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Abstract
In this paper, we establish the regularized gap function for a class of mixed parametric vector quasi-
equilibrium problems (briefly, (MPVQEP) ). Then an error bound is also provided for (MPVQEP) , via

this gap function under suitable assumptions. Some examples are given to illustrate our results. Our main
results extend and differ from those corresponding ones in the current literatures.
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Tém tit

Trong bai bdo ndy, ching t6i thiét ldp ham gap chinh héa cho mét I6p bdi todn twa cin bang vécto
tham s6 hon hop (viét tat la (MPVQEP) , ). Khi d6, mot cn sai so ciing thu dugc cho bai toan (MPVQEP)
thong qua ham gap chinh hoa dwgc xem xét boi mot s6 gid thiét phit hop. Mot s6 vi du dieoe dwa ra dé mé

ta cdc két qua dat dwoc. Cdc két qua chinh cia ching t6i trong bai bdo ndy mé rgng va khac voi cac két
qua twong ung da duoc nghién ciru trong nhitng cong trinh gan day.

Twr khéa: Can sai so, bai toan twa can bang vécto tham so hén hop, ham gap chinh hoa, don diéu manh.
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1. Introduction and preliminaries

In 1997, Yamashita and Fukushima
introduced a class of merit functions for variational
inequality problems:

Q(x,6) =sup{(h(x),x—y)—dl x—yl?},

yeK
where @ is a nonnegative  parameter,
Q0):R" >RuU{+x}, KcR", h:R"—>R",

This function was first introduced by Auslender
(1976) for 6=0 and by Fukushima (1992) for
#>0. The function Q(,0) is called the gap
function, while the function Q(-,8) is called the
regularized gap function, with >0. One of the
many useful applications of gap functions is to
derive the so-called error bounds as an upper
estimation of the distance between the solution set
and an arbitrary feasible point. Since then, many
authors investigated the regularized gap functions
and error bounds for various kinds of optimization
problems, variational inequality problems and
equilibrium problems (see, for example, Anh et al.
(2018), Bigi and Passacantando (2016), Gupta and
Mehra (2012), Hung et al. (2020a, 2020b, 2021),
Khan and Chen (2015a, 2015b), Mastroeni (2003)
and the references therein).

Throughout this paper, let R"be the n-
dimensional Euclidean space with the inner product
() and norml 1l , respectively.

Let RT ={(Yys-» Y, )€R":y. >0,i=12,....m}
be the nonnegative orthant of R™,AcR" be a

nonempty, closed and convex set in R" and T" be
nonempty subsets of a finite dimensional space.

For each iefl2,...m}let T :I'xA->R",
H,:AxA—R be continuous bifunctions such
that H,(x,x)=0 for all xe A and x: AxA—>R"

be a continuous bifunction such that
k(X y)+x(y,x)=0_, for all x,yeA Let

K:AxI —2* H:=(H,H,,...H ) T=(T,T,....T,)
and forany x,v eR",
(T %),v)) = (T (7 X)) (T (7 X))o (T (7 %), 1))

We now consider the following generalized
parametric  vector quasi-equilibrium  problem
(briefly, (MPVQEP), ) in finding xeK(x,y) for

each parameter y eI" fixed such that

H (X, y) +(T (7, x), x(y, X))  —intR", vy e K(x, 7). (1)
Given S(y) the solution set of (MPVQEP),.

we always assume that S(y) =& forall yeT". To

illustrate motivations for this setting, we provide
some special cases of the problem (MPVQEP) , :

@ |If m=1, K(xy)=A H,=0,
T.(7,X)=T,(x) x(y,X)=y—Xx,Vyel',x,y € Athen
(MPVQEP) , reduces to the following variational

inequality problem (briefly, (VIP)) studied in
Yamashita and Fukushima (1997) of finding xe A
such that

(M,(X),y—x)=0,vye A
(b) If m=Lx=0,K(x,»)=K(x), VyerTl,
xe A then the problem (MPVQEP), reduces to

the following abstract quasiequilibrium problem
(briefly, (QEP)) studied in Bigi and Passacantando
(2016) of finding x € K(x) such that

H,(x,y) 20, Vy e K(x).

