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ABSTRACT: In this paper, we consider the 2D g-Bénard problem in domains satisfying the Poincaré
inequality with homogeneous Dirichlet boundary conditions. We show the existence and uniqueness
of strong solutions. The obtained results particularly extend previous results for 2D g-Navier-Stokes
equations and 2D Bénard problem.
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SU TON TAI VA DUY NHAT NGHIEM MANH DPOI VOI BAI TOAN g-BENARD 2 CHIEU
TRONG MIEN KHONG BI CHAN

TOM TAT: Trong bai bao nay, chiing toi xét bai toan g-Bénard 2 chiéu trong mién théa man bt dang
thirc Poincaré véi cac diéu kién bién Dirichlet thuan nhat. Chung t6i chi ra sy ton tai va tinh duy nhat ctia
nghiém manh. Két qua thu duoc dic biét mé rong cac két qua trude do cho phuong trinh g-Navier-Stokes
2 chiéu va bai toan Bénard 2 chiu.

Tir khéa: Bai toan g-Bénard, nghiém manh, ton tai, duy nhét.

1. INTRODUCTION

Let Q be a (not necessarily bounded) domain in R’ with boundary T'. We
consider the following two-dimensional (2D) g -Bénard problem

%+(u-V)u—vAu+Vp:§t9+fl,XEQJ>0,
V(gu)=0,xe€Q, t>0,
00

—+(u~V)49—KA6?—2—K(Vg-V)9—%0=fz,er,t>O,
ot g g (1.1)
u=0,xel’, t>0,

0=0,xel', t>0,

u(x,0)=u,(x), xeQ,

0(x,0)=6,(x), xeQ,
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where u =u(x,t) = (u,,u,) 1s the unknown velocity vector, 8 = 6(x,t) 1s the temperature,
p = p(x,t) 1s the unknown pressure, f, is the external force function, f, is the heat
source function, v >0 is the kinematic viscosity coefficient, & is a constant vector,
x >0 1s thermal diffusivity, u, 1s the initial velocity and 6, is the initial temperature.

The g -Bénard problem is a variation of the Boussinesq equations which consists
in a system that couples Navier-Stokes and advection-diffusion heat in oderti model
convection in a fluid. Moreover, when g = const we get the usual Bénard problem, and

when =0 we get the g -Navier-Stokes equations. The 2D g -Bénard problem arises
when we study the usual 3D Boussinesq equations on thin domains 2, =Qx(0,g). In
what follows, we list some related results.

The existence and uniqueness of the weak solution of 2D g -Bénard problem has
been studied in [2] for periodic time boundary conditions as well as Dirichlet boundary
conditions on bounded domains. Then, in [3] M.Ozliikand M. Kaya also study the
existence of strong solutions for the 2D g -Bénard problem for periodic time boundary

conditions. Thereafter, T.Q. Thinh and L.T. Thuy prove the existence and uniqueness of
weak solutions in unbounded domains satisfying the Poincaré inequality with
homogeneous Dirichlet boundary conditions, in [6].

The long-time behavior of the strong solutions are important because the
numerical computaion of turbulent flows is connected with the computation of the
solutions for large time and this will be a subject of a forthcoming work.

We will study the existence and uniqueness of strong solutions to 2D g -Bénard

problem in domains that are not necessarily bounded but satisfy the Poincaré inequality.
To do this, we assume that the domain €2 and functions f,, f,,g satisfy the following

hypotheses:

(Q) The domain () is an arbitrary (not necessarily bounded) domain in R’ provided
that the Poincar e inequality holds on ) : There exist A, > Osuch that

[ ¢ gdx < % [Vl gdx, forallgeCy(Q); (1.2)

(F) £, eL(0.T:H,), f,€L(0,T;L(Q));
(G) g eW"(Q) such that

0<m,<g(x)<M, forallx=(x,x,)€Q, and |Vg [ <m)A, (1.3)
where 4, >0 is the constant in the inequality (1.2).

The article is organized as follows. In Section 2, for convenience of the reader,
we recall the functional setting of the 2D g -Bénard problem. Section 3 we show the

existence and uniqueness of strong solutions to the problem by combining the Galerkin
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method and the compactness lemma.
2. PRELIMINARIES

Let I’(Q,g)=(L(Q,g))° and H}(Q,g)=(H)(,g))* be endowed with the
usual iner products and associated norms. We define

Y ={ue(C(Q8)) :V-(gu)=0}, V=10 (L2, 9)},
H_ = the closure of V in (€, 2), V, =the closure of ) in H{(€,g),

W, = the closure of )] in H,(Q,g), V! = the dual space of V/,,
W, = the dual space of W,

The inner products and norms in V,,H, are given by

2
(u,v), =Iu -vgdx, u,veH, and ((u,v)), =I2Vuj -Vv,gdx, u,veV,
Q

Qi,j=1
and norms |u |z,: (u,u),, ||u ||z,: ((u,u)),. The norms ||, and ||-||, are equivalent to the
usual ones in I’(€, g) and H(Q,g). We also use || -||. for the norm in V,,and (.,-) for
duality pairing between V, and V.

