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TÓM TẮT 

Bài báo đề xuất phương pháp nhận dạng cảm xúc qua giọng nói sử dụng mạng nơ-ron tế 

bào (CeNNs) với luật học Perceptron hồi quy (RPLA: Regression Perceptron Learning 

Algorithm), một giải pháp mới. Mô hình phân loại các cảm xúc thành hai nhóm: tích cực và tiêu 

cực từ tín hiệu âm thanh. Thử nghiệm được tiến hành trên bộ dữ liệu hợp nhất từ bốn cơ sở dữ 

liệu gốc (EmoDB, SAVEE, TESS, CREMA-D) với 10.257 mẫu cho thấy, CeNNs năm lớp đạt 

độ chính xác 82%±0,02 (p=0,0001 so với Transformer), vượt trội hơn các mô hình Gaussian 

Mixture Models (GMM, 68%), Support Vector Machines (SVM, 72%), Long Short-Term 

Memory (LSTM, 75%) và Transformer (80%). Độ trễ xử lí trung bình 50 ms hỗ trợ ứng dụng 

thời gian thực. Nghiên cứu góp phần cải thiện tương tác người – máy trong trợ lí ảo, dịch vụ 

khách hàng và hỗ trợ sức khỏe tâm thần.   

Từ khóa: luật học Perceptron hồi quy, mạng nơ-ron tế bào, nhận dạng cảm xúc, phân 

tích giọng nói.   

APPLICATION OF CELLULAR NEURAL NETWORKS WITH  

THE RECURRENT PERCEPTRON LEARNING ALGORITHM  

FOR SPEECH EMOTION RECOGNITION 

ABSTRACT 

The paper proposes a novel approach to speech emotion recognition using Cellular Neural 

Networks (CeNNs) with the Recurrent Perceptron Learning Algorithm (RPLA). The model 

classifies emotions into two categories: positive and negative, based on audio signals. 

Experiments conducted on a combined dataset of four original databases (EmoDB, SAVEE, 

TESS, CREMA-D) with 10,257 samples show that a five-layer CeNNs model achieves an 

accuracy of 82% ± 0.02 (p = 0.0001 compared to Transformer), outperforming Gaussian 

Mixture Models (GMM, 68%), Support Vector Machines (SVM, 72%), Long Short-Term 

Memory networks (LSTM, 75%), and Transformers (80%). An average processing latency of 

50 ms supports real-time applications. This research enhances human-machine interaction in 

virtual assistants, customer service, and mental health support. 

Keywords: cellular neural networks, recurrent perceptron learning algorithm, speech 

emotion recognition, speech processing.
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1.  ĐẶT VẤN ĐỀ 

Nhận dạng cảm xúc qua giọng nói 

(Speech Emotion Recognition – SER) đóng 

vai trò quan trọng trong cải thiện tương tác 

người – máy, hỗ trợ các ứng dụng như trợ lí 

ảo, chăm sóc khách hàng và chẩn đoán sức 

khỏe tâm thần (El Ayadi và cs., 2011). Các hệ 

trí tuệ nhân tạo hiện nay chủ yếu phân tích nội 

dung ngôn ngữ, nhưng khả năng nhận diện 

cảm xúc qua đặc trưng phi ngôn ngữ (âm 

điệu, ngữ điệu, tốc độ nói) còn hạn chế. SER 

không chỉ nâng cao trải nghiệm người dùng 

mà còn có tiềm năng trong hỗ trợ phát hiện 

rối loạn tâm lí (Akçay & Oğuz, 2020). 

Trong thực tiễn, việc nhận dạng cảm xúc 

giúp các trung tâm chăm sóc khách hàng phản 

hồi phù hợp hơn với tâm trạng người gọi, 

giúp giáo viên trong các lớp học trực tuyến 

theo dõi sự tập trung và trạng thái cảm xúc 

của học sinh và đặc biệt có thể hỗ trợ y, bác 

sĩ trong việc phát hiện sớm các rối loạn tâm lí 

như trầm cảm, lo âu. Tại Việt Nam, nhu cầu 

ứng dụng SER trong dịch vụ số, tổng đài 

thông minh và y tế từ xa đang ngày càng gia 

tăng (Nguyen và cs., 2024). 

