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ABSTRACT 

This paper focuses on the general decay rates for total energy associated with the solution of the 

nonlinear viscoelastic wave equation 
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on a bounded domain ,
n

    under the assumption ( ) ( ) ( ( ))g t t G g t  −  on the relaxation function 

together with sub-critical initial energy. These refine and extend our recent results about viscoelastic 

wave equations. 
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exponent sources. 

1.  INTRODUCTION 

The goal herein is to extend the decay results from the study in [1] for the nonlinear viscoelastic 

wave equation with variable exponents and subject to strong damping 
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where 
( ) 2

( ) ,
p x

f u u u
−

=  0,T   ( 2)
n

n   is a bounded domain and the boundary   is 

smooth, the damping term ( ) ,
t t

h u u= − the initial data 
0

u  and 
1

u  are known, g is positive, non-

increasing and continuously differentiable. The exponent ( )p x  is continuous on   satisfying the 

following conditions: 

2( 1)
2 inf ( ) ( ) sup ( ) , 3,

2x x
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− +
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−
 =   =  

−
   (1.2) 

( ), , 1, ( ) ( ) ,x y x y p x p y x y  −  −  −     (1.3) 

where ( )
0

sup ln(1 / ) .lim C


  
+

→

=  +  

The problems linked to (1.1) are prevalent in a wide range of modern physics and engineering, 

such as electrorheological fluids, viscosity in fluids which depends on temperature, viscoelastic 

materials, filtration through porous structures, and applications in image processing (see [1-4]). We 

refer the readers to [5-7] for more applications and details on the topic. 
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When 
2

( ) ,
p

f u u u
−

=  Problem (1.1) has been extensively investigated in recent decades, and 

many authors have examined the existence, nonexistence, and decay of solutions (see [8-9]). When 

0,h   Berrimi and Messaoudi studied Problem (1.1) and they found that, depending on the decaying 

rate of the kernel ,g  the global existence of a solution happens and the decaying rate will either be 

exponential or polynomial [8]. After that, Messaoudi also considered Problem (1.1) and obtained the 

decay properties of the solution that includes exponential and polynomial decay rates [9].   

Recently, in the scenario where ( ) ,
t t

h u u= −  and 
( ) 2

( ) ,
p x

f u u u
−

=  Nhan et al. [1] studied 

(1.1), and they derived the estimate on the decay rate for a global solution within the stable set initially. 

More precisely, under the conditions of the relaxation g  as follows: 

(A1) the relaxation 1
( , )g C

+ +
   and fulfills 

0
(0) 0, 1 ( ) 0, ( ) 0,g g d g t 



 = −     for each 0,t   

(A2)  there is 0k   and a differentiable function ( ) 0t   such that 

0
( ) ( ) ( ), ( ) 0, ( ) ( ) , ( ) , 0,g t t g t t t t k t dt t    



   −   = +    

the authors obtained the following theorem. 

Theorem 1.1. (See [1], Theorem 2.9) Assume that (1.2) and (1.3) hold. Let g satisfy (A1), (A2). 

Furthermore, assume that 
1 2

0 1 0
( , ) ( ) ( )u u H L     with 

0
(0 )u       and 

( 2)/2
,(0) 2

p

d
E E



−
−

  where ( ) ( )1 1 1 1
2 2

.
d p p

E d
 − += − −  Let ( )u t be a solution to (1.1). Then ( )u t  

decays exponentially. 

Herein, we intend to extend and improve the decay finding of Nhan et al. in [1] (Theorem 7) 

to the broad decay rates of total energy, including polynomial, exponential, and logarithmic rates. More 

precisely, we improve and generalize the above theorem in two approaches:  

• Firstly, we extend the initial energy to the case of sub-critical initial energy data ,(0)E d  

• Secondly, we consider a more general and relatively large class of relaxation functions, that is,  

(A3)  There exists a function ( )1
(0, );(0, )G C    which satisfies either  

(i) G  is linear, or  

(ii) ( )2
(0, ]G C r  is  strictly increasing and strictly convex for some (0),r g  with 

(0) (0) 0G G= =  and 

( )( ) ( ) ( ) , 0,g t t G g t t  −    

where   is positive, nonincreasing and differentiable. 