In this paper, we study regularized gap
functions and error bounds for the problem
(MPVQEP) , under suitable assumptions. We also

provide some examples to support the results
presented in this paper. Our main results extend
and differ from those corresponding ones in the
current literatures.

We recall some notations and definitions used
in the sequel.

Definition 1. (See Rockafellar and Wets
(1998)) A real valued function f:A— R issaid to

be convex if
FAX+A-A)Y) AT (X)+@-A)f(y)
forevery x,y e A and 4 <[0,1].

Definition 2. Let T:I'xA->R",
f:AxA—>R and x:AxA—>R" be functions.
Then

(i) (See Mastroeni (2003)) f is said to be

strongly monotone with modulus « > Qif, for each
(x,y) e AxA,

f(xy)+ f(y,x)<—all x—wl?
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(i) Tis said to be x—strongly monotone
with modulus >0 if, for each yel,

(X, y) e Ax A,

T =T, x(y,x)) =l x—yl *.

2. Regularized gap functions and error
bounds for (MPVQEP) ,

In the section, we propose the regularized gap
function and error bound for (MPVQEP)y.

Motivated by Auslender (1976), Bigi and
Passacantando (2016), we consider the following
definition of gap functions. Let

P(y)z{XeA:XeK(X,y)},V]/eF
and we assume that P(y) =, Vy eT.

Definition 3. A real valued function
p:R"xA—R is said to be a gap function of
(MPVQEP), if it satisfies the following
conditions: for each y T" fixed,

@ p(y,x)=0, forall xeP(y).

(b) for any x,€P(y), P(r.%)=0 if and
only if x, isa solution of (MPVQEP) .

Inspired by the approaches of Yamashita and
Fukushima (1997), we construct a regularized gap
function for (MPVQEP) , . Suppose that K(X,y) is
a compact set for each xe A and y €I", then for
each >0 and y T fixed, we consider a function

Q,:I'x A—>R defined by
Q, () = max {h(y,xy)-dl x=yl %}, (2)
where
h(r, %, y) =min{—H; (x, y) + (T (7, X), (X, Y))}.

Remark 1. The function Q, in (2) is well-
defined. Indeed, as H,, T, and x are continuous for
any i=12,..,m, the function h is continuous.
Combine the continuity of h, 14 and the
compactness of K(x,y») foreach xe A and yeT,

we have Q, is well-defined.

We show that Q,is a gap function for
(MPVQEP) , under suitable conditions.

Theorem 1. Assume that

(i) K has compact and convex values;

(if) H, is convex in the second component for
all i=1,2,...m;

(iii) for each teR" and xe A, the function
y = (t, x(y, X)) is convex.

Then, for each y eI" and >0, the function
Q, defined by (2) is a gap function for (MPVQEP) , .

Proof. (a) For each y eT" fixed, it is clear that
forany xeP(y), i.e., xe K(x,y) and so

_ _ _ 2
Q,(7.%) = max {h(y,x,y) -0 x—yl?}

>h(y, % X). 3)
We have

h(y, X, X)
=min{—H, (X, X) + (T, (7, X), (X, X))} = 0.

I<i<m
Then, from (3), we conclude that 2, (y,x) =0
for any xeP(y).

(b) If there exists x, e P(y), i.e., X, € K(X,,7)
such that Q,(y,%,)=0, then

h(7, %, y) — @Al X, — W *<0,vy e K(X,,7)
or

min{—H, (X,, ¥) +<T, (7, %), (%, Y}

1<i<m
<Al x, -yl 2, vy e K(X,,7).
For arbitrary xeK(x,,7) and A€(0,1), let
Y, =X+ A(x, —X) . Since K(X,,7) is a convex set,
we get y, € K(x,,7) and so