Các phương pháp truyền thống như GMM 

(~68% độ chính xác), SVM (~72%) phụ 

thuộc vào đặc trưng thủ công như Mel-

Frequency Cepstral Coefficients (MFCC) và 

Short-Time Fourier Transform (STFT), dẫn 

đến hiệu suất thấp và yêu cầu tính toán cao 

(Anagnostopoulos và cs., 2015; Schuller và 

cs., 2011). Các mô hình học sâu như LSTM 

(~75%) và Transformer (~80%) cải thiện 

trích xuất đặc trưng tự động, nhưng độ trễ xử 

lí cao (100 – 150 ms) khiến chúng không tối 

ưu cho ứng dụng thời gian thực (Issa và cs., 

2020; Mustaqeem & Kwon, 2020). Gần đây, 

mô hình kết hợp 1D-CNN-LSTM-GRU đạt 

hiệu suất cao (93 – 95% trên TESS, 

RAVDESS) nhờ MFCC, Zero-Crossing Rate 

và tăng cường dữ liệu, nhưng đòi hỏi tài 

nguyên tính toán lớn (Rayhan Ahmed và cs., 

2023). Tương tự, wav2vec 2.0 hiệu quả trên 

dữ liệu đa ngôn ngữ như IEMOCAP, nhưng 

không phù hợp trong môi trường tài nguyên 

hạn chế (Sharma, 2022). 

CeNNs, do Chua và Yang đề xuất (Chua 

& Yang, 1988), là kiến trúc xử lí tín hiệu song 

song, hiệu quả với dữ liệu dạng lưới nhờ kết 

nối cục bộ và tính toán nhanh (Roska & Chua, 

1993). Dù được ứng dụng nhiều trong xử lí 

ảnh, CeNNs ít được khai thác trong SER. Kết 

hợp với RPLA (Guzelis & Karamahmut, 

1994), CeNNs có tiềm năng đạt hiệu suất cao 

với độ trễ thấp. Tuy nhiên, nhiều nghiên cứu 

SER chỉ dùng một bộ dữ liệu, gây thiên lệch 

đánh giá (Latif và cs., 2023), hoặc nhạy với 

nhiễu thực tế (> 0,01 dB), đòi hỏi tăng cường 

dữ liệu tiên tiến (Chakraborty và cs., 2019). 

Nghiên cứu này đề xuất mô hình CeNNs 

cải tiến (loại bỏ ma trận ngưỡng, dùng đa lớp 

tuần tự) với RPLA để phân loại cảm xúc nhị 

phân (tích cực/tiêu cực), nhằm đạt độ chính 

xác cao và độ trễ thấp trong môi trường tài 

nguyên hạn chế. Mô hình được đánh giá trên 

bộ dữ liệu hợp nhất từ bốn cơ sở dữ liệu chuẩn 

(EmoDB, SAVEE, TESS, CREMA-D) để 

đảm bảo tính bền vững và giảm thiên lệch. 

Vấn đề  đặt ra: mô hình CeNNs với RPLA có 

cải thiện hiệu suất nhận dạng cảm xúc qua 

giọng nói so với các phương pháp hiện đại 

trong điều kiện tài nguyên hạn chế không? 

2.  PHƯƠNG PHÁP NGHIÊN CỨU 

2.1.  Tổng quan phương pháp 

Nghiên cứu đề xuất phương pháp nhận 

dạng cảm xúc qua giọng nói dựa trên CeNNs 

cải tiến với RPLA. CeNNs sử dụng lưới hai 

chiều với kết nối cục bộ để xử lí hiệu quả dữ 

liệu dạng lưới như Mel-Spectrogram (Chua & 

Yang, 1988). Mô hình cải tiến bao gồm loại 

bỏ ma trận ngưỡng và áp dụng cấu trúc đa lớp 

tuần tự, giảm độ phức tạp tính toán nhưng duy 

trì hiệu suất phân loại. RPLA (Guzelis & 

Karamahmut, 1994) tối ưu hóa trọng số 

CeNNs qua các vòng lặp hồi quy, đạt độ trễ 

xử lí trung bình 50 ms. Phương pháp phân 

loại cảm xúc nhị phân (tích cực/tiêu cực) từ 

tín hiệu âm thanh vượt trội về độ chính xác và 

hiệu quả tính toán so với LSTM, Transformer 

và CNN-LSTM. 

