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ABSTRACT 

In this paper, we study a nonlinear viscoelastic heat equation with logarithmic sources. 

By introducing a family of potential wells, we prove the global existence and exponential 

decay for solutions with initial data in the potential wells. 
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1. INTRODUCTION 

In this paper, we study the following heat equation with viscoelastic term and logarithmic 

nonlinearity 

0

0

( ) ( ) ln | | , in (0, ),

0 on (0, ),

( ,0) ( ), in ,

t

tu u g t s u s ds ku u u T

u T

u x u x

 −  + −  = − 



= 
 = 




  (1.1) 

where 0 T    and ( 1)n n   is a bounded domain with smooth boundary ,  

and k is a postive real number. The kernel g satisfies some conditions will be specified later. 

The first equation in (1.1) without viscoelastic term (that is, the relaxation function g  

vanishes) has the form  

( ),tu u f u− =         (1.2) 

where ( ) ln | | .f u ku u u= −  Related to these type equations with logarithmic nonlinearity 

source ( ) ln | |,f u u u=  we refer the readers to [1] and references therein. In [1], by using the 

logarithmic Sobolev inequality and a family of potential wells, Chen at al obtained the global 

existence, decay estimate and blow-up at +  of solutions under some suitable conditions. 

In the case with presence of the memory term 
0

( ) ( ) ,
t

g t s u s ds−   the equation in (1.1) 

has the form 

0
( ) ( ) ( ),

t

tu u g t s u s ds f u− + −  =      (1.3) 
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where ( ) ln | | .f u ku u u= −  Concerning the results of global existence and blow-up in 

finite time or decay property for the solutions of problems related  to equation (1.3) with the 

source term is the power functions, i.e, 2( ) | | ,pf u u u−=  or power-like functions satisfying: 

(1) 1f C  and ( ) ( )0 0 0.f f = =  

(2) (a) f  is monotone and is convex for 0,u   and concave for 0;u   or (b) f  is 

convex. 

(3) 
0

( 1) ( ) ( ),
u

p f z dz uf u+   and 
0

| ( ) | ( ) ,
u

uf u f z dz   where 

*

, if 2,

2 1 2 : 2
, if 3,

2

n

p n
n

n



 


 +   = 


−

 

have attracted a great deal of attention in last several decades. For instance in [4], 

Messaoudi studied the equation (1.3) in the case 2( ) | | ,pf u b u u−=  associated with 

homogeneous Dirichlet boundary condition. If the relaxation function g  is assumed to be 

nonnegative; ( ) 0g t   and 

0

2
( ) ,

3 / 2

p
g s ds

p

 −


−  

the author proved the blow-up of weak solution with positive initial energy by the 

convexity method.  

In [8], Truong and Y considered the equation (1.3) with ( )f u  in the general polynomial 

satisfied above conditions and they obtained the decay property and blow up in finite time for 

solutions. We refer to [2, 3, 6] for further results on this type of equations. However, when 

( )f u  is a logarithmic nonlinear function, i.e. ( ) ln | | ,f u ku u u= −  as far as we know, there is 

no results on this aspect of the global solution and decay property for the problem (1.1). The 

main difficulty in this case is that the method of potential wells in [4, 7] will be not suitable 

for the problem (1.1), since the nonlinear function ( ) ln | |f u ku u u= −  doesn’t satisfy the 

conditions (1) - (3).  

Motivated by all these works, we consider the problem (1.1), by using the potential wells 

and the Sobolev logarithmic Sobolev inequality (see [1] Proposition 1.1), we obtain the global 

existence and by contructing a suitable Lyapunov functional to obtain the exponential decay 

property of solutions under starting in the stable set.  

This paper is organized as follows. In the next section, we present some assumptions, 

notations and preparing results. In Section 3, we establish potential wells which is related to 

the logarithmic source of the problem (1.1). In Section 4, we obtain the global existence of the 

solutions and the last section, we prove the exponential decay of the solution. 

2. PRELIMINARIES 

Throughout this paper, we denote ( )pL  -norm by ,p‖ ‖  especially 2 ( )
,

L 
 = ‖ ‖ ‖ ‖  and 

let ,   denote 2L -inner product.  
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First, for any 1
0 0 ( )u H   and any 0,a   we have following logarithmic Sobolev 

inequality (see [1] Proposition 1.1): 

2

2

2
2 2 2

( )

( )

( )
2 ( ) ln (1 ln ) ( ) .

L

L

u x a
u x dx n a u u x dx

u 

 

 
  + +  
 
 

    (2.1) 

To state our main results, we need the following definitions. 

Definition 2.1. ( , )u u x t=  is called a weak solution of problem (1.1) on [0, ),T  if 

1
0(0, ; ( ))u L T H   with 

2 2(0, ; ( ))tu L T L    and sastifies the problem (1.1) in distribution 

sense, i.e. 