Eiﬂ{_Hi(Xovyi)_’_(Ti (7, %), (X, yl)>}
<Al x,—y,ll?. ()
Since H, is convex in the second component
forall i=1,2,...,m, we have
—H; (X, Y,;) = —AH,(X;, %) — (@ = A)H,; (X, X)
=== H; (%, %). ()
It follows from condition (iii) that
(T (72 %) & (Y0 %)) < (L= AT (7, %) 5 (X, X))
+ AT (7 %), k(X% % ))-
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Since x(x,y)+x(y,x)=0_, forall x,yeA,
we have zc(xo,xo)zo,%n and so \
(T (7 %), 6(%, ¥, )) 2 A= AT (7, %), (%5, X))- (6)
We have
| % — Yl =% —x—=A(% = X)|
=(@1-2)N x, -2, (7
From (4)-(7), we get that
min {~(1— 2)H, (%, ) + L= A)T, (7, %), &%, X))}
<L-A)%Al x,—A 2.
Equivalently,
(1= ) min {-H, (%, %) + (T, (7, %), £ 0%, X))}
<@L-2)26 x, — Al 2.
So,
min{=H, (%5, X) + (T, (7,%), (%, X))}
<SA-)A x,— A2, (8)
Taking the limit in (8) as 4 —1", we obtain
min {—H, (%o, X) +(T; (7, %), K (%,, X))} <0.

1<i<m
Then, for any xeK(X,,7),
1<i, <m such that

Hy, (%, %) + (T (7,%), (%, %)) 20,

there exits

that is,
H (%, %) +(T (7, %), 5(X, X)) & —intRT, vx € K(X;, 7).
Hence, x, €S(y).
Conversely, if x,€S(y),then there exists
iy €{L...,m} such that
H;, (X, ) + (T, (7, %), 5(Y, %)) 2 0, ¥y € K (X, 7).
This means that
min{—H, (X, ¥) + (T, (7,%,), K%, y)) =l %, — I *} <0,

1<i<m
vy e K(%,7)
or

max min{=H; (%, ) + (T (7% ).k (%, V) =l % =y *|
<0.
Hence, Q,(y,%,)<0.Since Q,(y,x)=0 for

any xeK(x,7), Q,(7,%)=0. (]

Example 1. n=lm=2, A=[01]],
r=R,, 6=1 K(x,7)=[0,1+x],
T X=X T,(r,X)=2rx, Hy(xy)=y*+2xy -3,
H,(X)= y*+7xy—8x* and x(y,x)=y—x forall
X,ye A, yel. Then, the problem (MPVQEP)  is
equivalent to finding x €[0,1+ x] N[0,1] such that

H (%, y) +T (7, %), x(y, X))

= (Y =)(B+7)x+Y).(y = x)(B+2y)x +y)) & -intR’
for all ye[0,1+x]. It follows from some direct
computations that S(y) ={0}.

It is clear that all assumptions imposed in
Theorem 1 are satisfied. Hence, the function Q,

defined by (2) is the gap function for (MPVQEP) , .

Indeed,

Q,(y,X)= h(y,x,y)—dl x—yil ?
o(r:X)= max {h(y,xy)— @l x—yi *|

= max ]{min{(x— ((EB+7)x+Y),

ye[0,1+x
(X=Y)((8+27)x+ y)}-(x—y)*}
=(2+y) X2,

Next, we investigate the error bound for
(MPVQEP), via the gap function Q,.

Let
ryeR,,

For each ie{l,..,m}, we now consider the
following problem (GPVQEP)S) :find xeK(x,)
for each parameter y e I" fixed such that

H; (%, ) +(Ti (7, %), k(y, X)) 2 0, vy € K(X, 7).

Given S®(y) the solution set of

0
(GPVQEP)" .

Remark 2. If x, e",S” (), then x, is the

same solution of (GPVQEP)S) forall ie{l,...m}.

Thus, it is clear that X, is a solution of the problem
(MPVQEP),, .