We shall show that the decay rates for the relaxation kernel g will determine the decay rates of 

the total energy when the initial energy data is below the mountain pass level (Theorem 3.6). 

2.  PRELIMINARIES 

2.1. Modified potential wells 

Throughout this paper, we define the functionals J
and I  (for 0    ) as in [1, 3]  

( ) ( )
( )

2 2 ( )
, and ,

2 (
 

)

p x

p xu
J u u dx I u u u dx

p x
 




 
=  − =  −   
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the Nehari manifold 

( )   1

0
\ 0 : ( ) ( ), 0 ,u H I u J u u  

=   = =  

the potential well depth 

( )inf ,
u

d J u


 


=


       (2.1) 

and the modified stable set as in [1, 3] 

( ) 1

0
: ( ) , ( ) 0 {0}.u H J u d I u   =       

2.2. Definition and preparing results 

We start by defining the notion of weak solutions to Problem (1.1). 

Definition 2.2. For each 0 ,T    we call u   a weak solution to (1.1) on (0, )T  when   

1 2 2 1

0 0
([0, ); ( )), ([0, ); ( )) ([0, ); ( ))

t
u C T H u C T L L T H      , 

and satisfies 
1 2

0 0 1
( ,0) ( ) ( ), ( ,0) ( ) ( )

t
u x u x H u x u x L=   =    and the equality 

   ( ) ( ) 2

0
( ) ( ) ( ) ( ) ( ) ( ) ( ) 0,

t p

tt t
u t u t g t u d u t u t u t dx       

 −



 +   − −   +  − =
     

holds for a.e. ( )0,t T  and any 
1

0
( ).H   

Define the energy functional 

 ( ) ( )
2 2 ( )

0

1 1 1 1
( ) ( ) 1 ( ) ( ) ( ) ( ) ,

2 2 2 ( )

t p x

t
E t u t g d u t g u t u t dx

p x
 


= + −  +  −   

where ( )
2

0
( ) ( ) ( ) ( ) .

t

g u t g t u t u d   = −  −  By testing (1.1) by ,
t

u  we have 

( )
2 21 1

( ) ( ) ( ) ( ) ( ) 0, 
2 2

t

d
E t g t u t g u t u t

dt
= −  +  −      (2.2) 

which yields that ( )E t is non-increasing. 

 The local existence of solution to (1.1) can be stated as follows. 

Theorem 2.3. (Local existence) (see [1]) Suppose there hold (1.2), (1.3) and (G, (i)). Then for given 

( ) ( )1 2

0 1 0
( , ) ,u u H L     there exists a unique local solution to Problem (1.1) with 

1 2 2 1

max 0 max max 0
([0, ); ( )), ([0, ); ( )) ([0, ); ( )),

t
u C T H u C T L L T H       

where 
max

0T   denotes the maximal life time of ( ).u t   

We ended this section with the following proposition which is essential for proving our main 

results. 

Proposition 2.4. Let (1.2) – (1.3) and (A1) hold and 0 .    Suppose that ( )u t  solves Problem 

(1.1) locally. Suppose there exists 
0 max

[0, )t T  such that 
0

( )u t   and 
0

.( )E t d  Then 

( )u t   for any 
0 max

[ , ).t t T  

Proof. First, it follows from the definition of the energy functions ( )E t  and J
that 

2 ( )1
( ) ( ) ( ) ( ( )),

2 ( )

p x
E t u t u t dx J u t

p x





  − =  
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due to 
0 0

1 ( ) 1 ( ) .
t

g d g d   


−  − =    And then 

0 0
( ( )) ( ) .J u t E t d          (2.3) 

We shall prove that ( ) ,u t   for all 
0 max

[ , ).t t T  In fact, if not, there must be a 
*

0 1 max
t t T   

such that 
*

1
( ( )) 0I u t =  and 

*

1
( ) 0,u t   which yields 

*

1
( ) .u t    And then, the definition of d

 tells 

us that ( )*

1
( ) ,J u t d   which is a contradiction to (2.3) due to 

* *

1 1 0
( ( )) ( ) ( ).J u t E t E t    The 

proposition is proved. 