2.2.  Bộ dữ liệu và tiền xử lí 

Bộ dữ liệu (Dataset) được hợp nhất từ bốn 

cơ sở dữ liệu chuẩn (Bảng 1) gồm 10.257 mẫu 

âm thanh (Agnihotri, 2017; Lok, 2020a, 

2020b, 2020c). Dữ liệu được chia ngẫu nhiên 

có kiểm soát: 80% huấn luyện (8.206 mẫu) và 

20% kiểm tra (2.051 mẫu). Để xử lí tính 

không đồng nhất (ngôn ngữ Anh/ Đức, chất 
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lượng âm thanh), mẫu âm thanh được chuẩn 

hóa về tần số lấy mẫu 16 kHz và tăng cường 

bằng nhiễu trắng 0,01 dB (Badshah và cs., 

2017). Cảm xúc được ánh xạ thành hai nhóm: 

tích cực (vui, ngạc nhiên; 2.359 mẫu, 23%) 

và tiêu cực (buồn, giận, sợ, chán ghét, trung 

lập; 7.898 mẫu, 77%). Nhóm thiểu số được 

cân bằng dùng kĩ thuật Synthetic Minority 

Oversampling Technique (SMOTE) (Chawla 

và cs., 2002). 

Bảng 1. Các bộ dữ liệu nhận diện cảm xúc 

Dữ liệu Mô tả 

EmoDB Dataset từ Viện Khoa học Truyền thông, Đại học Kĩ thuật Berlin, Đức, gồm 535 

câu nói từ 10 diễn viên chuyên nghiệp, thể hiện 7 cảm xúc (Agnihotri, 2017). 

SAVEE Dataset gồm 480 câu nói từ 4 diễn viên nam, thể hiện 7 cảm xúc khác nhau (Lok, 

2020b). 

TESS Dataset gồm 2.800 mẫu, với 200 từ trong cụm “Say the word” do hai diễn viên 

(26 và 64 tuổi) thể hiện, bao gồm 7 cảm xúc (Lok, 2020c). 

CREMA-D Dataset gồm 7.442 đoạn âm thanh từ 91 diễn viên (48 nam, 43 nữ, độ tuổi 20-

74, đa dạng chủng tộc), với 12 câu được chọn, thể hiện 6 cảm xúc (Lok, 2020a). 

Quy trình tiền xử lí 

Chuẩn hóa độ dài âm thanh về 2 s tại tần 

số lấy mẫu 16 kHz (Hình 2): 

1. Áp dụng Short-Time Fourier Transform 

(STFT) với cửa sổ 25 ms, hop length 10 ms 

để tạo spectrogram. 

2. Tạo Mel-Spectrogram với 128 bộ lọc Mel, 

áp dụng phép logarit để giảm độ lệch giá trị. 

3. Tính đạo hàm bậc 1 (tốc độ) và bậc 2 

(gia tốc), tạo ma trận đầu vào [128, 200, 3]. 

Số khung tối đa (N_frames) được tính theo 

𝑁_𝑓𝑟𝑎𝑚𝑒 =  𝑓𝑙𝑜𝑜𝑟 (
𝑇

ℎ
),  (1) 

trong đó: 𝑇 = 2 𝑠 (độ dài âm thanh), ℎ =
0,01 𝑠 (Hop Length), 𝑓𝑙𝑜𝑜𝑟(·) là hàm làm 

tròn xuống. Thay 𝑇, ℎ vào (1), 𝑁_𝑓𝑟𝑎𝑚𝑒𝑠 =
 𝑓𝑙𝑜𝑜𝑟(2/0,01) = 200, đảm bảo số khung 

thời gian là 200, khớp với kích thước ma trận 

đầu vào [128, 200, 3]. 