( )

0

1
0

, , ( ) ( ), ( ) , ln , ,

,  (0, ),

t

tu v u v g t s u s u t ds u v ku u v

v H t T

+   − −   + =

   

  (2.2) 

where 
1

0 0( ,0) ( ) ( ).u x u x H=    

Definition 2.2. Let ( , )u x t  be a weak solution of problem (1.1). We define the maximal 

existence time T  of ( , )u x t  as follows: 

 (i) If ( , )u x t  exists for all 0 ,t    then .T = +  

 (ii) If there exists a 0 (0, )t    such that ( , )u x t  exists for 00 ,t t   but doesn't exists at 

0 ,t t=  then 0.T t=  

 The following conditions are the basis hypotheses to establish the main results of this 

paper. 

(G) :g + +→  is a 1C  function satisfying: 

 (i) ( ) 0, ( ) 0,g t g t 
0

1 ( ) 0;g s ds


− =   

 (ii) There exists a positive differentiable function ( )t  such that 

0

( ) ( ) ( ), ( ) 0, ( ) , 0.g t t g t t t dt t  



  −  = +    

(K) The constant k  satisfies 00 ,k k   where 0k  is the positive real number satisfying: 

0

2
1

0

2
.

nk
e

k

 − −

=  

Remark 2.3. The function 

2
12

( ) nsf s e
s

 − −

= −  is a continuous and decreasing function on 

( )0, ,  with 

1

0
lim ( ) and lim ( ) .

ss
f s f s e

+

−

→+→
= + = −  

Then, there exists a unique 0 0k   such that 0( ) 0.f k =  Moreover, 
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( )
2

1

0

2
, 0, .nse s k

s

− −

    

Next, we define functionals on 
1
0 ( )H   as follows: 

( )

2

0

22

1
( ) 1 ( ) ( )

2

1 1 2
( ) ln ( ) ,

2 2 4

t

k

E t g s ds u t

k
g u t u u dx u t



 = −  
 

+
+  − +





 (2.3) 

 ( )2 2 221
( ( )) ( ) ln ( ) ( ) , 

2
=

4

k k
J u t u t u u dx u t u t


 − + +  (2.4) 

  
2 22( ( )) ( ) ln ( ) , 

k
I u t u t u u dx u t


+=  −       (2.5) 

where ( )
2

0
( ) ( ) ( ) ( ) .

t

g v t g t s v t v s ds= − −  

 Then it is obvious that 

  
21

( ( )) ( ( )) ( )
2 4

k
J u t I u t u t= +      (2.6) 

and 

  ( )
21 1

( ) ( ( )) ( ) ( ) .
2 2 4

k
E t I u t g u t u t +  +    (2.7) 

Lemma 2.4. ( )E t  is a nonincreasing function for 0t   and 

( )
2 21 1

( ) ( ) ( ) ( ) 0.
2 2

 tE t u g t u t g u t = − −  +     (2.8) 

Proof. Multiply (1.1)1 by tu  and integrating on ,  we obtain (2.8) after some simple 

calculations.  

3. POTENTIAL WELLS  

In this section, we establish the potentail wells which is related to the logarithmic 

nonlinear term ln .u u  

First, we define 

 

 

1
0

1
0

0

( ) : ( ) 0, 0 ,

inf sup ( ) : ( ), 0 .

u H I u u

d J u u H u





=   =  

=    
  (3.1) 

Then we have the following lemma for well-defined of the potential well .d  

Lemma 3.1. 0 inf ( ).
u

d J u


 =  

Proof. Let 
1
0 , 0,u H u    we have 

( )
2 2 2

2 2 22 2 2
( ) ln ln ,  for all 0.

2 2 2 4

k k k
J u u u u dx u u

  
   



+
=  − − +   
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Then 

( )

( )

2 2 22

2

( ) ln ln ,

( ) 0 exp .

kd
J u u u u dx u k u

d

I ud
J u

d k u

  


  






 =  − + −
  

 
 =  = =
 
 


 

It is easy to show that 

0

sup ( ) ( ).J u J u


 



=  

On the other hand, it follows from (2.5) and (3.1), that u   and consequently 

0

sup ( ) ( ) inf ( ).
u

J u J u J u


 



=   

This implies 

 1
0

0

inf sup ( ) : , 0 inf ( ).
u

J u u H u J u





     

In order to prove the inverse inequality, we note that, for each ,u  the function ( )J u   

attains its maximum at 0 1. =  So we obtain 

   1
0

0 0

inf sup ( ) : , 0 inf sup ( ) : inf{ ( ) : }J u u H u J u u J u u
 

 
 

     =   

and we get inf ( ).
u

d J u


=  The proof is complete.  

We now can define the modified stable set as in [7]. 

( ) 1
0 : ( ) 0 {0}.u H I u=      

Lemma 3.2. If 0 ,u     then ( ) 0,I u   where 
41/2 2

1

2
n

n

e
k


 

 
=  

 
 and 1  is the first 

eigenvalue of the following equation 

, in ,

0, on .

u u

u

− = 


= 
     (3.2) 

Proof. Using the Sobolev inequality (2.1), for any 0,a   we have 

2 22

2 22

2
2 2 2 2

( ) ln

ln ln

(1 ln )
ln .