The inclusions V,cH,=H, cV, W, L'(Qg)c W, are valid where each

space is dense in the following one and the injections are continuous. By the Riesz
representation theorem, it is possible to write (f,u), = (f.u),,Vf e H VueV,.

Also, we define the orthogonal projection P, as P,: H, — H, and 15g as f’g :

L'(Q,g)— W, . By taking into account the following equality

—l(V -gVu)=—-Au— l(Vg ‘Vu,
g g

we define the g -Laplace operator and g -Stokes operator as —A u = —l(V -gVu) and
g

Au=P[—-Au], respectively. Since the operators 4, and P, are self-adjoint, using
integration by parts we have

(Au,uy, = (f;[—l(v -gVul,uy, = IQ(Vu -Vu) gdx =(Vu,Vu),.
g

Therefore, for u €V, , we can write | 4, "u|,=| Vu |, =l|u]l, .

Next, since the functional zeW, > (VO,Vr), €R is a continuous linear

mapping on ¥, , we can define a continuous linear mapping ;18 on W, such that
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VreW, (4,0,7),=(VO,V1),, forall 0 W,.

We denote the bilinear operator B, (u,v) = P,[(u-V)v] and the trilinear form

b, (u,v,w) = ZIu—wgdx

i,j=1
where w,v,w lie in appropriate subspaces of V,. Then, one obtains that
b, (u,v,w) ==b,(u,w,v), also b, satisfies the inequality

b, v, Aw) [Sclullull VI Ay 4w, . (2.0
where ueV,,v,we D(4,).

Similarly, for u €V, and 6,7 € W, we define [?g (u,0) = Pg [(u-V)f] and

b(u0,5)=3 [Lu (x)Oe( ) r(x)gdx.

i,j=1 j
Then, one obtains that Eg (u,0,7)= —Eg (u,7,0) and 5g satisfies the inequality
b, (v, Aw) [<clulllull VI Av]0] 4w, - (22)

where ueV,,0,7 € D(A4¢).

We denote the operators C,u = Pg[l (Vg- V)u] and C 0= Pg[l (Vg- V)H] such that
g g
(Cu,vy, =b, (E,u,v),@ge, ), =b, (B,e,r).
4 g

Finally, let D,6 =P, [ﬁe] such that (D,0,7), ——b( g 0.r)- b( ,7.,0).
g

Using the above notations, we can rewrite the system (1.1) as abstract
evolutionary equations
d

?M+Bg(u,u)+vAgu+ngu =0+ 1,

%f+B(u 0)+xA.0-xCO-xDO=f, (2.3)

u(0) = u,,0(0) =0,

3. EXISTENCE AND UNIQUENESS OF STRONG SOLUTIONS

Definition 3.1. 4 pair of functions (u,0) is called a strong solution of problem (2.3) on
the interval (0,7) if ueL’(0,T;D(4,))NL"(0,T;V,) and
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0 L(0,T;D(A4,)) L (0,T;W,) satisfy

d \%
E(u,v)g +b, (u,u,v) +v(Vu,Vv), +ng(?g,u,v) =(&0,v), +(f,v),>

(3.1)
d = .V
—(0.0),+b,(w,0.0)+K(VO.V ), +Kbg(?g,‘r,9) =(f,7),»

Jor all test functions v €V, and © € W, for almost every t € (0,T).

Theorem 3.1. Let the initial data (u,,0,) €V be given, let the external forces f,, f,
satisfy hypothesis (F) and the function g satisfy hypothesis (G). Then there exists a
unique strong solution (u,0) of problem (1.1) on the interval (0,T).

Proof. Existence. We use the standard Galerkin method. Let m be an arbitrary but fixed
positive integer. For each m we define an approximate solution (u"(¢),8"(¢)) of (3.1)
for 1<k <m and ¢ €[0,T] in the form,

(=3 00 070 =3 g (00,
j=1 Jj=1

" (0) =, =Y (apu)u;; 0"(0)=6,,=(z,,0.)6,
j=l1 j=1

d m m m m
E(u( LAu), +b, " ™ Au)+v(w™, Au,)), )
V m m .
+vbg(?g,u( L Au) = (E0", Au), +(fi A,
di(e("”,,agek ), +b,™,0™,4,0,)+x(0™,4,0,),
! (3.3)

~ Vo -~ ) -
+K‘bg(?g,Ag(9k,9( N=(f,,4,6,),.

This system forms a nonlinear first order system of ordinary differential equations for
the functions f"'(r) and g'"() and has a solution on some maximal interval of
existence [0,7 ).