3.  GENERAL DECAY 

3.1. Preliminary results 

Herein we present several lemmas which will be necessary for the decay estimates. 

Lemma 3.1. (See [10], Remark 2.8) There exist positive constants 
*

d and 
1

1
( )t g r

−
=  such that for 

all 
1

0 ,t t   one has  

*
( ) ( ).g t d g t  −  

Lemma 3.2. (See [10], Lemma 3.2) Suppose (A1) and (A3) are valid. Then  

( )
2

0
( )( ( ) ( )) ( )( )

t

g t v t v d dx C h v t   


− −     

for all ( )2 2
0, ; ( ) ,

loc
v L L    0 1,  where 

( )
2

0
( ) ( ) ( ), ( ) ( ) ( ) ( )

t

h t g t g t h v t h t v t v d     = − = − −  and the constant 

2

0 0

( ) 1
( ) .

( )

g
C d g d

h





  

 

 

=      

Now, we define the following auxiliary functionals 

1
( ) ( ), ( ) ,

t
tut u t =        (3.1) 

( )2
0

( ) ( ), ( ) ( ) ( . )
t

t
t u t g t u t u d   = − − −     (3.2) 

Then the next two lemmas hold. 

Lemma 3.3.  Let (A1), (A3) hold and ( ) ( ) ( )1 2

0 1 0
,u u H L      with 

0
u   and .(0)E d  

Then, for any 0 1   and 0,   we get 

( )

2

2
2 2 21 1

( ) ( ) ( ) ( ).
0

  
2 ( ) 2

p

t t

d Cd
u t u t u t h u t

dt E

 


 

−
− 

   
 +  − − −  +   

   

  

Proof. Equation (1.1) multiplied by ( )u t  yields that 
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( )
( )

( )

2 2 ( )1

0

0
2 2 ( )

0

( ) 1 ( ) ( ) ( )

( ), ( ) ( ) ( ), ( )

( ) ( ) ( ) ( ), ( )

( ) ( ), ( ) ,

t p x

t

t

t

p x

t t

t

d
u t g d u t u t dx

dt

u t u t g t u t u u t d

u t u t u t dx u t u t

g t u t u u t d

 

  

  






= − −  +

−   + −  − 

 −  + −  

+ −  − 

 








        (3.3) 

due to 
0 0

1 ( ) 1 ( ) .
t

g d g d   


−  − =    First, by the same argument as in [1, the estimate 39], we 

have 

2 2

2 2
2 2( )

| ( ) | ( ) ( ) .
(

 
0) (0)

p p

p x d d
u t dx u t u t

E E

 

− −
− −



   
      

   
      (3.4) 

Then, thanks to Cauchy-Schwarz and Young inequality, we obtain 

2 21
( ), ( ) , ( ) ( )

2 2
t t

u t u t u t u t



−     +              (3.5) 

for any 0.   Using again Cauchy-Schwarz and Young inequality and Lemma 3.2, we have 

( ) ( )

( )

2
2

0 0

2

1
( ) ( ), ( ) ( ) ( )( ( ) ( )

2 2

( ) ( ).
2 2

t t

g t u t u u t d u t g t u t u d dx

C
u t h u t




     








−  −    + −  −

  + 

  



 

From (3.3) – (3.5), we complete the proof. 

