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Abstract

We observe the differential equation dG(z)/dz=(x,/z+x /(1—-2))G(z) in the space of power
series of noncommutative indeterminates x,, x,, where the coefficients of G(z) are holomorphic functions
on the simply connected domain C\_[(—<0,0) U (1,+)]. Researches on this equation in some conditions

turn out different solutions which admit Drinfel'd associator as a bridge. In this paper, we review
representations of these solutions by generating series of some special functions such as multiple
harmonic sums, multiple polylogarithms and polyzetas. Thereby, relations in explicit forms or asymptotic
expansions of these special functions from the bridge equations are deduced by identifying local
coordinates.
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Tém tit

Chuing t6i quan sat phwong trinh vi phan dG(z)/dz=(x,/z+x /(1—2))G(z) trong khdng gian cac
chudi lity thira ciia cdc phan tir khéng giao hoan X,,%, trong dé cac hé so cia G(z) la cdc ham chinh
hinh trén mién don lién C\ [(—o0,0) U (L, +0)]. Nhitng nghién citu xung quanh phwong trinh ndy trong
mét s6 diéu kién khac nhau cho ta nhitng nghiém khdc nhau va lién hop Drinfiel'd la mot cau noi giita
chung. Trong bai bao nay, chung toi tong quan lai viéc biéu dién cdc truong hop nghiém thong qua cac
ham sinh cia cdc ham dat biét nhiw tong dieu hoa béi, ham polylogarit boi va chudi zeta boi. Tir cac

phirong trinh cau néi, ching t6i rit ra dwoc cdc quan hé duéi dang tiwong minh hodc khai trién tiém cdn
cua cac cac ham ddc biét nay bang cach dong nhat cdc toa do dia phuong.

Tir khéa: Lién hop Drinfel'd, tong diéu hoa boi, ham polylogarit bi, chudi zeta béi, tong diéu hoa boi.
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1. Introduction

Let Cl={(z,....2,)eC"l z#z fori=j}
and H(CY) denotes the ring of holomorphic
functions over the universal covering of CI,
denoted by CI. Using 7 ={}.. ., as an

alphabet, Knizhnik and Zamolodchikov (1984)
defined a noncommutative first order differential

equation acting in the ring H(C2){(7Z,)),

dG(2) =0, (2)G(2), (L1)

t
where Q = > —dlog(z, —z;).

<i<j<n
For example, with n=2, one has 7, ={t,}
and a solution of the equation dG(z)=€Q,G(z),

where Q, = ztl_—zd log(z, —z,), is
iz

G(z,12,) =exp( = tﬂ - log(z, ~2,)

= (Zl -1, )tu/Zm € H(Ci)«?-z»
In the case n=3, the equation
1 dz dz
@ -5- (b -tg)e@
is appplied in the ring H(D)((t,,,t,,)) , where
D= C\_[(~o0,0) U (1, +0)].

By taking X, : —i X =

(1.3)

—= | equation (1.2)
can be rewritten as follows

960G _ (% +2)6(@), (1.4)

and more shortly dG(z) = (m,(z)X, + ®,(2)%)G(2)
by using the two differential forms

dz
) =——-.
@ (2)=—

The resolution of (1.4) uses the so-called

,(2) ::OI—ZZ and (1.5)

Chen series, of @, and @, along a path
z, ~»z on D, defined by (Cartier, 1987):

C,..= Za (wywe H(D)((X)),

weX”

(1.6)
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where X” denotes the free monoid generated by
the alphabet X (equipping the empty word as the

neutral element) and, for a subdivision
(z5.2,...,7,,2) of z,~»z and the coefficient
o, (W) e H(D) is defined, for any

w=x - €X', as follows
a,W=] o,@)..] "o @)
aZZO (1)(") ::LD'
The series C is group-like (Ree, 1958),

which implies that there exists a primitive series
L, .., such that

L,

et =C

zy~2"

(1.7)

In (Drinfel'd, 1990), Drinfel'd is essentially
interested in solutions of (1.4) over the interval
(0;1) and, using the involution z+>1—z, he stated