We multiply (3.2) and (3.3) by f"(¢) and g'"(t) respectively, then add these

equations for £ =1,...,m. Next, using (1.2), (1.3), (2.1), (2.1) and Cauchy-Schwarz's
inequality, we obtain
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d A
Ellu( 'O ' A4u™ @,

e (3.4)
<2 : 3| u™ [llu™ I, = ||§|| 16", = \flz,
i H(m) t) 2 + ! 20(7}1)(1‘ |2
dt” O, +x' 4, )
(3.5)
m m m 2K A 00 m 1
< 2T p 0 I + 208 e g Ly g
0
where v' = 21/(1— | ng —GJ,K' = 2/{1— | ng —ej
2, 2,
: Vg |
and € >0 is chosen such that | 1 -——=-*—¢ |>0.
myA,
Setting (see [6])
27¢c ” m m
g(t)—2 L™ L™ | <C1,h(t)——(|§H 16" — Ifl <G,
- 27c " " 2k || Ag L.,
&) = . 3‘ ()‘ZH ()HZ M<C h(t)=—|f2|z,SC4,
2¢’K A €K
where C,,C,,C, and C, are positive constants.
We have
j [ @), +' [ A4u" @O [<g@) || u™ |}, +h), (3.6)
d ||6’('”)(t)|| +£'| 4,0 (< g0 )| 0™ | +h(). (3.7)
Appyling the Gronwall’s inequality to (3.6) and (3.7), we see that
|| u(m) (t) ||z S“ u(m)(o) ||z ejog(r)dr +J'(: e.l.og(r)dr—_[og(s)dr h(S)dS’
102 <l ™) ek ™ 4 [ b T hE fgyas,
with 0<7<T.
Then we have: sup || (¢) |l.< C; and sup || 0" (1) |[;< C (3.8)
t€[0,7] t€[0,T]

where C, and C, are positive constants.

Integrating (3.4) and (3.5) from 0 to 7', we obtain
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27¢
26}

m T m
[ (D[, +'[ 14" @) [, de <l|u, |} +

T
[N OIR A G

2 T m I ¢r
+= I [ 0O di+— [ IO dr,
(%4 (%

27¢

(m) 2 " m) 2 2
10" (D), +x'1 4,60 @) [, <116, |, o

T
[ ORI O 10 ) di

2c || AgL, (7 (m) (4N 2 1 (7 2
+7L 0™ (1) |2 dt+;j0 @] dt,

Furthermore, we have: IOT A u™ (1)} dt <C, and IOTLZng(’”)(Z) 2 dt<C,, (3.9)
where the C, and C; are positive constants.
Hence, in particular, from (3.8) and (3.9)we see that

{u"} 1s bounded in L*(0,7;V,),  {0"} is bounded in L* (0,7 W,).

{u"} is bounded in I*(0,T;D(4,), {0"} is bounded in L*(0,T;D(A4, )).

(m) (m)
We establish uniform estimates, in m , for dl;t and dzt . Letus recall (2.3), we have
W B w" u")—vAu—vCu" +E0"
e " u")—vAu—vCu" + 80" + f,
dem—B ".e" B (u",0" A6" C.0"+xD. 0"
T (", 0")—x B,(u",0")—x 4,0" +x C,0" +kD,0" + f,.

Applying (2.1), we obtain
T T
[ B @™ @u" @) <c| u™ @)Ll 4" @) Lllu™ @) |} di
T m m m T m
<ef u" O[lu™ Ol dt<c|u™ ., [ Au"OF dr
T T T
And [JIC.@™ @) di<c| Vel llull de<c|Vgl, | llull,de.
Therefore, B, (u",u™) belongs to the space L'(0,7;H,) hence it belongs to

d (m)
L(0,T;H,) and C,u" (1) also belongs to L*(0,7T;H ). As a result L;t

e (0,73 H,)

(m)
e L'(0,T; (2, ).

. Similarly, we also have

Therefore, by the Aubin’s compactness theorem (see, e.g., [1] or [4]) we conclude that
there exist subsequences of {1} and {8}, still denoted by {1’} and {8""} such that
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uelL(0,T;V,)NL[*(0,T; D(Ag)),% e L'(0,T;H)),

0 L O.TW) A LO.TDA) T e FOTE @)
where
u™ —uin 2(0,T;D(A4,)),u™ —u in 2(0,T;V,) and u™ —"u in L*(0,T;V),
0" — 0 in [X(0.T:D(A,)),0™ — 0 in (0,T:,) and 6™ —" @ in L"(0.T:V.),
as m—> .

Then we can pass to the limit in the equations. Let w, € D(4,) and w, € D(Zlg).

