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TÓM TẮT: Các mạng nơ-ron chập sâu (Deep Convolutional Neural 
Networks – DCNNs) ngày càng được sử dụng rộng rãi để phân loại các 
hoạt động của con người dựa trên ảnh phổ có dấu hiệu micro-Doppler 
(m-D) thu được từ radar. Tuy nhiên, hiệu suất phân loại của các mô 
hình thường bị giảm đáng kể khi tín hiệu m-D bị ảnh hưởng bởi nhiễu. 
Nghiên cứu này đề xuất một phương pháp mới nhằm cải thiện độ chính 
xác phân loại của DCNNs trong môi trường có sự tác động bởi nhiễu 
Gauss trắng. Phương pháp đề xuất giới thiệu một kỹ thuật lựa chọn ô 
cự ly (range bin) tối ưu dựa trên tiêu chí giá trị entropy cực tiểu 
(minimum entropy) của tín hiệu, nhằm tăng cường chất lượng tín hiệu 
đầu vào cho DCNN mà không cần thay đổi kiến trúc mạng. Kỹ thuật đề 
xuất được kiểm chứng thực nghiệm bởi 4 mô hình DCNNs hiện có trên 
tập dữ liệu mô phỏng (với 6 mức nhiễu khác nhau), cho thấy sự cải thiện 
đáng kể về độ chính xác phân loại. 
ABSTRACT: Deep Convolutional Neural Networks (DCNNs) 
are increasingly being utilized for the classification of human 
activities based on micro-Doppler (m-D) signatures obtained 
from radar. However, the classification performance of these 
models typically degrades significantly when the m-D signal is 
affected by noise. This study proposes a novel method to 
improve the classification accuracy of DCNNs in environments 
impacted by white Gaussian noise. The proposed method 
introduces an optimal range-bin selection technique based on 
the minimum entropy criterion of the signal. This approach 
aims to enhance the input signal quality for the DCNN without 
requiring modifications to the network architecture. The 
proposed technique is experimentally validated by four existing 
DCNN models on a simulated dataset (with six different noise 
levels), demonstrating a significant improvement in 
classification accuracy. 

1. Giới thiệu vấn đền nghiên cứu
Trong những năm gần đây, việc phát hiện

và phân loại chính xác hoạt động của con 
người đang nhận được nhiều sự quan tâm, đặc 
biệt trong các ứng dụng chăm sóc sức khỏe 
nhằm giám sát và cảnh báo kịp thời các hoạt 
động bất thường, tiềm ẩn nguy hiểm như té 
ngã do đột quỵ, nhồi máu cơ tim, đặc biệt đối 
với người cao tuổi và những người có nhu cầu 

đặc biệt [1]. Các công nghệ truyền thống như 
thiết bị đeo (wearables) hoặc hệ thống camera 
gặp phải những hạn chế nhất định: thiết bị đeo 
gây bất tiện khi sử dụng liên tục, trong khi 
camera xâm phạm quyền riêng tư và hoạt động 
kém trong điều kiện thiếu sáng hoặc sương mù 
[2]. Do đó, các hệ thống dựa trên cảm biến 
radar, với khả năng hoạt động không tiếp xúc, 
bảo vệ quyền riêng tư và xuyên qua chướng 
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ngại vật, đang là một giải pháp thay thế hiệu 
quả. 

Khi con người di chuyển và thực hiện các 
hoạt động hàng ngày, các chuyển động đồng 
thời của các bộ phận khác nhau, như: vung 
tay, xoay, cúi, gập người được định nghĩa là 
chuyển động vi mô so với chuyển động tịnh 
tiến của cơ thể. Các chuyển động vi mô này 
tạo ra các biến điệu tần số đặc trưng, được thể 
hiện dưới dạng các ảnh phổ thời gian-tần số 
[3]. Những ảnh phổ này, chứa các dấu hiệu 
đặc trưng duy nhất cho từng hoạt động và 
được sử dụng làm đầu vào cho các hệ thống 
phân loại [4].   