Lemma 3.4. For any 
1

0 1,   let (A1), (A3) hold and ( ) ( ) ( )1 2

0 1 0
,u u H L     with 

0
u   

and ,(0)E d  one has 

( ) ( ) ( ) ( )
2 2 22 1 1

1
0

1

( ) ( ) ( ) ( ) 1 ( ),
2 2 2

t

t t

d C
g d u t u t C u t C h u t

dt
 

 
  




 − +  +  + +       (3.6) 

where 
2 2

2 1 2
( ) 2 , max{ ,2 3 2 }C C C h S S


= + − = + − +  and the constant 

0 0
: ( ) ( ) (0) .h h d g d g     

 


=  +     

Proof. Thanks to the definition of 
2
,  we get that 

( ) ( )

( )
2

0 0

2

1 2 3
0

( ) ( ), ( ) ( ) ( ) ( ), ( ) ( ) ( )

( ) ( ) .

t t

tt t

t

t

t u t g t u t u d u t g t u t u d

g d u t J J J

     

 

  = − − − − − −

− = + +

 


   (3.7) 

Multiplying the first equation in (1.1) by ( )
0

( ) ( ) ( )
t

g t u t u d  − −  and using Green's formula, we 

find that 
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( )

( )

( )

1
0

0 0

0

4
( ) 2

1
0

1

( ) ( ), ( ) ( )

( ) ( ) , ( ) ( ) ( )

( ), ( ) ( ) ( )

( ) ( ), ( ) ( ) ( ) .

t

t t

t

t

tp x

i

i

J g t u t u t u d

g t u d g t u t u d

u t g t u t u d

u t u t g t u t u d J

  

     

  

  
−

=

= − −   −

− −  −  −

−  −  −

− − − =



 





      (3.8) 

We now shall estimate 
1i

J  for 1,4.i =   

For 
11

.J  Using the well-known Cauchy-Schwarz and Young inequalities as well as Lemma 3.2, we first 

determine that 

( )
2

21

11
0

1

21

1

1
( ) ( )( ( ) ( ))

)

2 2

( ) ( )( ).
2 2

(3.9

t

J u t g t u t u d dx

C
u t h u t




  







  + −  −

  + 

 


 

For 
12

.J  We first rewrite 

( ) ( ) ( )
2

12
0 0 0

( ) ( ) ( ) ( ) ( ), ( ) ( ) ( ) .
t t t

J g t u t u d g d u t g t u t u d       = −  − −  −  −    

By applying the Cauchy-Schwarz and Young inequalities again, we have 

( )
21

0
1

( ), ( ) ( ) ( ) ( ) ( )( ),
2 2

t C
u t g t u t u d u t h u t




  


−  −  −   +    

hence, we obtain 

( )
21

12

1

(1 ) 1
( ) 1 ( ).

2 2
J u t C h u t 





 − −
  + +  

 

 
    (3.10) 

For 
13

.J  Thanks to Lemma 3.2, the Cauchy-Schwarz and Young inequalities, one has 

21

13

1

( ) ( )( ).
2 2

t

C
J u t h u t






  +       (3.11) 

For 
14

.J  Since 
2( 1)

2 ( ) ,
2

n
p p x p

n

− + −
   

−
 we can use the Sobolev's embedding theorem and 

obtain 

( )

( )

( ) ( )
( )

( ) ( ) 

2( ( ) 1) 21

14
0

1

2( 1) 2( 1) 21

2( ( ) 1) 2( ( ) 1) 0
1

2
2 1 2 12 1 2 1 21

2 ( ) 1 2 ( ) 1

1

1
( ) ( ) ( ) ( )

2 2

max ( ) , ( ) ( ) ( ) ( )
2 2

max ( ) , ( )
2 2

( )

{ }

tp x

tp p

p p

p pp p

p p

J u t dx g t u t u d dx

C
u t u t h t u t u d

C S
S u t S u t h








  




  







− +

− +− +

−

 

− −

 −  −

− −− −

 −  −

 + − −

 + − −

   +

  



( )

( )
2

2 21

1

( )

( ) ( ).
2 2

u t

C S
C u t h u t









  + 

     (3.12) 

Here C  is a positive constant defined as in [1, Line 23, Page 15]. 

From (3.8) – (3.12), we derive that 
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( ) ( )
2

2 2 2 11 1

1

1

( 2
.