 

Hình 1. Sơ đồ tổng hợp nhãn cảm xúc 

Quá trình xử lí dữ liệu tổng thể tiến hành 

theo luồng: dữ liệu âm thanh chuẩn hoá về độ 

dài 2 s, sau đó biến đổi STFT (Short Time 

Fourier Transform). Từ STFT chuyển dữ liệu 

tiếng nói thành biểu đồ Spectrogram theo 

công thức sau: 

ℱ{𝑓(𝑡)} =  ∫ 𝑓(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡

+∞

−∞

.  (2) 

Từ Spectrogram thu thập được biên độ 

phổ. Sau khi có biên độ phổ, nén chúng để trở 

thành Mel-Spectrogram. Dữ liệu này sẽ được 

đi qua hàm logarit để thu nhỏ độ chênh lệch, 

ta được một kênh đầu tiên. Hai chiều tiếp theo 

lần lượt đạo hàm lần thứ nhất lấy tốc độ dữ 

liệu và lần thứ hai lấy gia tốc của dữ liệu đó. 

Sơ đồ luồng xử lí dữ liệu được minh họa trong 

Hình 2. 

 

Hình 2. Sơ đồ luồng xử lí dữ liệu  

Sau khi xử lí từ một tệp dữ liệu tiếng nói 

dạng file.wav ta thu được một ma trận có kích 

thước [n_mel, max_frames(m_f), channel] 

đảm bảo phù hợp với đầu vào của  CeNNs, 
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với n_mel là số lượng đặc trưng thu được từ 

phổ Mel; channel là số chiều của dữ liệu (với 

nghiên cứu này channel = 3); m_f là chiều dài 

tối đa của một khung (frame) được tính theo 

công thức (3). Trong đó, Sample rate là tần 

số lấy mẫu; Duration là tổng thời gian của 

đoạn âm thanh; FFT size là số mẫu được dùng 

cho mỗi phép biến đổi Fourier rời rạc quy 

định độ phân giải tần số; Hop size là bước 

nhảy (Số mẫu bỏ qua) giữa các cửa sổ phân 

tích, quy định độ chồng lấp giữa các khung. 

𝑚_𝑓 =
𝑆𝑎𝑚𝑝𝑙𝑒 𝑟𝑎𝑡𝑒∗𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛−𝐹𝐹𝑇 𝑠𝑖𝑧𝑒

𝐻𝑜𝑝 𝑠𝑖𝑧𝑒
+ 1.   (3) 

2.3.  Mạng nơ ron tế bào (CeNNs) 

CeNNs được tổ chức dưới dạng lưới hai 

chiều, mỗi nơ-ron chỉ kết nối với các nơ-ron 

lân cận trong bán kính 𝑟 = 1. 

Trạng thái nơ-ron tại vị trí (𝑖, 𝑗) được tính 

bằng tổng trọng số từ đầu ra nơ-ron lân cận 

(qua ma trận phản hồi A), đầu vào bên ngoài 

(qua ma trận điều khiển B) và giá trị 

ngưỡng, sau đó áp dụng hàm kích hoạt 

sigmoid tuyến tính 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
. (4) 

Đầu ra nơ-ron là giá trị trạng thái sau hàm 

sigmoid. Khi mạng đạt trạng thái ổn định, giá 

trị trạng thái không đổi theo thời gian. Độ 

phức tạp tính toán của CeNNs là 𝑂(𝑁²), với 

𝑁 = 128 × 200 (Roska & Chua, 1993). 