Trong vài năm trở lại đây, DCNNs đã cho 
thấy hiệu quả vượt trội trong việc tự động 
trích xuất đặc trưng và phân loại các ảnh phổ 
m-D. Nhiều nghiên cứu đã chuyển từ các
phương pháp trích xuất đặc trưng thủ công [5,
6] sang các mô hình học sâu. Các kiến trúc
phức tạp và các kỹ thuật học chuyển giao
(transfer learning) sử dụng các mạng nổi
tiếng như ResNet, Alex-Net, và VGG-Net đã
đạt được độ chính xác phân loại cao, trên
90% đối với các bộ dữ liệu tiêu chuẩn [8, 9].
Tuy nhiên, một hạn chế của các công trình
hiện tại là hiệu suất của chúng thường được
đánh giá trong điều kiện lý tưởng, với dữ liệu
đầu vào có tỷ lệ tín trên tạp (SNR) cao. Trong
các ứng dụng thực tế, tín hiệu radar thu về
không thể tránh khỏi việc bị ảnh hưởng bởi
nhiễu, chẳng hạn như nhiễu Gauss trắng. Khi
nhiễu nền tăng, các dấu hiệu m-D đặc trưng
được trích xuất trên ảnh phổ trở nên mờ nhạt
và bị chìm dưới nền nhiễu, điều này làm giảm
độ chính xác phân loại của các mô hình. Mặc
dù việc sử dụng các mạng DCNN sâu hơn có
thể duy trì độ chính xác phân loại ổn định cho
các hành động bị ảnh hưởng bởi các mức
nhiễu khác nhau, nhưng chúng sẽ cần một
lượng lớn dữ liệu và chi phí xử lý đáng kể.

Xuất phát từ các kết quả nghiên cứu trên, 
có thể thấy, việc quá tập trung vào tối ưu hóa 
kiến trúc mô hình mà bỏ qua chất lượng dữ 
liệu đầu vào sẽ không đạt được độ chính xác 
cao. Do đó, một hướng tiếp cận hiệu quả hơn 

là tiền xử lý tín hiệu để nâng cao chất lượng 
ảnh phổ trước khi đưa vào bộ phân loại. 

Để giải quyết vấn đề này, nghiên cứu tập 
trung đề xuất một thuật toán tiền xử lý dữ liệu 
nhằm lựa chọn chỉ số ô cự ly (range-bin) tối 
ưu dựa trên tiêu chí giá trị entropy cực tiểu 
[10] để nâng cao chất lượng phân loại các
hoạt động của con người dưới sự tác động của
nhiễu Gauss trắng. Hiệu quả của phương
pháp đề xuất được đánh giá bằng bốn mô hình
DCNNs hiện có, qua đó chứng minh khả
năng cải thiện chất lượng phân loại một cách
nhất quán dưới sáu mức nhiễu Gauss trắng
khác nhau.

Cấu trúc của bài báo như sau: Mục 2 mô 
tả phương pháp thu thập và quy trình xử lý dữ 
liệu. Mục 3 giới thiệu thuật toán đề xuất. Các 
kết quả thực nghiệm và thảo luận được trình 
bày trong Mục 4. Kết luận được tóm tắt tại 
Mục 5. 
2. Cơ sở lý thuyết và phương pháp nghiên cứu
2.1. Thu thập dữ liệu của radar FMCW

Hình 1. Sơ đồ khối của radar FMCW 
Tổng quan sơ đồ khối của radar điều tần 

liên tục (Frequency modulated continuous 
wave - FMCW) được mô tả ở Hình 1. Bộ tạo 
dạng sóng (waveform-generator-WG) tạo tín 
hiệu điều khiển cho bộ dao động điều khiển 
điện áp (voltage-controlled oscillator-VCO) 
để phát ra tín hiệu radar FMCW radar có tần 
số thay đổi theo thời gian. Sau đó, tín hiệu 
được chia thành hai nhánh, nhánh thứ nhất đi 
đến anten phát (TX) để phát đến mục tiêu, 
nhánh còn lại được đưa đến bộ trộn ở máy thu. 