(1.4) admits a unique solution G, (resp. G,)
satisfying asymptotic forms

G,(2), ,2° and G,(2), ,(1-2)™. (1.8)
Moreover, G, and G, are group-like series
then there is a wunique group-like series
®,, eR((X)), Drinfeld series (so-called

Drinfel'd associator), such that
G, =GD,;. (1.9

After that, via a regularization based on
representation of the chord diagram algebras Le Tu
Quoc Thang and Murakami (1996) expressed the
divergent coefficients of @,, as linear

combinations  of  Multiple-Zeta-Value  (or
polyzetas) defined for each composition
(S,---S,)eNL s, >2, as follows

1

S, )= .
' m>§r21nfl...nf'

£(sy... (1.10)

In other words, these polyzetas can be reduced
by the limit at z=1 of multiple polylogarithms or
at N — oo of multiple harmonic sums, respectively

defined on each multi-index (s,,...,s,) e Ny, r>
and zeC,|z]<LneN, as follows
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N
L, .@= Y ——— (111
' n1>...>n,21n1 rr
n 1
H, . (n)= > (1.12)

s
n>..>n.>1 n1 .. -nr

Moreover, the multiple harmonic sums can be
viewed as coefficients of generating series of the
multiple polylogarithm for each multi-index

(1_ 2)71 Lisl,“.,sr (Z) = szl,m,s, (n)zn.

n>1

(1.13)

In this work, we review a method to construct
relations of the special functions by following
equation (1.9). The generating series of the special
functions are group-like series to review
simultaneously the essential steps to furnish G,
and @,, which follows related equations in
asymptotic expansion forms and then an equation
bridging the algebraic structures of converging
polyzetas.

2. Algebras of shuffle and quasi-shuffle
products

The above special functions are compatible
with shuffle and quasi-shuffle structures. In order
to represent these properties more clearly, we
correspond each multi-index (s,,...,s,) eNy,r>1
to words generated by the two alphabets
X ={x,,x} and Y ={y, },., as follows

(Sy1evrS,) € X3 XX € XX
”ﬁysl...ysr eY’, (2.1)

Where X* and Y™ respectively denote the free
monoids of words generated by the alphabets X and
Y with the empty words 1. and 1. (sometime

use 1 in common) as the neutral elements. This
section reviews two structures of shuffle and quasi-
shuffle algebras compatible with the special
functions introduced above.

2.1. Bi-algebras in duality

By taking formal sums of words, we can
extend the monoids X* and Y* to the Q-modules,
denoted by Q(X) and Q(Y), which become bi-

algebras with respect to the following product and
co-product:

1. The associative unital concatenation,
denoted by conc, and its co-law which is denoted
by A, and defined for any w as follows

Agone (W) = Z UV,

uv=w

2.2)

2. The associative commutative and unital
shuffle product defined, for any x,yeX and
u,ve X", by the recursion

uwl, . =1,.wu=u,
XULLyv = x(uyv) + y(xuv), (2.3)

or equivalently, by its coproduct (which is a
morphism for concatenations) defined, for each
letter x € X, as follows

A X=1.®X+Xx®1.. (2.4)

According to the Radford theorem (Radford,
1979), LynX forms a pure transcendence basis of
the Q -shuffle algebras, graded in length of word,
(Q(X),w,1.) (Reutenauer, 1993). Similarly, the
Q-module Q(Y) is also equipped with the
associative commutative and unital stuffle product
defined, for u,v,weY" and Yir Y eY, by

W)KlY :lv KW=Ww,

YiuXy;v=y; (ux ij) + yj(yiU)KV)

+Y;,; (Uxv).

It can be dualized according to Y« ey
A (Vi)=Y ®L. +1. ®y, + Z Y ®Y;

i+j=k
which is also a conc —morphism and the Q -stuffle
algebra (Q(Y),2K,1.)

admits the set of Lyndon words, denoted by LynY,

as a pure transcendence basis (Hoang, 2013; Bui
Van Chien et al., 2015). This algebra is graded in
weight defined by taking sum of all index of letters
in a word. For example, the weight of the word

W:ysl"'ysr iS Sl+...+Sr.

