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Abstract

In this work, we present a Dirac electron in gapped graphene under the exponentially decaying
magnetic field. Solving Dirac-Weyl equations, we obtain exact expressions of the eigenfunctions and their
corresponding eigenvalues. The probability density and current distributions are also investigated in
detail. The results are compared to those in the gapless graphene as well as in the gapped graphene in the
presence of a uniform magnetic field.
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Tém tit

Trong cong trinh nay, ching t6i xét hé dién tr Dirac trong graphene c6 vimg cam hitu han dwdi tic
dung ciia tir trieong giam theo ham mil. Gidi cdc phwong trinh Dirac-Weyl, chiing t6i thu dwoc biéu thire
chinh xdc cho cdc ham séng va ndang leong twong iing. Chiing 16i ciing khdo sat mdt d¢ xdc xudt va mdt
dé dong xdc sudt. Cac két qua dwoc so sanh véi trieong hop hé graphene khéng c6 viing cam ciing nhir doi
voi hé co vung cam hitu han khi ¢6 mdt tir truong déu.
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1. Introduction

In the past few decades, interest in studying
graphene, a two-dimensional (2D) layer of
graphite, has developed speedily caused by its
extraordinary electronic and optical properties as
well as its potential applications in optical-
electronic devices (Novoselov et al., 2005). The
most important characteristic of graphene is the
massless Dirac nature feature of its electron. This
special characteristic of Dirac electron in graphene
led to the anomalous Landau level structure in the
presence of a uniform magnetic field, which
emerges the half-integer quantum Hall effect
(Novoselov et al., 2005) as one of the most
important fields in quantum physics. This
stimulated a lot of theoretical studies interest in
Dirac electron in the presence of uniform as well as
in non-uniform magnetic fields (Ghosh, 2008;
Kuru et al., 2009; Wang and Jin, 2013, Eshghi and
Mehraban, 2017). In these works, the Dirac-Weyl
equation for a massless electron is investigated to
find the exact solutions using the technique of
supersymmetric  (SUSY) quantum mechanics
(Cooper et al., 1995). Recently, this technique has
been used successfully to study the unique Landau-
level structure of monolayer black phosphorus
under a non-uniform magnetic field (Wang et al.,
2019). Although this method has been applied
successfully to solve the Dirac-Weyl equations in
the gapless 2D system, the corresponding word for
the gapped 2D system is calling for investigation.

In this work, we use the SUSY method to find
the analytical solutions of the Dirac-Weyl equations
for the Dirac electron in gapped graphene in the
presence of an exponentially decaying magnetic
field. The behavior of the discrete Landau level
structure, the eigenfunctions, the probability, and
current densities have also been discussed in detail.

2. Dirac-Weyl equation

Considering a graphene sheet oriented in the
(xy)-plane under a perpendicular magnetic field

B(x,y) = (0,0, B(x)), with (Ghosh, 2008)
B(x) = B,e (1)

is exponentially decaying in the x-direction where
A is the penetration depth of the magnetic field.
The vector potential in the Landau gauge is chosen

S0 that A(x,y) =(0,A(x),0), where
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A (x)=—B,A(e™* —-1). The Hamiltonian of the

massless electron near the Dirac point can be
described by a two-component Dirac-Weyl

equation (Jiang et al., 2010, Krstaji¢c and
Vasilopoulos, 2012)
H, =V¢ (ro, 7, + o, 7)) + AT, (2)

where v, =10°m/s is the Fermi velocity, 7=+1
refers to the valley index (for K and K”), o; denote
the Pauli matrices (i=X,y,z), A=26.5meV is
the band-gap (Krstaji¢ and Vasilopoulos, 2012),
7#=p+eA is the canonical momentum with

p=—iaV being the normal momentum. The time-
independent Dirac-Weyl equation is

Ve[zo, (p, +€A) +0o,(p, +€A)
+Ao, J¥(x,y) =E¥(XY), (3)

where lI’(x,y)z(eikyy/\i’q)‘l'(x) is the two-
component eigenfunction with

\P(X):(_%(X)j

iy _(X)

being the eigenfunction in the x-direction, and i the
units of imaginary numbers. From Eq. (3), we can
obtain two coupled equations for w, (x) and

w_(x) as follows
W (0, +W)y_ =(E-A)y,, ()
Ve (~20, + W)y, = (E+A)y.. (6)

Equations (5) and (6) are the Dirac-Weyl
equations for massless electron in a gapped
graphene system with

e eB, A N
W:ky+(%jAy:ky+ ;l (1-e>) (@)

(4)

being the super potential function (Midya and
Fernandez, 2014). Using Egs. (5) and (6) we will
get Schrodinger-like decoupled equations for
v, (x) and w_(x) as follows