Tín hiệu phát của radar FMCW có thể 
được biểu diễn như sau [11]: 

2
0( ) cos(2 ( ))

2





 t

B
S t A f t t         (1) 

trong đó, B  là băng thông,   là thời 
lượng mỗi chirp, tA và 0f lần lượt là biên độ 
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và tần số sóng mang của tín hiệu phát. Khi tín 
hiệu ( )S t  được phát vào không gian, gặp 

mục tiêu sẽ có tín hiệu phản xạ về lại anten 
thu của radar. Lúc này, tín hiệu nhận được ở 
máy thu được biểu diễn như sau: 

2
0( ) cos(2 ( ( ) ( ) )

2





   r d d

B
R t A f t t t t

(2) 

trong đó, 02( )
d

D t
t

c
 là thời gian trễ 

của tín hiệu thu. 0D là khoảng cách từ mục 

tiêu đến anten thu tại thời điểm 0t ,   là 
vận vận tốc di chuyển của mục tiêu và c  vận 
tốc ánh sáng.  

Tại máy thu, tín hiệu ( )R t được trộn với tín 

hiệu phát ( )S t  tại bộ trộn tần số FM (frequency 

mixed-FM) và thông qua một bộ lọc thông thấp 
(low pass filter-LPF) để thu được tín hiệu IQ 
cho các bước xử lý tiếp theo 

0 0 0 02 2 2
( ) exp{2 ( ( ) )}





  

  IQ m

f D f B D
R t A t

c c

(3) 

trong đó, 
2

 t r
m

A A
A  là biên độ của tín hiệu 

IQ thu được sau bộ lọc thông thấp. Bằng cách 
phân tích phổ m-D của IF signal, ta có thể 
phân loại được các hoạt động của con người 
dựa vào các dấu hiệu m-D. 
2.2. Quy trình xử lý dữ liệu 

Hình 2 Quy trình xử lý dữ liệu 
Hình 2 trình bày chi tiết quy trình xử lý từ 

tín hiệu IF đến kết quả thu được là các range-
Doppler hoặc m-D frames [12] của mục tiêu. 
Tín hiệu IF (raw data), theo dạng sóng răng 
cưa điển hình, bao gồm các chirps, trong đó 
một frame được xác định là tập hợp của M 
chirps. Đối với mỗi chirp, dữ liệu được lấy 
mẫu với số lượng các ô tần số (frequency bin) 

là N (Hình 2a). FFT lần thứ nhất được áp 
dụng trực tiếp cho mỗi chirp theo chiều fast-
time, các ô cự ly tương ứng từng chirp sẽ 
được lưu trữ trong ma trận range-time 
(Hình 2b). Qúa trình xử lý biến đổi Fourier 
này sẽ biểu thị cho sự hiện diện của các mục 
tiêu tại các khoảng cách khác nhau. Quá trình 
xử lý này được gọi là range-FFT và kết quả 
là ta sẽ thu được biểu đồ cự ly của mục tiêu 
tương ứng (Hình 2d).  

Tiếp theo, các dấu hiệu m-D của mục tiêu 
thu được bằng cách sử dụng biến đổi Fourier 
thời gian ngắn (STFT) các ô cự ly theo chiều 
slow-time (Hình 2c). Kết quả sẽ thu được ảnh 
phổ có chứa các dấu hiệu m-D tương ứng với 
các hoạt động khác nhau của mục tiêu 
(Hình 2e). 

Trong nội dung nghiên cứu, thay vì áp 
dụng STFT trên tất cả các ô cự ly hay với bất 
kì một giá trị chỉ số ô cự ly cụ thể nào; chúng 
tôi sẽ lựa chọn ra một vùng lân cận các chỉ số 
ô cự ly có giá trị cao nhất tập trung tối ưu vào 
đối tượng để tạo ra ảnh phổ m-D theo thời 
gian làm đầu vào phân loại của các DCNN.  
2.3. Lựa chọn vùng ô cự ly tối ưu dựa vào giá trị 
entropy cực tiểu 

Như đã trình bày trong phần 2, các dấu 
hiệu m-D của mục tiêu được thu thập bằng 
cách sử dụng STFT trên tất cả các ô cự ly 
theo chiều slow-time. Tuy nhiên, đối với 
trường hợp tín hiệu có nhiễu thì việc lựa chọn 
các vùng ô cự ly tối ưu để trích xuất các dấu 
hiệu m-D là một trong những phương pháp 
giảm�nhiễu hiệu quả.