Note that, the stuffle product defined here just
acts on the monoid generated by alphabet Y but
the shuffle product can be applied for any alphabet.
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We will use X as a general alphabet used for
shuffle product and A as a field extension of Q.

Definition 2.1. Let A((X)), SeA((Y)) be
the sets of formal series extended from A(X) and
A(Y) respectively. Then

i. S is said to be a group-like series if and
only if (S1,.=1 and A,S=S®S (resp.
A, S=S®S).

ii. S is said to be a primitive series if and
only if A,$=1,®s+s®1,. (resp. A,5=1.®s+s®1,.).

The Lie bracket in an algebra is defined for
some algebra with the product (-) as usual

[Xyl=x-y-y-x
The following results are standard facts from

works by Ree (Ree, 1958) (see also (Bui Van
Chien et al., 2015; Reutenauer, 1993).

Proposition 2.1.

i. The Lie bracket of two primitive elements
is primitive.

ii. Let SeA(Y) (resp. A((X))). Then S is

primitive, for A, (resp. A, and A,), if and only

conc

if, for any u,veYY (resp. X'X), we get
(S|wkv)=0 (resp. (S|uv)=0 and (S |uwv)=0).
Proposition 2.2. Let Se A((Y)) (resp. A((x)))-

Then the following assertions are equivalent

i. S is a »x-character (resp. conc and -

character).
ii. S isgroup-like, for A, (resp. A, and A,).

and A).

conc

iii. log S is primitive, for A, (resp. A

conc

Corollary 2.1. Let SeA((Y)) (resp. A((X))).
Then the following assertions are equivalent

i. S an infinitesimal > -character (resp. conc
and L -character).

ii. S is primitive, for A« (resp. Aconc and Auw).

2.2. Factorization in bi-algebras

Due to Cartier-Quillin-Milnor-Moore (Cartier,
1987) theorem (CQMM theorem), it is well known

that the enveloping algebra 2/(Lie (X)) s

22

isomorphic to the (connected, graded and co-
commutative) bialgebra#,,(X) =(A(X),conc,1,.,A,,e),
where the counit being here e(P) =(P|1). Moreover,
this algebra is graded and admits a Poincaré-Birkhoff-
Witt basis (Reutenauer, 1993) {P,} which is

wex”™
expanded from the homogeneous basis {R}..,n» of
the Lie algebra of concatenation product, denoted by
Lie,(X). Its graded dual basis is denoted by
{S.},.,» admitting the pure transcendence basis

{S}cyny Of the A-shuffle algebra.

In the case when A is a Q-algebra, we also

have the following factorization of the diagonal
series, (Reutenauer, 1993) (here all tensor products
are over A)

\
D, =Y we®w= [] "

wex” leLynX

(2.5)

and (still in the case A is a Q-algebra) dual bases
of homogeneous polynomials {R} .. and

{S,} .. can be constructed recursively as follows
WIwer’

P, =xforxe X,
R=[R,.RILMO=(.1)

P, =R R LFW =1y, (26)

where LF(w) denotes the Lyndon factorization of

the word w which is rewritten a word as a product
of decreasing Lyndon words.

S, =X, Xed,
S, =VYS,, I=yl'eLynX¥ - X,
SRR TTRNTT e

W i
Lo !

CLEW) =1k 1k (27)

The graded dual of H,,(X) is

7_QJ/(‘)C‘):('A‘<‘;t‘>’|'|'lil/y*’Acont:ie)'
We get another connected, graded and co-

commutative bialgebra which, in case A isa Q-

algebra, is isomorphic to the enveloping algebra of
the Lie algebra of its primitive elements,

H, (Y)=(AY),conc,1., A, )

= U(Prim(H, (Y))), (2.8)
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where
Prim(7, (Y)) = Im(z,) =span {r, (W) [we Y}

and =, is defined, for any weY”, by (Hoang,

2013; Bui Van Chien et al, 2015)

Wowe BTy (w oy 29)
T (W) =W+ — WU XK. . KUy, )Uq...Up . (2.8

! k=2 k Uproaly €Y T ! k/k

Now, let {I1,}, . be the linear basis, expanded by
decreasing Poincaré-Birkhoff-Witt (PBW for short)
after any basis {1}, of Prim(H,(Y))
homogeneous in weight, and let {X,} . be its

dual basis which contains the pure transcendence
basis {Z,}.,,,y Of the A-stuffle algebra. One also

has the factorization of the diagonal series D, , on
H, (Y), which reads (Bui Van Chien et al., 2013)

\
D, =) wo®w= [T

weY ™ leLynY

(2.9)

where the last expression takes product of
exponential in decreasing of Lyndon words.