We multiply (3.2) and (3.3) by 4,w,, A  w, respectively and then integrate by parts

(u(m),AgWI) +J'; (bg(u(’”)(S)’u(m)(S)aP A w,)ds +VLZ (Agu(m>(s), Agwl)ds

m*g

t VvV m m t m t
+VJ.[0 (bg(?g,u( )(s),PmAgwl)ds =(u' )(fo),AgWI) + Lo (0" (s), A,w,)ds + J.O (fi» AW,
(H(m)’gng)_i_"‘l: (b~g (u(m)(s)’ 0(/7')(5))’R'Zgng)ds + K'J.t: (/]ge(’")(S),/Zng)dS
t >V m) o m ~ g r
+Kjt0bg(?g’9( L Aw)ds =0 (1), Aw) + [, (fon By A,wy s,

forall 7,7 €[0,T7].

Since u™ —u in L*(0,T;V,) and 6 — @ in L*(0,T;W,) then
W™ (1), A,w) = @™ (), A,w,) —> (@), A,w,) = (u(t,), 4,m),
(O (1), A,w,) = (0" (1,), Aw,) = (O(1), A,w,) = (0(1,), A, w,),

as m —» o0.

For the nonlinear term

I, B )" (), P, A,) = b, (), u(5), 4, ) ds

<

J, B, (5),u™ (), B, A,w, = 4, w)ds

+ U: (b, @™ (s) —u(s),u™ (s), A,w)ds

+‘ [/ (b, (s),u™ ()~ u(s), A, w)ds|:= 10 + 12+ 1%,

Using Cauchy-Schwarz’s inequality, Holder inequality, estimates (1.2) - (2.1), we get

C
L) <5 lu"|

m. 211/2

L2(0,T;Vg)| Agu |

| B, A,w — A,w |

2 .
2(0.7:D(4,)
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L) <—o 14w [ 4u"(s)] |u” —ul|

A‘II/Z

1) < /lll/g | Aw T Al [0 () =) g -
Since u"(s) > u in L*(0,T;V,) and u"™(s) —u in L’(0,T;D(4,)), we have

Lz(o,r;m’ £ (0,157,)

im/® =0, lim/® =0, limI® =0.

m-—»o0 mM—>»0 m—>0

From the above result, we get

hmj (b, @™ (),u™(s), P, A,w,)ds = j (b, W(s),u(s), A,w,)ds

m—»o0

Thus, lim j (b, ™ (5),0" (5), P, A,w,)ds = j (b, u(s),0(s), A,w,)ds,

lim b( (’”’(S)Pijd jb[ u(s)ijds
g g

m—>»o0

m-—»0

lim b ( ,0"(s), P! A w )ds —I (b ( ,0(s), A w. )a’s.
g g

Following the technique given in [5], as m — oo we obtain pass limit in the equations
(3.2) and (3.3). Furthermore, applying similar techniques given in [5] it is easy to show
that (u,0) satisfies the initial conditions u#(0) =u, and 6(0) = 6,.

Uniqueness. Let be two system of equations of the g -Bénard problem on the
interval (0,7) with the given data u,(0),6,(0), f,,, f,, and u,(0),6,(0), f,,, f,, such that
the systems have two strong solutions u,,6, and u,,0, respectively.

du

dt

“ZI +B,(u,,0)+xA4,6,-xC,0,—xD, = f,,

—++ B, (u,u) +vAu +vCu, =80 + f,,

‘ZZ + B, (uy,uy) +vAu +vCu, =£0, + f,,

ddi’z +B,(u,,0,)+xA4,0,-xC,0,- kD, = f,,.

Putting u, —u, =u,0 —-6,=0, f,, — f,, = f, and f, — f,, = f,. Then, multiplying these
two equations with 4 u and ZlgH respectively, we have
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li||u|| +b, (u,u,, A,u)+b, (uz,uAu)+v|Au| +vb (Vg,u,A uj
2.dt g ¢

=(50), +(f1,4,u),

lillﬁll +b (.0, o)+b(u2,6’AQ)+K‘|A9| +K'b( AHH)
2 dt g

=(/,,4,0),.

Next, the application of the Cauchy - Schwarz and Young inequalities results in the
following inequality,

d 1 1
E(nu 2 +1161%)<K@(lull; +]] 0||;)+;uf] & +—Ilf, 2,

27

where K,() =—7z |t Ll Aga |, +5 575 Iu ol I Gl 14,61,
27c 2KIIAgII )
K, (t)= - ,
D=l Bl ]+ S8
K(t) = max{K, (1), K, (1)}
10.7]
Thanks to the Gronwall inequality, we have
K(s)ds 2 2 4 2 1 2
lu@ |2 +16@) Z<e " (|u@) F +161%7)+—I1 A 115 +—=I1 £ IE -
Ve Ke

Hence, the continuous dependence of the strong solution on the initial data in any
bounded interval for all t > 0. In particular, the solution 1s unique.
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