Hình 3. Biểu đồ cự ly và FFT của một 
chirp cụ thể 
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Hình 3a,c biểu diễn biểu đồ cự ly của hoạt 
động đi bộ với dữ liệu sạch và dữ liệu có 
mức nhiễu là 5dB. Trong cả hai trường hợp, 
mục tiêu được phát hiện tại khoảng ô cự ly 
thứ 8 và dao động trong khoảng từ ô cự ly 
thứ 6 đến ô cự ly thứ 10 trong suốt quá trình 
chuyển động.

Hình 3b,d lần lượt biểu diễn kết quả FFT 
của 1 chỉ số ô cự ly cụ thể tương ứng với dữ 
liệu sạch và dữ liệu có mức nhiễu 5dB. Quan 
sát chi tiết, Hình 3d cho thấy mức năng lượng 
tập trung lớn nhất đại diện cho mục tiêu cũng 
xuất hiện ở ô cự ly thứ 8 (tương tự Hình 3b), 
các đỉnh năng lượng ngoài vùng nét đứt màu 
đỏ được xem là nhiễu. Do đó, trong nội dung 
tiếp theo, nhóm tác giả sẽ sử dụng giá trị 
entropy cực tiểu để xác định khoảng chỉ số ô 
cự ly tối ưu nhằm loại bỏ các thành phần 
nhiễu không mong muốn. Hình 4 trình bày sơ 
đồ tóm tắt quy trình thuật toán đề xuất. 

Hình 4. Sơ đồ tóm tắt quy trình thuật toán 
2.3.1. Thông tin entropy 
a. Định nghĩa

Cho dãy phân bố xác suất rời rạc

 1 2, , , np p p p , theo định nghĩa entropy 

thông tin, entropy thông tin của nó có thể viết 
là ( ) ln  i i

i

H p p p , trong đó 1,2 ,i n đại 

diện cho tất cả các giá trị có thể có của biến 

ngẫu nhiên đầu ra và ip biểu thị xác suất của 

từng giá trị. Bằng cách tương tự, trong phân 
bố tần số thời gian của tín hiệu, nếu phân bố 
tần số của tín hiệu tại một thời điểm nhất 

định,  1 2, , , Fp p p p  được coi là một

chuỗi phân bố xác suất, khi đó phân bố xác 
suất tần số của tín hiệu tại thời điểm t có thể 
thu được là 

2

2

| ( , ) |
( )

| ( , ) |  d







t

X t f
p f

X t f f
(4) 

trong đó ( ,  )X t f  là mức năng lượng của 

tín hiệu tại thời điểm ( ,  )t f . Khi đó tại thời 

điểm t, entropy thông tin của tần số chứa 

trong tín hiệu có thể được viết là 

  ln t t t t
F

H p p p (5) 

trong đó,  t tH p được gọi là hàm entropy,

dùng để đo và biểu thị entropy thông tin. F là 
đơn vị của độ phân giải tần số và giá trị của 

nó liên quan đến độ dài thời gian của tín hiệu 
và thuật toán phân tích tần số thời gian. 

b. Tiêu chí entropy cực tiểu
Phân phối tần số thời gian từ STFT của tín

hiệu có thể được hiểu là chuỗi phân phối xác 
suất. Và phân bố xác suất của đơn vị phân 
giải tần số tại thời điểm t có thể được định 
nghĩa là:

2

STFT,

2

STFT,

( , )
( )

( , )  d







r

t

r

X t u
p u

X t u u
          (6) 

trong đó, STFT, ( , )rX t u  là STFT của tín hiệu 

đầu vào, x(t), với khoảng chỉ số ô cự ly được 
chọn là r. Do đó, entropy thông tin có thể 
được biểu diễn dưới dạng:

  ( ) ln ( )d



  t t t tH p p u p u u     (7) 