We are now in the position to state the
following

Theorem 2.1 (Hoang, 2013).
Let A be a @Q-algebra,
endomorphism of algebras
@, - (AY),conc,1.) — (AYY),conc,l.)

mapping Yy, to =, (y,), is an automorphism of
AY) realizing an isomorphism of bialgebras
between H,(Y) and

H (Y) = UPrim(H, (Y)))-

In particular, it can be easily checked that the
following diagram commutes

then the

ALY SN ALYy @ AY)
A(lY) N A(Y)i)A(Y)

Hence, the bases {IT,} .. and {&,} . of
UPrim(H, (Y))) are images by ¢, and by the
adjoint mapping of its inverse, ¢, of {P,} . and
{S.},.,-» respectively. Algorithmically, the dual

bases of homogeneous polynomials {I1,} .. and

{Zw}WeY*

recursively by

can be constructed directly and

1_[ys :ﬂ-l(ys)for ys EY'
I, =[I1, ,IT, Jfor e LynY \\Y,,

I, =TT; .. I forw=Ip I, (2.10)

Zyk = yk’

2 = Z yslzll,”ln
(@)

1
+Z FZ AT VR
i22 1+ (%),
ZrK oK E
B Lo (2.11)

w

In (*),, the sum s taken over all
,...k}cft,..,k} and I >...>1 such that

(ysl,...,ysr)c(yskl,...,yski,Il,...,ln), where <

denotes the transitive closure of the relation on
standard sequences, denoted by <= (Bui Van Chien
et al., 2013; Reutenauer, 1993).

3. Drinfel’d associator with special functions

3.1. Relations among multiple polylogarithms
and multiple harmonic sums

By correspondence (3.1) and the properties of
the special functions, we can define the following
(morphisms) are injective

Li, :(Q(X),m,lx*) - (Q{LiW}WEX*,.,l),
X, F>log"(z)/n!,

§-1 s, —1 H
XX Xy x1|—>L|X;1,1X14

sp-1

LX)

and
H, :(@(Y),m,]v) —>(Q{H.},_--D,

Yo ---Ys Hy%mysr =H, . (3.2)

Hence, the families {Li,} . and {H,} .-
are linearly independent.

Now, using D, and D,, the graphs of Li,
and H. are given as follows (Hoang, 2013; Bui

Van Chien et al., 2015).
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N\ .
L:=(Li.®1d)D, = [ ",

leLynX

N
Lig, P
and L, =[] e™",
leLynX
1#%9.%

\
H:=(H. ®Id)D, = J] ™™,
leLynY
~ Hy IT
andH,, = [Je™".
leLynY
[E3A

We note that L and H_, are generating

series in regularization taking convergent words,
the words are coded by convergent multi-index of
polyzetas. Moreover, we set

Z,=L @ andZ,=H_, (+0). (3.3)

reg

As for C, L,L

~z v reg

and then Z, (resp.
H,H
A, ). Moreover, L isalso a solution of (1.4)

Theorem 2.1 (Cristian and Hoang, 2009; Bui
Van Chien et al., 2015).

C,,..L(z) =L(2),

limL(z)e "% =1,
z—0

and then Z ) are grouplike, for A, (resp.

reg !

lime' &2 (2)=Z .
z—1 ( ) w

This means that for x,=A/2iz and
X, =—B/2ix, L corresponds to G, expected by
Drindfel'd and Z, corresponds to @,,,
L(z), ,e**® and L(z), e*"**?Z,. Via
Newton-Girard identity type, we also get (Cristian
and Hoang, 2009; Bui Van Chien et al., 2015)
kZHylk ") ylk =e§HYk (M=) 7k
>0

and then
H), . (ZH, y) 7 (2,).
k>0

It follows that

Theorem 2.2 (Cristian and Hoang, 2009; Bui
Van Chien et al., 2015).