Phương trình cập nhật trạng thái của CeNNs 

được trình bày trong công thức (5) 

𝐶
𝑑𝑥𝑖,𝑗(𝑡)

𝑑𝑡
= −

1

𝑅𝑥
𝑥𝑖,𝑗(𝑡) + ∑ 𝐴(𝑖, 𝑗; 𝑘, 𝑙)𝑦𝑘,𝑙(𝑡)

(𝑘,𝑙)

+ ∑ 𝐵(𝑖, 𝑗; 𝑘, 𝑙)𝑢𝑘,𝑙

(𝑘,𝑙)

+ 𝐼, (5) 

trong đó: 𝑥𝑖𝑗(𝑡) là trạng thái;  𝑦𝑖𝑗(𝑡) là đầu ra; 

𝑢𝑖𝑗(𝑡)là đầu vào; 𝐴 là ma trận mẫu phản hồi 

(Feedback Template) xác định ảnh hưởng của 

đầu ra các tế bào lân cận đến trạng thái hiện 

tại; 𝐵 là ma trận điều khiển (Control 

Template) xác định tín hiệu đầu vào ngoài 

ảnh hưởng đến trạng thái hiện tại (i, j). 𝐼 là ma 

trận ngưỡng (Bias) giúp mô hình tránh quá 

khớp (Overfitting) và xác định ngưỡng 

chuyển trạng thái đầu ra.  Hàm tương tác đầu 

ra của mạng nơ-ron tế bào như sau: 

𝑦𝑖𝑗(𝑡) =   
1

2
|𝑥𝑖𝑗 + 1| −  

1

2
|𝑥𝑖𝑗 − 1|. (6) 

Phương trình đầu vào: 𝑢𝑖,𝑗 = 𝐸𝑖,𝑗.       (7) 

Các điều kiện ràng buộc: 

{
|𝑥𝑖,𝑗(0)| ≤ 1

|𝑢𝑖,𝑗| ≤ 1
. (8) 

Các điều kiện ràng buộc về tính đối xứng: 

𝐴(𝑖, 𝑗; 𝑘, 𝑙) = 𝐴(𝑘, 𝑙; 𝑖, 𝑗), 

với  1 ≤ 𝑖 ≤ 𝑀; 1 ≤ 𝑗 ≤ 𝑁; 
𝑖 − 𝑟 ≤ 𝑘 ≤ 𝑖 + 𝑟; 𝑗 − 𝑟 ≤ 𝑘 ≤ 𝑗 + 𝑟. 

 

 

(9) 

 

Hình 3. Sơ đồ khối của một nơ ron tế bào
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2.4.  Luật học Perceptron hồi quy  

RPLA là thuật toán học giám sát mở rộng 

từ Perceptron cổ điển. Việc huấn luyện 

CeNNs ở trạng thái ổn định bằng cách điều 

chỉnh bộ trọng số dựa trên sai số đầu ra, sử 

dụng hồi quy để tái sử dụng đầu ra nơ-ron qua 

các vòng lặp. Quá trình học của RPLA gồm: 

Bước 1: Khởi tạo trọng số 𝑾: có thể được 

khởi tạo ngẫu nhiên hoặc bằng 0. 

Bước 2: Tính toán sai số: Sai số sẽ được 

tính bằng cách sử dụng công thức: 

𝑒𝑖𝑗 =  𝑥𝑖𝑗
𝑝𝑟𝑒𝑑

− 𝑥𝑖𝑗
𝑎𝑐𝑡𝑢𝑎𝑙 . (10) 

Bước 3: Cập nhật trọng số RPLA: cập 

nhật các trọng số dựa theo quy tắc học 

Perceptron: 

∆𝑊𝑖𝑗𝑘𝑙 = 𝜂 ∙   𝑒𝑖𝑗 ∙ 𝑧𝑘𝑙  ; (11) 

𝑊𝑖𝑗𝑘𝑙
𝑛𝑒𝑤 =  𝑊𝑖𝑗𝑘𝑙

𝑜𝑙𝑑 + ∆𝑊𝑖𝑗𝑘𝑙  , 

trong đó: η là tốc độ học; 𝑒𝑖𝑗 là sai số tại (i,j); 

𝑧𝑘𝑙  là thành phần tương ứng của vector đầu 

vào mở rộng từ điểm lân cận (k, l) ảnh hưởng 

đến điểm (i, j). 