Để thuận tiện cho việc tính toán, (6) và (7) 
có thể được chuyển đổi thành dạng rời rạc 

dưới dạng: 
2

STFT,

2

STFT,
1

( , )
( )

( , )





r

M

r
k

m

X m k
p k

X m k
      (8) 

1

( ) ln ( )


  
k

m m

M

mH p k p k      (9) 

Trong trường hợp này, Hm là entropy 

thông tin của phân bố tần số tại thời điểm t 
sau STFT. Giá trị entropy thông tin trung 
bình thu được tại tất cả các thời điểm của tín 

hiệu được biểu diễn 
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1

M

g

m
m

avH
H

M
(10) 

Vì giá trị của Havg có thể phản ánh sự tổng 

hợp năng lượng của phân bố tần số thời gian 
của tín hiệu, bằng cách tìm kiếm entropy 
thông tin cực tiểu, có thể xác định vùng chỉ 
số ô cự ly tối ưu để đạt được mức tổng hợp 
năng lượng cao nhất. Do đó, để có được sự 
tổng hợp tần số thời gian tốt nhất, tiêu chí về 

entropy thông tin cực tiểu được sử dụng cho 

STFT bằng cách tìm giá trị avgH  nhỏ nhất 

trong phương trình (10). 
2.3.2. Lựa chọn khoảng ô cự ly tối ưu 

Tại mỗi chirp, sau khi thực hiện FFT lần 
thứ nhất, chúng tôi sẽ xác định chỉ số ô cự ly 
có giá trị cao nhất (idx_m). Tiếp theo, 

 0,1,2,3r  là một chuỗi giá trị các khoảng

chỉ số ô cự ly được lựa chọn để xét (các giá 

trị này được lựa chọn dựa vào thực nghiệm). 
Sau đó, r trở thành thư viện hàm chỉ số ô cự 
ly cho phép biến đổi STFT và mỗi phần tử 

trong thư viện được lựa chọn lần lượt để thực 
hiện STFT. Tương ứng với các giá trị của r, 
giá trị chỉ số ô cự ly được lựa chọn là: [idx_m 

– i, idx_m, idx_m + i]  với i = 1:1:r.
Thuật toán STFT cho tín hiệu đầu vào tại

idx_m có thể được viết là: 

_

-

)( -, ( ( - )ex )) p( 




 idx m x t w t j t dtSTFT t f

(11) 
trong đó, x(t) là tín hiệu đầu vào và  

( - )w t   là hàm cửa sổ. Giá trị STFT thu được 

đối với vùng ô cự ly được lựa chọn tương ứng 
với hàm r được xác định: 

_

_
_

( , ) ( , )




 
idx m i

r idx m
idx m i

STFT t f STFT t f     (12) 

Giá trị ( , )rSTFT t f  thu được sẽ được tính 

toán mức entropy theo phương trình (10) để 
lựa chọn ra vùng chỉ số ô cự ly tối ưu nhất.

3. Kết quả thực nghiệm và thảo luận
3.1. Mô tả tập dữ liệu

Tập dữ liệu nhiễu được mô phỏng bởi 
phần mềm Sihumalator [13], bao gồm 11 
hoạt động hàng ngày của con người: đi bộ, 
xoay tại chỗ, đấm, đá, cúi xuống nhặt 1 vật, 
đứng lên khi đang ngồi trên ghế, ngồi xuống 
ghế khi đang đứng, đang ngồi ghế đứng dậy, 
đi bộ đến ghế và ngồi xuống, ngã khi đang đi 
bộ và từ vị trí ngã đứng dậy để đi bộ; được 
thu thập bằng cách sử dụng radar FMCW; với 
tần số sóng mang là 24GHz (K-Band), băng 
thông và thời lượng mỗi chirp lần lượt là 
400MHz và 1ms. Tín hiệu thô được lấy mẫu 
với tần số lấy mẫu trên 1 chirp là 128 mẫu. 
Radar được bố trí cách mặt đất 1m, vị trí từ 
radar đến đến tượng là 3m. 11 hành động 
khác nhau được thực hiện và lặp lại 60 lần với 
các góc lệch khác nhau lần lượt [-900,-
450,00,450,900]. Thời gian cho mỗi lần thực 
hiện là từ 8s đến 15s đối với từng loại hành 
động cụ thể. Ngoài ra, để sát với điều kiện 
thực tế  và tăng tính thử thách cho mô hình, 
nhiễu Gauss trắng (white Gauss Noise) được 
thêm vào tập dữ liệu thu được với các mức 
SNR (signal-to-noise-ratio) khác nhau trong 
khoảng từ -15dB đến 10dB. Kết quả thu 
được, tập dữ liệu tín hiệu thô bao gồm 19800 
mẫu (11 hoạt động x 5 góc lệch x 60 lần lặp 
x 6 mức nhiễu). 
3.2. Kết quả lựa chọn vùng ô cự ly tối ưu 