24

7, (Z,) =lime** Iz (L(2))
L D Hy (M)
=lime* H(n).

n—w

Hence, the coefficients of any word w in Z
and Z, respectively represent the finite parts
(denoted by f.p.) of asymptotic expansion of

multiple polylogarithm and multiple harmonic sum
in the scales of comparison

{@-2)"10g” (1~ 2) " erpere AN H (MY
This means that
f.p., L, (2) =(Z, |w),

£, Hy () =(Z [ W).

Example 2.1 (Cristian and Hoang, 2009).
In convergence case,

Li,,(2) =¢ () +(1-2)log(l-2) - (1-2)™
-(@1-2)log*’(1-2)/2
+(1-2)*(~log®(1-z) +log(1-2)) /4 +...,

H,,(n)=¢(3) - (log(n) +1+y)/n+log(n)/2n+...,

one has

f'p'z—>l Li2,1(z) = f'p'n—)+oc H2,1(n) =¢(21)=25(3).
In divergence case
Li, ,(2) =2-24(3) -¢(2)log(1-2)
-2(1-2z)log(L—z) + (1—z)log*(1 - 2)
+(1-2)*(log®(1-2z) —log(1—2))/ 2 +...,
H,, () = ¢ (2)y —2£(3) + £ (2)log(n)
+(2)+2)/2n+...,
since numerically,
$(2)y =0.949481711114981524545564. . .,
then one has
f.p.,,Li,(2)=2-24(3),
f.0.0,.Hi (M) =82y -2£(3).
Moreover, the relations among the multiple
polylogarithms indexed by basis {S},.,,.x follow
Lism (2) =log(2), Lis, (z) =—log(1-2),

LiSW1 (2) =—log(z)log(1-z) - Lism @-2

+¢ (s )
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Lis ()= %Iog(l— 2)? log(z)
+log(1— z)LisW1 @-2)
—Lisxzx 1-2)+(S,,)
+10g(2)¢ (S, )-

Using the correspondences given in (3.4), let
us consider then the following @Q-algebra of
convergent polyzetas, being algebraically generated

by {C(I)}IeLynX—X (resp. {g(sl)}leLynX—X ), or

equivalently, by 2 {4()) JIEro (resp.
{CE D eagmioy;
2 :=span AL (WY, .,
=span {¢ (W)Y, .-, (35)
Forany k=1 |et
2, =span AL (W}, -,
wi=k
=span {C(W)}, PR (3.6)
(w)=k
Now, considering the third and last

noncommutative generating series of polyzetas
(Cristian and Hoang, 2009; Bui Van Chien et al., 2015)

Z,= 7w, (3.7)

weY”

where  y,=fp.,. . H,(n) on the scale
Vi =P Ho (M), A0* 0g° (M)}, oy

For any weY \_y,Y , one has y, =¢(W)
and 7y, =7 (Euler's constant). The series Z, is
group-like, for A, . Then (Hoang, 2013; Bui Van

Chien et al., 2015)

Z}/ — eVVl eC(l)Hl — e}/ylzm .
lebynY\{y1}

(3.8)

Moreover, introducing the following ordinary
generating series'

B =exp(ry, - 300 1)),

k>2

(3.9)

B =ep(Te L), @

k>2

we obtain the following bridge equation

Theorem 2.3 (Hoang, 2013; Bui Van Chien et
al., 2015).

Z,=B(y)7Z, (3.12)
or equivalently by simplification
Z)K = B'(yl)ﬂ-YZLu (312)

Identifying the coefficients in these identities,
we get

-1)" 2 k
, - z (-1 ) (74“( ))5‘ ...(75( ))
. L.s! 2 k

B sseets kS L
S (% (=x)" wa, w])
7. =2 - (
where keN,,weY" and b (t,...t) are
Bell polynomials.
Example 2.2 (Cristian and Hoang, 2009).
With the correspondences given in (3.13), we get

Y11 :%(72 _4(2))17/1,1,1

Db (1, -£(2),2£(3),..),

_ %(f -3 (2)y +2£(3)).