Bước 4: Lặp: lặp lại các bước 2, 3 trên toàn 

bộ tập dữ liệu; dừng khi sai số tổng thể đạt 

đến ngưỡng chấp nhận hoặc hoàn thành số 

vòng lặp tối đa.  

2.5.  Kiến trúc mô hình cải tiến 

Mô hình CeNNs cải tiến được thiết kế 

nhằm cân bằng giữa khả năng trích xuất đặc 

trưng và tốc độ xử lí thời gian thực. Mô hình 

này loại bỏ ma trận ngưỡng và sử dụng từ 1 

đến 5 lớp CeNNs tuần tự, với bán kính lân 

cận r và hàm kích hoạt sigmoid tuyến tính 

(Chua & Yang, 1988) (Hình 4).  

 

Hình 4. Kiến trúc mô hình CeNNs cải tiến

Đầu vào của CeNNs là ma trận Mel-

Spectrogram. Các khối CeNNs thực hiện trích 

xuất đặc trưng cục bộ, Max Pooling giảm kích 

thước và tăng khả năng khái quát hóa, giúp mô 

hình chống chịu tốt hơn với nhiễu. Cuối cùng, 

lớp RPLA tối ưu hóa trọng số và tạo đầu ra phân 

loại nhị phân (tích cực/tiêu cực). Kiến trúc chi 

tiết được trình bày trong Bảng 2. 

Bảng 2. Tham số kiến trúc CeNNs cải tiến 

Thành phần 
Kích thước 

đầu ra 
Cấu hình chi tiết Chức năng 

Đầu vào [128, 200, 3] Ma trận Mel-Spectrogram 3 kênh Tín hiệu âm thanh dạng đặc 

trưng phổ 

Lớp CeNNs 1 [128, 200,128] 128 đơn vị, r = 1 Trích xuất đặc trưng cục bộ 

Lớp CeNNs 2 [128, 200,128] Cấu hình tương tự lớp 1 Mở rộng, tinh chỉnh đặc trưng 

Lớp CeNNs 3 [128, 200,128] Cấu hình tương tự lớp 1 Tăng độ sâu trích xuất 

Max Pooling [64, 100,128] Pooling 2×2 Giảm kích thước, tăng khái 

quát hóa, chống nhiễu 

Lớp CeNNs 4 [64, 100,128] 128 đơn vị, r = 1 Trích xuất đặc trưng ở không 

gian giảm chiều 

Lớp CeNNs 5 [64, 100,128] 128 đơn vị, r = 1 Tăng cường biểu diễn đặc 

trưng, đầu vào cho RPLA 

RPLA - - Tối ưu trọng số, phân loại  

Đầu ra Tích cực/  

tiêu cực 

- Nhãn cảm xúc cuối cùng 
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Mô hình được huấn luyện với kích thước 
batch 32 và tối đa 150 vòng lặp, áp dụng cơ chế 
dừng sớm sau 20 vòng không cải thiện. Thuật 
toán tối ưu sử dụng Adam (β1 = 0,9, β2 = 0,999) 
với tốc độ học khởi tạo 0,001 và giảm dần theo 
bộ điều chỉnh tốc độ học. Hàm mất mát là Binary 
Cross-Entropy, phù hợp cho bài toán phân loại 
nhị phân. Để hạn chế quá khớp, áp dụng Dropout 
với tỉ lệ 0,3. Ngoài ra, dữ liệu được tăng cường 
bằng thêm nhiễu và dịch chuyển theo thời gian 
nhằm cải thiện khả năng khái quát hóa. 

3.  KẾT QUẢ VÀ THẢO LUẬN  

Mô hình được huấn luyện bằng Python 
3.8, sử dụng Librosa để tiền xử lí âm thanh và 
TensorFlow để xây dựng CeNNs (Abadi và 
cs., 2016; McFee và cs., 2015). Thực nghiệm 
dùng kĩ thuật 5-Fold Cross-Validation để 
đánh giá độ bền (Kohavi, 1995). Độ trễ xử lí 
trung bình 50 ms mỗi mẫu, đo trên CPU Intel 

i7-10700. Các chỉ số đánh giá gồm: độ chính 
xác, độ bao phủ, precision và F1-Score. Mô 
hình được so sánh với GMM, SVM, LSTM 
và Transformer có kết quả vượt trội (Bảng 3). 

