1: Declarating the size of M,
dm, :=8+2(n,—1);

# Note that (2n,+6)=8+2(n, 1)
M, :=Matrix(dm,,dm,,0);

M, ; #Known

Step 2: Loop setup
for k from 1 to n, do

M, . :=Matrix(dm,,dm,,0);
M, =M,
# Declarating part 1

for p from 1 to 4 do
for q from 5 to 8 do

M, [pa+2(k-1)]:=M, [p.a]
end;

end;

# Declarating part 2

for p from 1 to 4 do
for q from 1 to 4 do

M, .[p.a]=M,.[p.a]
end;

end;

# Declarating part 3

for p from 5 to 8 do
for q from 1 to 4 do

M, [p+2(k-1)q]=M, [p.a]
end;

end;

# Declarating part 4

for p from 5 to 8 do
for q from 5 to 8 do

M, [p+2(k-1)q+2(k-1)]=M, .[p.q]
end;

end;

# Updating M,

M,=M,+M, ;

end;

Step 1: Initial declarating
dm, :=5+2(n,-1);
dm, :=8+2(n,-1);
dm:=2n,+2n,+6
M., :=Matrix(dm,dm,0);
M., :=Matrix(dm,dm,0);
M:=Matrix(dm,dm,0);
M, M,; #Known
Step 2: Assembling M, into
MTl
for i from 1 to dm, do

for j from 1 to dm, do

My, [1,i]=M,[ij;

end;
end;
Step 3: Assembling M, into
MTZ
#Assembling
M., (1,1)
M,,[11]:=M,[1,1];
# Assembling 1% row and

columm
#of M, into M,

for i from 2 to dm, do

position

M,,[1,2n, +i]:=M,[L,];
M,,[2n, +i,1]:=M,[1,2n, +i];
end;
# Assembling extant part of
M, into M,
for i from 2 to dm, do
for j from 2 to dm, do
My, [2n, +i,2n, +j]:=M,][i,j]
end;
end;
# Total matrix of system
M:=M,, +M,,;

3. NUMERICAL SIMULATION EXAMPLES

The parameters of three configures are given in Tab.2. Applied torque and force for single
flexible link robot and two-link flexible robot are shown in Fig. 2 and Fig. 3.
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Table 2. Parameters of three configures flexible robot

Parameters Single link flexible robot | Single link flexible robot Two-flexible link robot
with rotational joint with translational joint with only rotational joints
Number of elements n;=1,3;5;7 n;=20 n;=n,=1
Length of link 1, link 2 (m) Li=1 Li=1 Li=1;1,=0.5
Length of each element l=L/n; l=L/n; l=L; 1o=L,
Cross-section area (m®) A=2.5x10" A=2.5x10" A=A=2.5x107
Mass of payload (kg) m=0.1 m=0.1 m=0.15
Mass density (kg/m’) p=7850 p=7850 p,=p,=7850
Young’s modulus (N/m?) E=2x10" E=2x10" E,=E,=2x10"
Simulation time (seconds) 10 10 10
S = ;ied torque at t"lrst joint
01 M | | |me=- A::Iied tor:ue at seco]nd joint
z 04f 8
E 0.05 E el ]
S b F
s T-0.2f
3 0.05 g s
g 04}
0.1 —
0.6 I I I m|
o ; 5 2 7 5 0 1 2 3 4 5

Time (seconds)

Fig. 2. Applied torque/force for single link

Time (seconds)

Fig. 3. Applied torque

for two-link

The single flexible link robot with rotational joint is simulated by 4 cases: 1 element, 3
elements, 5 elements and 7 elements for flexible link. The simulated results are shown as Fig. 4.
The flexible link of configure with translational joint is divided into 20 elements. The values of
joint displacement and flexural displacement at the end-effector are described in Fig. 5 while
simulated results of two-link flexible are presented in Fig. 6. Dividing into many elements is
suitable in determining elastic displacement value at any point on flexible link.
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Fig. 4. Rotational joint and flexural displacement of single flexible link robot
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Fig. 5. Translational joint and flexural displacement of single flexible link robot
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Fig. 6. Value of joints and flexural displacement of two-link flexible robot

4. CONCLUSIONS

The extended assembly algorithm in FEM is proposed and applicated for building the
generalized inertia and stiffness matrices of each flexible link and system based on generalized
displacement vectors. Developing assembly algorithm for mechanical systems which have extra
generalized variables is important meaning in modeling and building dynamic equation process
of flexible robot by using FEM. Besides, this algorithm is useful to applicate for flexible link
with changing cross-section area and must be divided into many elements to analyze dynamic
behavior of system. The extended algorithm is simple to implement by using MAPLE OR
MATLAB language.
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