Yy =My +LREE) —%4(2)4,

Yine = 3%:(2)%2 L)) +§4(3)§(2)2
ALy +LG6, 2)%;(2)4

+%:(2):(3)2 4L 3)CE).

3.2. Relations of polyzetas

As the limits IirTLis(z)zlimHs(n)zg(s)
for any convergent multi-index" s, polyzetas
inherits properties both of multiple polylogarithms
and multiple harmonic sums. We can define
polyzetas as a morphism of shuffle and quasi-
shuffle products from (le* @xOQXxl,Lu,lx,) or
@Q,. @Y \{yDQ(Y),%,1.) onto Q-algebra,

denoted by Z, algebraically generated by the
convergent polyzetas

{C(}ymx_x (Bui Van Chien et al., 2015). It
can be extended as characters

¢ QX)) > (R,.,D),
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<L r(@Y), 1) > (R,

such that, for any we X", one has the finite part
corresponding the scales

{-2)°log"A- D}y perr {0*HY (MYeper aNd
{na Iogb(n)}ag'//,,beN as fOIIOWS
Suw)=*F.p, ,Li,(2),
C(mw)=fp., . H_.M0)
yﬂyw :f'p'n—>+w szyl (n)

It follows that, £, (x,)=0=Ilog(l) and the
finite  parts, corresponding  the  scales

{(l_ Z)a IOgb (1_ Z)}an,beN ’{naHllJ (n)}an,beN’
{n*1og” (N)},, por, @ follows
é,m (Xl) =0= f'p'Zﬁl Iog(l_ Z)’
é’LLI (yl) = 0 = f'p‘na+oc Hl(n)’
}/yl = }/ :f'p‘naﬁo Hl(n)
and the following convergent polyzetas,
VIl e LynX - X,
S =& (@) =7, =c0),
Su(S) =& (7S)) =V =¢(S),
vl eLynY —{y,},
G =Cu(m )=y =2,
Cx (X)) =6, (%) =75 =4 (%)
In (Cristian and Hoang, 2009), polynomial

relations among {g(l)}leLynX—X (Or {g(l)}lgLan{yl})v

are obtained using the double shuffle relations. The
identification of local coordinates in
Z,=B(y,)mwZ,, leads to a family of algebraic

generators Z,,(X) of Z
Z2 X)) ZP(X) - Z2(X)

irr irr

=JZ:P )

p=>2
and their inverse image by a section of ¢
LX) S C LX) S C Ly (X)
=)

p=2

such that the following restriction is bijective

26

£ QL (X)] - Z = Q25 ()]
= QHS (P}, . ]

Moreover, the following sub ideals of ker¢

Ry = (8Pan {Q herymv gy X0 4-)s
Ry = (SpanQ{Q }IeLynX X ’L”’]-X*)

are generated by the polynomials {Q} cynv,

ey %%}
homogeneous in weight such that the following
assertions are equivalent:

I Q| =0,
ii. &, >, (resp. S, —S,),
i, =, e L2 (Y) (resp. S, € £2,(X)).

Any polynomial Q, (0) is led by X, (resp.
S,), being transcendent over the sub algebra

Q4. (X)), and £, - Y,
(resp. S, —>U,) being homogeneous of weight
p=(I) and belonging to
QLG (X)]. In other terms, 3, =Q +Y, i.e.
span {S, ..y x = Ry @span L (&)
(resp. S =Q +U, which
$paN {2 Bty gy = Re @ SPaN Ly (X)
For any wex, X% (resp. Y \A{y,DY"), by

the Radford's theorem (Reutenauer, 1993), one has
S(w)eQ[Z, (X)]. Hence, for any

Pe Q[{SI}IeLynX\X ] (resp. Q[{ZI}IeLan\{yl}]
such that Peker{ >R, , one gets, by linearity,
¢(P) e QLZ (X)],

Next, let QeR,nQ[L,(X)]. Since
R, ckerg then £(Q)=0. Moreover, restricted
on QL4 (X)], the polymorphism ¢ is bijective
and then Q =0. It follows that

Proposition 2.3 (Hoang, 2013; Bui Van
Chien et al., 2015).