H.y, = (E2 _Az)l//i’ (8)
where
H, =—(7v: )0} +V.(X) ©)
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are the Hamiltonian supersymmetric partners. In
Eqg. (9) we have denoted

V,(X) = (e ) [W? £ (0, W) | (10)

as the effective potentials.
3. The eigenfunctions and eigenvalues

To obtain the solutions of Eg. (8), following the
suggestions from previous works (Handrich, 2005;
Ghosh, 2008), we use the dimensionless variables

éc()_em 0 { 2 }

2 () 4y
§0=ﬁ[y e“j E0x) = { £
where o, (x)=[nr/ eB(x)]”2

, (12
)
Then, Eqg. (8) becomes

is the magnetic length.

{ag 20, - ﬂj M—l}% —0, (13)
4 4 4
where we have denoted
2 2 2
R T (14)
The solutions of Eq. (13) are found under the form
. (&) =&"ew. (&), (15)

which are suggested from the asymptotic condition
(Handrich, 2005). Inserting Eqg. (15) into Eq. (13),
we will get the following equation for w(z =2¢)

a. |w,(z)=0.

Here, y=24+1 and o, =p—& +1/2+7/2.

The solutions of Eg. (16) are the confluent
hypergeometric functions as follows (Ghosh, 2008)
w,(2) = R(a.:7.2). 17)

Due to the requirement of renormalizability of

the solutions, the term «, has to be a negative

[20% +(r-2)9, - (16)

integer, i.e., o, =—v with v=0,1,2,... Using this
relation, we have
1 T
18
B=¢ - ( > 2) (18)

From Eqgs. (14) and (18) we get the following
expression for the energy

(19)

E, = p\/(hlj nQ@E, —n) + A2,

where p=41 is for the conduction and valence
bands, respectively.

The corresponding eigenfunction in Eqg. (4)
can be written

A1,an—1(X)
Fal) Z[ iBn,pwn(xJ’

Here the normalization constants are

PE, + A pE, — A
= —n y B = —n y 21
Ao ﬂ/ 2pE ' O pﬂ/ 20E. (21)

and the component eigenfunctions

B (2B)(n+1)
Va9 = J T, ()T (+ 25 +1)

xe 12 (26,677, (21)

where we have denoted 7 =A4/a,(%)=1//&,
X =(X—X,)/ . (%), I'(n) isthe Gamma functions,

(20)

(2&,)" ™"

and L%/ (x) are the n-order Laguerre polynomials.

4, Discussions

In this section, we will evaluate numerically
the above results in more detail. Using the relation

& =§Oe‘“, the effective potentials in Eq. (10) can
be written as

VL) = (hve [ (28, - 28)" £ 2% |

:[a(_h(vi))r‘[’fo(l‘eX”)Zife“} @)

:%[ha)c(xo)]z [go (1—e*></z )2 irexu}

which has the same form as that obtained in the
gapless graphene (Ghosh, 2008). This implies that
the effective potential is independent of the
structure of the system.

For the strong inhomogeneity magnetic field
(small 1), the strong asymmetry of the effective
potentials is clearer as shown in Figure 1(a). At
very large values of X, both V.(x) reach their

saturated value of §O[i‘w)c(x0)]2 /2. Indeed, from
Eg. (22) we have

37



Natural Sciences issue

fim V. (x) =V (X —>oo):§—2°[ha)c(xo)]2. 23)

This saturated value of V.(x) is displayed by
the purple line in Figure 1(a).

For the weak inhomogeneity magnetic field
(large 1), we have
mm(x):%[mc(xo)]z(xzir). (24)
In this case, the effective potentials in the
gapped graphene are degraded into the harmonic
potentials, i.e., almost symmetric around the X =0
point as shown in Figure 1(b), being the same as
that obtained in the gapless graphene (Ghosh,
2008). It is clear that the expression of the
magnetic field in Eq. (1) will reduce to the case of
the uniform  magnetic  field when the
inhomogeneity magnetic field is weak. It means

lim B(x) = lim B,e " =B,. (25)

For the energy spectrum shown in Eq. (19),
we also have

limE, = p«fn(ha)c)2 + A%,

It means that the energy spectrum is also
reduced to that in the case of the uniform magnetic
field (Krstaji¢ and Vasilopoulos, 2012).