Theorem 2. For each yeI’, let x, be a
solution of the problem (MPVQEP) , . Suppose that
all the conditions of Theorem 1 hold and for each
i=12,..m, H, is strongly monotone with
modulus ¢; >0 and T, is « -strongly monotone

with modulus 4 >0. Let a=min__, o and



Dong Thap University Journal of Science, Vol. 11, No. 5, 2022, 03-08

M=min_._. f. Assume  further  that

AN SO =D, % eK(x,y) for any xeK(x,,7)
and € >0 satisfying o+ >89
Then, for each x € K(X,,7), we have

| x—xl < [0 )
a+u—~o

Proof. Since ", S () =3, all the problems
(GPVQEP)S) have the same solution. Without

loss of generality, we assume that x, is the same

solution. Since x, € K(x,y) forany xe K(X,,7),
Q,(7.%)
= max {ming=H, (x, )+ T, (7,0, <0, YD} -l x— Y1 °}

= min{=H, (%, %) + (T, (7, %), 5 (%, % D}~ A X =l 2. (10)

Then, we can assume that there exists
i, €{L,...,m}such that

min{—H; (, %) + (T, (7, %), «(%, %))}
=—H;, (X, %) + (T, (7, %), (X, X))
and so, (10) follows that

Q,(y,%)
>—H, (X, %)+ (T, (7, %), k(X %)) =&l x=xll *. (11)

As x, € S® (y), we obtain
H,, (%, %) + (T, (7, %), 6(%, %)) = 0.

Since H, is strongly monotone with modulus

(12)

«; , We conclude that
—H, (%, ) —H, (X, %)=l x=xll *>0. (13)

It follows from the x -strong monotonicity of
T, with modulus z that

(T (X0, (X, X)) =Ty (7, %), & (X, %))

=l x=xl >0. (14)
Employing (12) — (14), we obtain
—H;, (%) + (T, (7, %), 5 (X, %))
> (e, + 5 X=Xl ?
>(a+u)l x=x%. (15)

From (11) and (15), we get

Q,(r )2 (a+p-0)Ix=xIF.

Therefore,
| x— X0|| < M
a+u-—=0
and hence the proof is completed. L]

Example 2. Let n,m,I, A6 KT,
T,,H,,H,,x as be in Example 1. From Example 1,
we have the solution of (GPVQEP),,

S(») ={0}
and the regularized gap function of (MPVQEP) , is
defined by
Q, (7. x) =2+ 7)x".

It is easy to check that H, and H, are
strongly monotone with moduli ¢, =2 and «a, =7,
respectively. Also T, and T,are & -strongly
monotone with the moduli s =y and u, =2y,

respectively. Then, =2 and u=y. Therefore,

the assumptions of Theorem 2 are satisfied, and so
Theorem 2 holds. Some numerical results of
Theorem 2 are shown in Table 1.

Table 1. Ilustrate the error bounds given by (9) with
y=0.15, y=03 and y=0.5

Error bounds

X | x=x]

y=015 | =03 | =05
0.0 0.0 0.000 0.000 | 0.000
0.1 0.1 0.137 0.133 | 0.129
0.2 0.2 0.273 0.266 | 0.258
0.3 0.3 0.410 0.399 | 0.387
0.4 0.4 0.547 0.532 | 0.516
0.5 0.5 0.684 0.665 | 0.645
0.6 0.6 0.820 0.798 | 0.775
0.7 0.7 0.957 0.931 | 0.904
0.8 0.8 1.094 1.064 | 1.033
0.9 0.9 1.231 1.197 | 1.162
1.0 1.0 1.367 1.330 | 1.291
Remark 3. In special cases of (a), (b)

mentioned in Sect. 1, the regularized gap function
Q, for (GPVQEP), reduces to the regularized gap
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function for (VIP) and (QEP) considered in Bigi
and Passacantando (2016) and Yamashita and
Fukushima (1997), respectively. Therefore, for
these cases, Theorem 1 and Theorem 2 extend to
the existing ones in Bigi and Passacantando (2016)
and Yamashita and Fukushima (1997), and are
different from the corresponding results in Anh et
al. (2018), Hung et al. (2020a, 2020b, 2021) and
Khan and Chen (2015b) in the form of the problem
(GPVQEP), perturbed by parameters.

3. Conclusions

The class of mixed parametric vector quasi-
equilibrium problems (GPVQEP), is introduced in

this paper. Regularized gap functions and error
bounds are stated for this kind of problems under
suitable assumptions. Examples are given to
support the results presented here.

It would be interesting to consider the study of
Levitin-Polyak well-posedness by perturbations
and Holder continuity of solution mapping for the
class of mixed parametric vector quasi-equilibrium
problems (GPVQEP), based on regularized gap

functions.
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