Q[{SI}IeLynX\X 1= Rx ® @[qr (X)L,
Q[{Zl}]eLan \{yl}] =R, ® Q[ (Y)].

follows
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Via CQMM theorem and by duality, one
deduces then

Corollary 2.2.

U(Lieg, (X)\x)=0y @ U cieg ({RY epynx
Sleﬁw( )

rr

ucieg, (INfyh =79y ou Lieg [ M} epynx

%) ehipy (V)

where J, (resp. Jy) is a Lie ideal generated by
R s e o0 €PN} v e y)-

Now, let Qekerd, (Ql,.= Then
Q=Q +Q, with Q eR, and Q, Q[ (X)].
Thus, Q=; Q, R, and then

Corollary 2.3 (Hoang, 2013; Bui Van Chien
etal., 2015).

QHS(PY,. . (V)]=Z=ImZand R, =ker¢.

On the other hand, one also has

Z=QL &Y —{y.HQY)/kerg
=QL,. ®x,QXx, /kerg.

Hence, as an ideal generated by homogeneous
in weight polynomials, ker ¢ isgraded and sois Z :

Corollary 2.4 (Hoang, 2013; Bui Van Chien
et al., 2015).

Z=Qle P2z, (3.14)

k>2
Now, let &=¢(P), where PeQ(X) and
P ¢ ker ¢, homogeneous in weight. Since, for any
Pand n>1 onehas 2,2 c Z

then each monomial &", for n>1, is of different
weight. Thus & could not satisfy

E+a, M+ =0,witha, ,,...eQ.

Corollary 2.5 (Hoang, 2013; Bui Van Chien et
al., 2015). Any se /. (X) is homogeneous in
weight then £(s) is transcendent over Q.

Example 2.3 Polynomials relations on local

coordinates (Bui Van Chien et al., 2015). Due to
the bridge equation (3.12), we obtain Table 1.

Table 1. Polynomial relations of polyzetas on transcendence bases

Relationson {C(El)}leﬂan—{'y}}

Relations on {¢(S;) hiecynx—x

3 C(Ewm) %C(Eya) C(Szuzf) C(Szgsq)
C(Em) - %C(Ey:a)Q C(Smgzl) = QC( zu:n)
1 C(Eyam) - %C(Ey:e)z C(Szgzg) = 1{]C( 9:021)
§(2y2y1) — %C(Eyg)z C(stz;) — 5C( xnm)
C( yayz) SC(Eys)C(Ew) - OC( ) C(ng:z:%) = _C(S 2m1)C(S~Toz1) + 2C(S 41‘1)
C(Eyﬁn) - _C(EQS)C(E'&'Z) ( ys) C( .1'0:1:110:1:1) = SC( T :E]_) + C( zgm )C(anl‘i)
5 iEEygyli - %SC((Eya))C(Zyz) C(Eys) ( C(Szgzgg = _C(( Egiﬂi))g(s.r(}xlj +2C(Sz3m1)
C Ey3y2 - EC Eys C S.TD:I:[I‘D:I:% - QC 30"1'1
C(Mypy2) = %C(Eya)%(zyz)“_gc(zys) C(Sz0zt) = C(Szgzi) .
Gy = S B aem et T BT s
Yyay2 Y3 21 Y2 ToTy 35 ToT1 9 -'1'0931
C(Eysyt) %Cl('fzm)3 - %CE}EQB)Q C( 1'02193021) = ﬁ?C(STOMJS
6 ((Pyayiye) = EC(Eyz)g + ZC(E'ys)Q C(ngzg) = ﬁC(Swoxi)s - C(SEEEJQ
C(Eysmm) - ?;C(Eys) 10C( ) C( ziz1T02] ) - %SCQ(STQTJS
C(Eyaiy?) ﬁ ( yz) 4C( ) (Smg:n%mu:n) - ;m (Sxawz) QC( m:m)
C(Eygﬁ) = ? (Eyz)i 4C(E ) C(Smg:n‘l‘) = ﬁC(Szom) QC(SEQMQJQ
C(Eyayg) i g (Eyz)S B ) C(S.I‘gzll‘o ?) = 1C(Sﬂ:oz1) C(S 2:1:1)
C(Eyzyl) 556 (Xye)” + 15C(20y) C(Smoz:ﬁ) 35C( wom)