(26)

L4 T
5F 0 A =20nm

]
1
aF o e
L
@E 3 t s
"‘. ! =
E 2 1 4
= i V7 - V(x)
1 ! .
" g — V)
\
0F (a) v —== Ve(X—oo)
0 5 10 15
s5EY 1 =20 um I,‘
\
4F Y j,”
N /
K /
ar 3 N 7
[ X ;
= . /
=2 b :
= \ /
1 N v
“ __// /’
0 R
®) SN
J s
—4 -2 0 2 4
X

Figure 1. The dependence of the V.(x) and E, (in units
of [ha)c (xo)]z) on the X-parameter for two values of

A (a) for A= 20 nm, and (b) for L =20 pm. The
results are evaluated at B = 10 T and k, = 2 x 10%m
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For the number of energy levels, unlike in the
uniform magnetic field case (Krstajic and
Vasilopoulos, 2012), the number of energy levels
in the inhomogeneity one is limited. The total
number of energy levels not including the zero-one,
N, can be found from the condition that

EZ <V, (X —> ) (Ghosh, 2008), which leads to
Noax <& —SyJ2&,, With s=A/ha,(X,). (27)
For the values of the parameters used in

Figure 1(a), i.e., A=20 nm, B=10 T, and ky = 2 x

10%m we have N, <7.3, leading to the fact that

there are (7+1) energy levels in the energy
spectrum, which is shown clearly in Figure 1(a).

W (x)

¥alx)

Figure 2. The component eigenfunctions i, (x) for

some first Landau levels (in units of [ac(xo)]fllz)

versus the X-parameter for two values of A : (a) for
=20 nm, and (b) for A =20 pm. The results are
evaluated at B = 10 T and k, = 2 x 10%m

In Figure 2, we show the dependence of the X-
parameter at two different values of A. It can be
seen that when the inhomogeneity magnetic field is
strong, equivalent to the small value of A, the
eigenfunctions are strongly asymmetric (see Figure
2(a)) as is expected from the asymmetry of the
effective potentials shown in Figure 1(a).
Meanwhile, when the penetration depth of the
magnetic field is large, the eigenfunctions are
symmetric around the X = 0 point, which is the
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result of the symmetric behavior of the effective
potentials when the A has large values.

The probability density distributions are
calculated as follows

£, () =¥ ()¥, (%), (28)
where the eigenfunctions are shown in Eq. (20),
and W!(x) denotes the Hermite conjugation of

W, (x). The probability density distributions for

some first Landau levels is presented in Figure 3
for two cases of strong and weak inhomogeneity
magnetic fields. We can see from the figure that the
probability density distribution for the case of n =0
is symmetrical and reaches its maximum value at
the point X = 0 point. This implies that the
probability of finding the Dirac electron, in the case
of n = 0, will have its maximum value at point X =
0 point. Besides, we also note that the symmetrical/
asymmetrical behavior of the p,(X)/ p,5(X) is

from the symmetrical/ asymmetrical behavior of
the v, (X)/w,,,(X) as shown in Fig. 2. Due to

the asymmetry/ symmetry of the effective
potentials, the probability density distributions
display their asymmetric/ symmetric behaviors in
the small/large values of A. These results are in
good agreement with those obtained in gapless
graphene (Ghosh, 2008).

A=20nm |

Figure 3. The same as Figure 2 but for the
probability density distributions p,(x) (in units of

(L]

The  probability  current  density, a
mathematical quantity describing the flow of
probability in terms of probability per unit time per
unit area, is calculated as follows

3,(0 =ev. ¥} (X5, P, (X)

= eV (Voo +WWo). (29)

Here the component eigenfunctions are shown
in Eg. (21). We can see that J,(x)=0, implying
that the zero-state does not contribute to the
probability current density. Due to the asymmetry
of the effective potentials in the case of a strong
inhomogeneity magnetic field, the probability
current density shifts to the right-hand side with the
increase of the Landau level index (see Figure
4(a)). In the case of a weak inhomogeneity
magnetic field, the probability current density tends
to be symmetrical around point X = 0 point. Similar
to the case of the probability density distributions
as shown in Fig. 3, the asymmetrical behavior of
the probability current density for n =1, 2, 3 shown
in Fig. 4 is also from the asymmetrical behavior of
the eigenfunctions as shown in Fig. 2.
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Figure 4. The same as Figure 2 but for probability
current density J_(x) (in units of [Lyac(xo)]fm)

5. Conclusions

In summary, we have investigated the Dirac
electron system in gapped graphene under an
exponentially decaying magnetic field by solving
the Dirac-Weyl equations. Our results showed that
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effective potential is independent of the structure of
the system but of the type of magnetic field. The
Landau-level structure is significantly different
from the case of a uniform magnetic field: the
number of Landau levels, in this case, is finite and
is strongly dependent on the penetration depth of
the magnetic field. We have also investigated the
probability density and current density for each
Landau level. It is expected that our results will
motivate the study on the magneto-optical
properties in the gapped graphene under
inhomogeneous magnetic fields.
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