3 )
2 ( ) ( ) ( )

2 2 2
t

S C
J C u t u t h u t



 



+ + −
 + −  +  + 


    (3.13) 

For 
2
.J  We rewrite 

2
0 0

21 22

( ) ( )( ( ) ( )) ( ) ( )( ( ) ( ))

.

t t

t t
J u t h t u t u d dx u t g t u t u d dx

J J

       
 

= − − − − −

= +

       (3.14) 

By using Lemma 3.2, the Cauchy-Schwarz, Young and Poincaré inequalities, we get 

( )
2

21

21
0

1

2
2 201 1 2

1 1

1
| ( ) | ( ) ( ) | ( ) ( ) |

2 2

( )
( ) ( )( ) ( ) ( )( ),

2 2 2 2

t

t

t

t t

J u t dx h t h t u t u d dx

h d h S
u t h u t u t h u t

 



 


   



  

 

 



 + − − −

 +  + 

  




       (3.15) 

and 

( )
2 2

21

22
0

1
2 2

2 21

1

| ( ) | ( ) | ( ) ( ) |
2 2

( ) ( )( ),
2 2

t

t

t

J u t dx g t u t u d dx

C S
u t h u t



 
  







 
 + − −

 + 

  



       (3.16) 

where 
0

,( )h h d  



=    due to 

0 0 0
( ) ( ) (0) ( ) ( .) (0), 0

t t

h d g d g g t g d g t        


 + −  +      

Therefore 

2 22
2 22

2 1

1 1

( ) ( )( ) ( )( ).
2 2

t

C Sh S
J u t h u t h u t

 




 

 +  +     (3.17) 

Finally, from (3.7), (3.13) and (3.17), we obtain (3.6). This finishes the proof. 

Next, we consider the Lyapunov function ( )L t  defined by 

1 1 2 2
( ) ( ) ( ) ( ),L t KE t K t K t= +  +        (3.18) 

for 
1 2

, ,K K K  enough large, where 
1
( )t  and 

2
( )t  are defined as in (3.1) and (3.2). It is 

straightforward that ( )E t  and ( )L t  are equivalent, i.e., there exist 
21

, 0    such that 

1 2
( ) ( ) ( ).E t L t E t          (3.19) 

To estimate ( ),L t  we have the following lemma.  

Lemma 3.5. Given 
1

0.t   Then ( )L t  in (3.19) satisfies  

2 2

1

1
( ) ( ) 4(1 ) ( ) ( )( ), .

4
t

L t u t u t g u t t t  − − −  +       (3.20) 

Proof. Using the fact that (0) 0g   and 0 (0, ),g C    we have 

1

1 1
0 0

( ) ( ) 0, .
t t

g d g d g t t    =      

Therefore, combining the definition of ( ),L t  (2.2), and the fact that ,g g h = −  by choosing 

1

1 2
,K −

=  Lemmas 3.3 and 3.4 lead to 
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( )

( ) ( )

1 1 2 2

2 21 2 1

2 1 1 1

2

2
22 1

1

2 1 2

1 1

( ) ( ) ( ) ( )

( ) ( )
2 2

( ) ( )
(0) 2

( ) ( )
2 2 2 2

t t

p

L t KE t K t K t

K K
K g K u t K u t

d K
K C u t

E

K C K CKK
g u t C h u t



 









  

−
−

   = +  + 

 
 −  − −  − − −   

 

  
   

− − − −    
   

  

  
+  + + +   

  





 

( )

( )

( )

2 21

2 1 1

2

2
2

1

2 2

2 1 2

1
1 ( ) ( )

2 2

1
( ) ( ) ( )

(0) 2 2

( ).
2 2 2 2

t t

p

K
K g K u t K u t

d K
K C u t g u t

E

CK K CKK
C h u t



 








−
−

 
 − − − − − −  

 

  
   

− − − −  +    
   

  

  
− − − +   

  





     (3.21) 

Since ,(0)E d  we can take sufficiently small 0   and sufficiently large 
1

0K   so that 

2 2

2 2

1

1
0, and ( ) 4(1 ),

(0) (0) 2

p p

d d
K C

E E

  

− −
− − 

    
− −  − − −  −    

    
 

      

and then we select 
2

K  large enough such that 

2 1 1
1 1.K g K− −   

Next, observe that since 

2
( )

( ),
( ) ( )

g
g

g g




  


−
 we infer from the Lebesgue dominated convergence 

theorem that 

2

0

( )
0, as 0.