27
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Example 2.4 (Bui Van Chien et al. 2015).
List of irreducible polyzetas up to weight 12 for
each transcendence basis:

ZEX)={LGS,,) (6a) (S,
£6g) (6 na) €640 (S, 0e)
£S5 € ) €6 mua) €6 o)t

ZEW)={E) <E,) ¢E,) <E,),
cE, ) cE)) ¢E o) CEy) CE L)
g(zygyf)’ é(zyiyf)}'

4. Conclusion

We reviewed a method to reduce relations of
the special functions indexed by transcendence
bases of shuffle and quasi-shuffle algebras due to
the Drinfel'd associator. Starting from the research
of Knizhnik-Zamolodchikov about a form of a
differential equation, a bridge equation is
constructed, and it can be applied to the case of the
generating series of the special functions. Relations
in form of asymptotic expansions or explicit
representations hold by the identification of local
coordinates of the bridge equation.

References

Cartier, P. (1987). Jacobienne généralisées,
monodromie unipotente et intégrales intérées.
Paris: Séminaire BOURBAKI.

Chien, B. V. and Duchamp, G. H. E. and Hoang,
N. M. V. (2013). Schiitzenberger's
factorization on the (completed) Hopf algebra
of g-stuffle product. JP Journal of Algebra,
Number Theory and Applications, 30, 191-215.

Chien, B. V. and Duchamp, G. H. E. and Hoang,
N. M. V. (2015). Structure of Polyzetas and
Explicit Representation on Transcendence
Bases of Shuffle and Stuffle Algebras. P.
Symposium on Symbolic and Algebraic
Computation, 40, 93-100.

'Forany k=L (logB(y,) | ¥ ) =f.p,.. <2Hy, (M)(-y,)' /1
1>1

s=(s,,...,S,) € N" is aconvergent multi-index if s, >2.

28

Chien B. V.; Duchamp G. H. E., and Hoang, N. M.
V. (2015). Computation tool for the g-
deformed  quasi-shuffle  algebras  and
representations of structure of MZVs. ACM
Communications in Computer Algebra, 49,
117-120.

Cristian, C. and Hoang, N. M. V. (2009).
Noncommutative algebra, multiple harmonic
sums and applications in discrete probability.
Journal of Symbolic Computation, 801-817.

Drinfel'd, V. G. (1990). On quasitriangular quasi-
Hopf algebras and on a group that. Algebra i
Analiz, 2, 149-181.

Hoang, N. M. (2013). On a conjecture by Pierre
Cartier about a group of associators. Acta
Mathematica Vietnamica, 38, 339-398.

Hoang, N. M. (2013). Structure of polyzetas and
Lyndon words. Vietnam Journal of
Mathematics, 41, 409-450.

Knizhnik, V. G. and Zamolodchikov, A. B. (1984).
Current algebra and Wess-Zumino model in
two dimensions. Nuclear Physics. B.
Theoretical, Phenomenological, and
Experimental High Energy Physics. Quantum
Field Theory and Statistical Systems, 247,
83-103.

Radford, D. E. (1979). A natural ring basis for the
shuffle algebra and an application to group
schemes. Journal of Algebra, 58, 432-454.

Ree, R. (1958). Lie elements and an algebra
associated  with  shuffles. Annals of
Mathematics. Second Series, 68, 210-220.

Reutenauer, C. (1993). Free Lie algebras.
Clarendon Press: The Clarendon Press,
Oxford University Press, New York.

Thang, L. T. Q. and Murakami, J. (1996).
Kontsevich's integral for the Kauffman
polynomial. Nagoya Mathematical Journal,
142, 39-65.

A > An10g° (M} e -