Hình 5. Ảnh phổ với các khoảng ô cự ly 
khác nhau tại mức SNR là 5 dB 
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Thư viện khoảng ô cự ly có giá trị 

 0 1 2, ,r   được lựa chọn dựa trên thực 

nghiệm. Hình 5 biểu diễn ảnh phổ tương ứng 
với các khoảng ô cự ly được chọn khác nhau 
ở mức SNR 5 dB. Hình 5a biểu diễn ảnh phổ 
của hoạt động ngã ở mức SNR 5 dB khi áp 
dụng STFT trên toàn bộ các ô cự ly của range-
FFT. Hình 5(b-d) thể hiện ảnh phổ của của 
cùng hoạt động ngã nhưng với các lựa chọn 
khoảng ô cự ly khác nhau, lần lượt là 0r  , 

1r   và 2r  . Quan sát Hình 5b, với 0r   
(tương ứng với chỉ chọn 1 giá trị ô cự ly cực 
đại), nhiễu đã được loại bỏ và các dấu hiệu m-
D cũng trở nên rõ ràng hơn so với ảnh phổ ban 
đầu ở mức SNR là 5dB (Hình 5a). Tuy nhiên, 
một số dấu hiệu m-D nhỏ và chi tiết hơn vẫn 
chưa được thể hiện rõ ràng như trong Hình 5c 
(vùng nét đứt được khoanh tròn màu đỏ). Đối 
với Hình 5d, với 2r  , các dấu hiệu m-D 
cũng được cải thiện rõ ràng nhưng vẫn bị ảnh 
hưởng bởi nhiễu. Với 1r   (Hình 5c), mức 
năng lượng và các dấu hiệu m-D được thể hiện 
rõ ràng và đầy đủ nhất, đặc biệt là ở các thành 
phần thân và chi trên ảnh phổ thu được. 

Ngoài ra, các kết quả được thể hiện trong 
Bảng 1 cũng cho ta thấy giá trị entropy thông 
tin đạt cực tiểu tại 1r  , tương ứng với vùng 
ô cự ly được xác định là 3. Do đó, khoảng ô 
cự ly tối ưu được xác định là 3. Một kết quả 
tương tự với mức nhiễu 0dB cũng được thể 
hiện trong Bảng 1.  
Bảng 1. Thông tin entropy với các khoảng 

ô cự ly được chọn khác nhau 

Ảnh 
nhiễu 

r = 0 r = 1 r = 2 r = 3 

Ngã 
(5dB) 

3.77 2.46 2.34 2.5 2.63 

Đi bộ 
(5dB) 

4.2 3.03 2.88 2.94 3.06 

Ngã 
(0dB) 

5.37 3.46 2.96 3.22 3.42 

Đi bộ 
(0dB) 

5.4 3.61 3.3 3.37 3.66 

3.3. Kết quả phân loại các hoạt động với hai tập 
dữ liệu 

Trong phần này, bốn mạng DCNNs, bao 
gồm RepVGG [14], MobileNet [15], ResNet 
[16] và DopDense [17] được sử dụng để phân
loại các hành vi của con người trên cả hai tập 
dữ liệu (tập dữ liệu nhiễu và tập dữ liệu khử 
nhiễu). Quá trình huấn luyện được thực hiện 
bởi một máy tính có cấu hình phần cứng Intel 
(R) Core ™ i5-12400F 2.5Ghz, RAM 32 GB
và GPU RTX 3060Ti. Kích thước batch size 
sử dụng là 16 với tốc độ huấn luyện là 0.0001 
trong 20 lần lặp (epoch). Phương pháp xác 
thực chéo năm lần được sử dụng để đánh giá 
sự cải thiện về độ chính xác phân loại. 