( ) ( )

g
C d

g g



  

  



= → →
−  

And hence, we can select a number 
0

0 1   such that if 
0

   then 

1
2

1 21
.

8 2 2

K CK
C



−

 
 + 

 
 

After that, by choosing sufficiently large K  and   such that 

2

2

0

1 1 1
0, 0 and

22 4 2 2

CKK
K

K

K


 − −  −  =   

to imply 

2

1

2

2 2 0.
2 2 22

CK CKK
C

K




 
− −  

 
+  

And finally, we obtain (3.20). The lemma is proved. 
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3.2. Decay results 

The purpose of this section is to illustrate the decaying phenomenon of the energy functional of 

Problem (1.1) which is driven by the decaying rates of .g  

Theorem 3.6. (General decay) Suppose that conditions (1.2) – (1.3) hold and g satisfies assumptions 

(A1), (A3). Let ( ) ( ) ( )1 2

0 1 0
,u u H L     with 

0
(0 ),u       and (0) .E d   

( )1

1 0 1
0

1
( ) for all 2 ( ),( ) ,

t

m G m s dE st t g r −−
   

where 
0

1
( ) :

( )

r

t
G t ds

sG s
=

  is a strictly decreasing, convex function on ( 0,  ,r  with 

0
0

lim ( ) .
t

G t
→

= +  

Remark 3.7. (a) Suppose (A3)(ii) holds. Then G  can be extend to a function ,G  which is a strictly 

increasing and strictly convex 
2

C -function on (0, ).  In particular, for ,t r  we can define G  by 

2 2( ) ( )
( ) : ( ( ) ( ) ) ( ) ( ) .

2 2

G r G r
G t t G r G r r t G r r G r r

  
  = + − + + − 

 
  (3.22) 

(b) Concerning the relaxation function g  satisfying assumptions (A1) and (A3), several examples are 

provided by Mustafa in [10]. 

 

Proof of Theorem 3.6. First, from (3.20) we deduce that 

1 2 1
( ) ( ) ( )( ), .L t c E t c g u t t t  − +                      (3.23) 

Setting 
1

1
( )t g r

−
=  and referring to (2.2) together with Lemma 3.1, we get, for all 

1
,t t  

1 12 2

3
0 0

*

1
( ) | ( ) ( ) | ( ) | ( ) ( ) | ( ),

t t

g u t u t dxd g u t u t dxd a E t
d

     
 

  − −  −  − −  −         (3.24) 

Therefore 

( )

1

1 2

2

1 3 2 1

( ) ( ) ( )

( ) ( ) ( ) | ( ) ( ) | , ,
t

t

L t c E t c g u t

c E t c E t c g u t u t dxd t t  


  − + 

 − − +  − −   


(3.25) 

and hence 

1

2

1 2 1
( ) ( ) ( ) | ( ) ( ) | , ,

t

t
F t c E t c g u t u t dxd t t  


  − +  − −        (3.26) 

where 
3

( ) ( ) ( ).F L c Et t t= +  It is straightforward to verify the equivalence between ( )F t  and ( ).E t  

Now we put 

   
2

0
( ) ( ) ( ) | ( ) | ,

t

t L t f t u d dx  


= + −    

in which ( ) ( ) .
t

f t g d 


=   Applying Lemma 3.2 and [6, Lemma 4.1], we see that   is 

nonnegative and satisfies 

( ) *

2 2

1
( ) ( ) (1 ) ( ) 1/ 4 ( ), ,( )( )

t
t u t u tt g Eu t t tC  − − −   −−             (3.27) 

for some positive constant 
*
.C  Therefore 
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1
* 1 1