3.1.  Kết quả thực nghiệm 

Kết quả (Bảng 4) 5-Fold Cross-Validation 
cho thấy mô hình CeNNs năm lớp đạt hiệu 
suất cao nhất (82% ± 0,02). Dữ liệu cho năm 
fold: [81,8%, 82,1%, 82,0%, 81,9%, 82,2%], 
độ lệch chuẩn 0,158%. Khoảng tin cậy 95% 
là [81,6%, 82,4%], tính bằng trung bình ±t 
value (2,776)×độ lệch chuẩn/sqrt(số fold) 
(Kohavi, 1995). 

Kiểm định paired t-test giữa CeNNs 

([81,8%, 82,1%, 82,0%, 81,9%, 82,2%]) và 

Transformer ([79,7%, 80,2%, 80,0%, 79,9%, 

80,2%]) cho kết quả p-value=0,0001 (t-

statistic=18,7083), xác nhận CeNNs với 

RPLA vượt trội (p < 0,05) (Bảng 3). 

Bảng 3. Hiệu suất huấn luyện của mô hình CeNNs cải tiến (5-Fold Cross-Validation) 

Số lớp Accuracy Recall Precision F1-Score 

1 0,65 ± 0,03 0,650 ± 0,04 0,630 ± 0,03 0,650 ± 0,03 

2 0,74 ± 0,02 0,760 ± 0,03 0,745 ± 0,02 0,745 ± 0,02 

3 0,77 ± 0,02 0,770 ± 0,03 0,800 ± 0,02 0,770 ± 0,02 

4 0,77 ± 0,03 0,770 ± 0,03 0,750 ± 0,03 0,770 ± 0,03 

5 0,82 ± 0,02 0,820 ± 0,02 0,820 ± 0,02 0,820 ± 0,02 

6 0,80 ± 0,02 0,800 ± 0,02 0,805 ± 0,02 0,800 ± 0,02 

7 0,81 ± 0,02 0,810 ± 0,02 0,810 ± 0,02 0,805 ± 0,02 

8 0,78 ± 0,03 0,780 ± 0,03 0,780 ± 0,03 0,780 ± 0,03 

9 0,75 ± 0,03 0,750 ± 0,03 0,750 ± 0,03 0,750 ± 0,03 

10 0,79 ± 0,03 0,795 ± 0,03 0,795 ± 0,03 0,795 ± 0,03 

Bảng 4. So sánh hiệu suất với các phương pháp chuẩn 

Phương pháp Accuracy Recall Precision F1-Score Độ trễ (ms) 

GMM 0,68 ± 0,04 0,67 ± 0,04 0,69 ± 0,03 0,68 ± 0,04 20 

SVM 0,72 ± 0,03 0,71 ± 0,03 0,73 ± 0,03 0,72 ± 0,03 25 

LSTM 0,75 ± 0,03 0,74 ± 0,03 0,75 ± 0,03 0,75 ± 0,03 100 

Transformer 0,80 ± 0,02 0,79 ± 0,02 0,80 ± 0,02 0,80 ± 0,02 150 

CeNNs (5 lớp) 0,82 ± 0,02 0,82 ± 0,02 0,82 ± 0,02 0,82 ± 0,02 50 

Kết  quả: 401 mẫu tích cực được phân loại 

đúng, 71 mẫu tích cực bị nhầm thành tiêu cực, 
1.421 mẫu tiêu cực được phân loại đúng, 158 

mẫu tiêu cực bị nhầm thành tiêu cực. 