Các kết quả phân loại được thực hiện trên 
hai bộ dữ liệu (tập dữ liệu nhiễu và tập dữ liệu 
khử nhiễu) bởi bốn mạng DCNNs được thể 

hiện trong Bảng 2. Tỷ lệ phân loại chính xác 
của cả bốn mạng đã được cải thiện đáng kể 
đối với tập dữ liệu đã được khử nhiễu, chứng 

minh rằng thuật toán đề xuất thực sự góp 
phần nâng cao độ chính xác nhận dạng các 

hoạt động của con người. Cụ thể, độ chính 
xác phân loại của tất cả các mô hình được cải 
thiện khoảng trên 4% đối với tập dữ liệu đã 
được khử nhiễu, đặc biệt là RepVGG với độ 
chính xác tăng gần 10%. 

Bảng 2. Kết quả độ chính xác phân loại 

Tập dữ liệu  
có nhiễu 

Tập dữ liệu đã 
được khử 

nhiễu 
RepVGG 80.9 90.53 
MobileNet 90.61 95.37 

ResNet 91.94 96 
DopDenseNet 88.83 96.65 

Kết quả phân tích cho thấy RepVGG đặc biệt 

nhạy cảm với nhiễu Gauss (80.9%), trái ngược với 
ResNet, MobileNet và DopDenseNet (88% - 
91%). Nguyên nhân cốt lõi nằm ở kiến trúc mô 

hình: RepVGG, sau tái tham số hóa, có cấu trúc 
suy luận "trơn" (plain) thiếu kết nối tắt (skip 
connection), khiến nhiễu bị khuếch đại và làm suy 

giảm đặc trưng. Ngược lại, ba mô hình còn lại sở 
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hữu cơ chế kết nối tắt/dày đặc, giúp bảo toàn thông 

tin và tăng cường khả năng kháng nhiễu nội tại. Do 
đó, khi thuật toán đề xuất loại bỏ nhiễu, RepVGG 
cho thấy sự "phục hồi" hiệu suất ấn tượng nhất 

(tăng lên 90.53%). Dữ liệu sạch cho phép mô hình 
phát huy tối đa lợi thế của bộ trọng số học được (từ 
huấn luyện đa nhánh) trên cấu trúc suy luận VGG-

like hiệu quả. Trong khi đó, các mô hình vốn đã 
mạnh mẽ chỉ cho thấy sự tinh chỉnh hiệu suất biên 
(ví dụ: ResNet đạt 96%), minh chứng cho khả 

năng xử lý nhiễu nội tại của chúng. 

4. Kết luận
Bài báo này đã trình bày một thuật toán

tiền xử lý dữ liệu, sử dụng phương pháp lựa 
chọn ô cự ly tối ưu dựa trên tiêu chí entropy 

cực tiểu, để khử nhiễu tín hiệu m-D thu được 
từ radar FMCW. Phương pháp này được thiết 
kế nhằm nâng cao hiệu suất phân loại các 

hoạt động hàng ngày của con người. Kết quả 
thực nghiệm đã chứng minh tính hiệu quả của 
thuật toán đề xuất. Khi áp dụng trên tập dữ 

liệu mô phỏng, phương pháp tiền xử lý đề 
xuất giúp cải thiện độ chính xác phân loại lên 

tới gần 10% so với việc sử dụng dữ liệu gốc 
(tập dữ liệu chưa khử nhiễu). Thuật toán đề 
xuất sẽ được tối ưu hóa và kiểm chứng trong 

các nghiên cứu tiếp theo đối với các loại 
nhiễu thực tế trong quá trình thu thập dữ liệu 
từ radar.  
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