( ) ( ) ( ) ( ),
t

t
C E s ds t t t −    

which implies that 

0
( ) .E s ds



             (3.28) 

From (3.27), it follows that 

2

0
( ) ( ) ( ) ,

t

r t u t u s ds=  −                        (3.29) 

which enables us to take 0 1   such that 
1

( ) 1, .r t t t     In view of the assumption on function 

G  and the Jensen inequality we arrive at 

( )

 

2 2

0 0

2

0

1
( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

1
( ) ( ) ( ) ( ) .

( )

t t

t

G g t u t u d G r t g t u t u d
r t

G r t g t u t u d
r t

        

   

 
−  − = −  − 

 

 −  −

 



(3.30) 

Using the convexity of G  together with (0) 0G =  and ( ) 1,r t   we deduce  

 ( ) ( ) ( ) ( ( )).G r t g t r t G g t   −  −  

Hence, it follows from (3.29) that 

( ) ( )
( )

2 2

0 0

2 2

0 0

2

0

( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )( ) ( ).
( ) ( ) ( )

t t

t t

t

G g t u t u d G g t u t u d

g t
G g t u t u d u t u d

t

g t u t u d g u t E t
t t t

       


      

 

  
  

  

−  − = −  −

 −
 − −  −  −  −

−

   − −  − = −   −

 

 

 

 

In turn, we obtain 

( )1 1
,( ))( ) ( ( )t Gu E t tg   − − −         (3.31) 

where G  denotes an extension of G  as in Remark 3.7(a). This in combination with (3.26) and (3.31) 

yields that 

1 1

1 2 1 2 1

( )
( ) ( ) ( ) , .

(
( )

)
)( cgc u t

E t
F t E t c c E t G t t

t
 



− −  
  − +  − + − 


 


   (3.32) 

For 
1

0 ,r   it follows from (3.32) together with the facts that 0, 0E G    and 0G   that 

 
1

( )
( ) ( ) ~ ( ) 0.

(0)

E t
t G F t E t

E

 

=  
 

  

Moreover, we get 

1 1 1

1 1

1 1 2 1 1

( ) ( ) ( )
( ) ( ) ( )

(0) (0) (0)

( ) ( ) ( )
( ) , .

(0) (0) ( )

E t E t E t
t G F t G F t

E E E

E t E t E t
c G E t c G G t t

E E t

  

   


− −

    
   = +   

   

     
 − + −       
     



     (3.33) 

An application of Young's inequality yields 
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1 *

1 1

1 1

1 1 1

( ) ( ) ( ) ( )

(0) ( ) (0) ( )

( ) ( ) ( ) ( )
( ) ( ) ,

(0) (0) (0) ( )

E t E t E t E t
G G G G

E t E t

E t E t E t E t
G G G G G G

E E E t

   
 

   


−

− −

       
 −  −      
      

          
    = − −        

          

(3.34) 

where  

* 1 1
( ) : ( ) ( ) ( ) ( )G s s G s G G s

− −  = −    

satisfies Young’s inequality 

*
( ) ( ).AB G A G B +  

Here we used 
1

( )

(0)

E t
A G

E

 
=  
 

 and 
1 ( )

( )

E t
B G

t



−  
= − 

 
 in (3.34). 

Next we use (3.34) and the facts that 
1

( )

(0)

E t
r

E
   and 

1 1

( ) ( )

(0) (0)

E t E t
G G

E E
 
   
 =   
   

 to derive 

1

1 1 1 1

1 1

( ) ( ) ( ) ( ) ( ) ( )

(0) ( ) (0) (0) (0) ( )

( ) ( ) ( )
.