3.2.  Thảo luận 

Mô hình CeNNs năm lớp đạt độ chính xác 
phân loại 82% ± 0,02 (khoảng tin cậy 95%: 

[81,6%, 82,4%]; p=0,0001 so với Transformer), 

vượt trội hơn GMM (68%), SVM (72%), LSTM 

(75%) và Transformer (80%) (Anagnostopoulos 
và cs., 2015; Issa và cs., 2020; Mustaqeem & 

Kwon, 2020). Độ trễ 50 ms, thấp hơn nhiều so 
với Transformer (150 ms) và LSTM (100 ms), 

chứng minh phù hợp cho ứng dụng thời gian thực 
(Eyben và cs., 2010). Ma trận nhầm lẫn (Hình 5) 

cho thấy 15% mẫu tích cực (71/472) bị nhầm 
thành tiêu cực; 10% mẫu tiêu cực (158/1.579) bị 
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nhầm thành tích cực. Lỗi ở nhóm tích cực (vui, 

ngạc nhiên) có thể gây ra do đặc trưng âm thanh 
tương đồng, như cường độ cao hoặc tần số giống 

giữa “vui” và “giận”/“sợ” trong Mel- 
Spectrogram (Han và cs., 2014). Tỉ lệ mẫu tích 

cực thấp (2.359 mẫu, 23%) gây mất cân bằng, dù 

đã dùng SMOTE (Chawla và cs., 2002).  

Hình 5. Ma trận nhầm lẫn của mô hình 

CeNNs cải tiến với RPLA (5 lớp)  

Mẫu tổng hợp từ SMOTE không đại diện đầy 

đủ biến thiên cảm xúc vui hoặc ngạc nhiên do 

hạn chế trong không gian đặc trưng (Chawla và 

cs., 2002). Lỗi ở nhóm tiêu cực (buồn, giận, sợ, 

chán ghét, trung lập) chủ yếu do “trung lập” bị 

nhầm với “buồn” hoặc “sợ” vì tần số thấp và ít 

biến thiên ngữ điệu (Latif và cs., 2023). Đặc 

trưng MFCC và Mel-Spectrogram (128 bộ lọc, 

đạo hàm bậc 1 và 2) không đủ phân biệt cảm xúc 

phi tuyến tính phức tạp. Nhiễu thực tế (>0,01 dB) 

cũng làm giảm độ rõ đặc trưng, đặc biệt với 

giọng nói năng lượng cao (Chakraborty và cs., 

2019). Để cải thiện, cần bổ sung đặc trưng 

prosody (cao độ, năng lượng, thời gian) để tăng 

phân biệt cảm xúc (Ververidis & Kotropoulos, 

2006). Kĩ thuật tăng cường dữ liệu như Mixup 

hoặc SpecAugment có thể mô phỏng nhiễu thực 

tế tốt hơn cao (Chakraborty và cs., 2019). Tăng 

số lớp hoặc tích hợp Transformer có thể cải thiện 

học đặc trưng phi tuyến (Rayhan Ahmed và cs., 

2023). Thử nghiệm trên dữ liệu đa ngôn ngữ cần 

thiết để kiểm tra khả  năng khái quát hóa 

(Sharma, 2022). 

4.  KẾT LUẬN 

Mô hình CeNNs kết hợp RPLA đạt độ chính 

xác phân loại 82%±0,02 (p=0,0001, khoảng tin 

cậy 95%: [81,6%, 82,4%]), vượt trội hơn GMM 

(68%), SVM (72%), LSTM (75%) và 

Transformer (80%). Với độ trễ 50 ms, mô hình 

phù hợp cho ứng dụng thời gian thực như trợ lí 

ảo, chăm sóc khách hàng và hỗ trợ sức khỏe tâm 

thần. Tuy nhiên, mô hình còn hạn chế ở phân 

loại nhị phân, nhạy với nhiễu thực tế và chưa 

đánh giá trên dữ liệu đa ngôn ngữ. 

Hướng tiếp tục nghiên cứu: phát triển phân 

loại đa cảm xúc bằng tích hợp Transformer 

hoặc CNN-LSTM (Rayhan Ahmed và cs., 

2023). Áp dụng tăng cường dữ liệu để giảm 

nhạy với nhiễu (Chakraborty và cs., 2019). Thử 

nghiệm trên dữ liệu đa ngôn ngữ để nâng cao 

khái quát hóa (Sharma, 2022). 
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