(0) (0) ( )

E t E t E t E t E t E t
G G G G

E t E E E t

E t E t E t
G

E E t

     
 

  


−         
 −  − −       
       

 
 − 
 

         (3.35) 

From (3.33) and (3.35), we infer that 

1 1

1 1 2 1

1

1 1 2 1 1 2 1

( ) ( ) ( )
( ) ( )

(0) (0) ( )

( ) ( ) ( ) ( )
( ) , ,

(0) (0) (0) ( )

E t E t E t
t c G E t c G G

E E t

E t E t E t E t
c G E t c G c t t

E E E t

   


   


− −

−

     
   − + −     

     
   

  − + −     
   



 

and thus 

( )1

1 2 1 1 2

( ) ( )
( ) ( ) (0) ( ) ( ).

(0) (0)

E t E t
t t c E c t G c E t

E E
   −  

   − − − 
 

           (3.36) 

Set 
1 2
( ) ( ) ( ) ( ).t t t c E t= +  Then 

1
( ) ~ ( )t E t  and for all 

1
,t t  

( )

1 2 2

1

1 2 1 1 3 0 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
(0) ( ) ( ) ,

(0) (0) (0)

t t t t t c E t t t c E t

E t E t E t
c E c t G c t G

E E E

  

    −

     = + +  +

   
 − −  −   
   



(3.37) 

where 
0
( ) : ( )G s sG s=  is increasing. Then we get 

( ) ( )2 3 2 0 1 0 21 1
( ) ( ) ( ) (0) ( ) ( ) , ,Gmt c t G E t E t t t t     −   −   (3.38) 

where ( )2 2 1
( ) ( ) / (0) ~ ( ),t t E E t=  for any 

2 1
0 .    Integrating (3.38) over  1

,t t  to obtain 

( )1 1

2

1

0 2

1

( )
( ) , ,

( )

t t

t t

s
ds s ds tm t

G s



−    




 

which implies that 

2 1

2 1

( )

0 1
(

1
)

( ) ( ) , .
t t

t t
ds G s s d t tm s   




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Therefore 

( )
1

1

1

2 0 1
( ) ( ) , ,

t

t
t G s ds t tm −
                                  (3.39) 

where 
0 0
( ) ( )

r

t
G t ds G s=   defined on ( 0, r is strictly decreasing and 

0
0

lim ( ) .
t

G t
+

→

=   Here we make 

use of the properties of G  and select 
2

  such that 
2 1 2 1 1
( ) ( ) / (0) .t t E r=   In addition, by 

choosing 
1 1

m m  satisfies 
1 1

1

2 2

1 1
0

( ) ( ) ,
t t

t
m s ds m s ds =   we arrive at 

1
1 1

0
( ) ( ) .

t t

t
m s ds m s ds          (3.40) 

From (3.39) and (3.40), we complete the proof. 

4.  CONCLUSION 

Throughout the paper, under a relatively large class of relaxation ,g  we showed that the total 

energy of problem (1.1) satisfied the general decay rates, which include exponential, logarithmic, and 

polynomial rates.  
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TỐC ĐỘ TẮT DẦN TỔNG QUÁT CỦA NĂNG LƯỢNG TOÀN PHẦN  

CỦA MỘT PHƯƠNG TRÌNH SÓNG PHI TUYẾN CHỨA SỐ HẠNG TẮT DẦN MẠNH 
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Bài báo này tập trung vào tốc độ tắt dần tổng quát của năng lượng toàn phần liên kết với nghiệm 

của phương trình sóng đàn hồi nhớt phi tuyến 

( ) 2

0
( ) ( ) ,

t p x

tt t
u u g t s u s ds u uu

−
−  + −  =−   

trên một miền bị chặn ,
n

    với giả thiết ( ) ( ) ( ( ))g t t G g t  − trên hàm hồi phục với năng lượng 

ban đầu dưới ngưỡng tới hạn. Những kết quả này tinh chỉnh và mở rộng các kết quả gần đây của chúng 

tôi về phương trình sóng đàn hồi nhớt. 

Từ khóa: Phương trình sóng phi tuyến, Đàn hồi nhớt, Tắt dần tổng quát, Tắt dần mạnh, Nguồn số mũ 

thay đổi. 
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