2 2

k
I u u u u dx u

u
u k u u dx u

u

a kn a
k u u u k u u







=  − +

 
 − + +  

 

  +
 −  + + − 
 





   (3.3) 

Since 
2

1 ,
2

a
k


 −  we can deduce from (3.3) that 
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( )
2

2 2 2 2(1 ln )
( ) ln .

2 2

a kn a
I u k u u u k u u



  +
 −  + + − 
 

  (3.4) 

Taking 
2

a
k


=  in (3.4), we gain 

2

2
1 ln

( ) ln .
2

n
k

I u k u u

  
+  

  
 − 

 
 
 

    (3.5) 

If 0 ,u     then 
4

2
2

,

n
n

u e
k

 
  
 

 so we have ( ) 0I u   from (3.5). The proof is complete.  

Lemma 3.3. For any 1
0 , 0,u H u   and let ( ) ( ).j J u =  Then we have 

0, 0 ,

( ) ( ) 0, = ,

0, + .

I u j

 

    

 







  


= =

   

 

Proof. We have 

( )
( )22 2 2

2 2 22 2
( ) ( ) ln ln .

2 2 2 4

k kk
j J u u u u dx u u

  
  



+
= =  − − +  

Since 0,u   then (0) 0, ( ) ,j j= + =−  and 

2 2 22 2 2 2 2

( ) ( ) ( )

( ) ln ln . 

d
I u J u j

d

u t u u dx u k u

    


    


= =

=  − + −
 

So, we have 

0, 0 ,

( ) ( ) 0, = ,

0, + .

I u j

 

    

 







  


= =

   

  

Lemma 3.4. For the constant d  in (3.1), we have 

22
.

4

n

nk
d M e

k

 
 =  

 
 

Proof. We have 

2
*

0

1
sup ( ) ( ) ( ) .

2 4

k
J u J u I u u



    



= = +    (3.6) 

From (3.5) and Lemma 3.3, we obtain 



Nguyen Van Y, Duong Thi Mong Thuong, Vu Thi Phuong 

 

MECHATRONICS - APPLIED SCIENCE - IT  304  

2
* *

2
1 ln

0 ( ) ln ,
2

n
k

I u k u u



  

  
+  

  
=  − 

 
 
 

 

then 

4
2

2
.

n
n

u e
k


  

  
 

     (3.7) 

From (3.1), (3.6) and (3.7), it implies that 

22
.

4

n

nk
d M e

k

 
 =  

 
 

4. GLOBAL EXISTENCE 

Proposition 4.1. Let u  be a weak solution of problem (1.1) and 1
0 0 ( )Hu   . Suppose that 

(0)E d  and 0u   then ( ) ,u t   for 0 ,t T   where t  is the maximum existence time 

of ( ).u t  

Proof. Let u  be a weak solution problem of (1.1) under condition 0(0) ,E d u   and T  

be the maximum existence time of ( ).u t  Then by Lemma 2.4 and (2.4), we have 

( ( )) ( ) (0)J u t E t E d    

We shall prove ( ( )) 0I u t   for 0 .t T   Arguing by contradiction, suppose that there exists 

0 (0, )t T  such that 0( ( )) 0.I u t   By the continuity of ( ( ))I u t  in ,t  there is a * (0, )t T  to 

make *( ( )) 0.I u t =  

However from the definition of ,d  one has 

* *(0) ( ( )) ( ( )) ,d E E u t J u t d     

which is a contradition.  

We now state the existence of solution to (1.1) which can be obtained by Faedo–Galerkin 

methods. 

Theorem 4.2. If 1
0 0 0( ), (0) ,u H E M u     and (G, (i)), (K) hold. Then the problem (1.1) 

has a global weak solution 1
0(0, ; ( ))u L H +   with 2 2(0, ; ( )).tu L L +   

Proof. Let { }jw  be the Galerkin basis for −  in 1
0.H  We find the approximate solution of the 

problem (1.1) in the form 

1

( ) ( ) ,
m

m mj j

j

u t c t w
=

=      (4.1) 

where the coefficients functions , 1 ,mjc j m   satisfy the system of integro-differential 

equations 
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0

0

, , ( ) ( ),

,

, ln , , 1 ,

(0)

t

mt j m j m j

m j m m j

m m

u w u w g t s u s w ds

u w ku u w j m

u u








  +   − −  

+ =  



=


 (4.2) 

where  

1
0 0 0

1

 strongly in .
m

m mj j

j

u w u H
=

= →     (4.3) 

According to Schauder’s fixed point theorem, we find that (4.1) lead to a system of  

integro-differential equations in the variable t  that has a local solution ( )mu t  on [0, ].mT  

First, by 0u   and 

( )
2

0 0 0

1
1 ( ) ), (

2
m m mu J u E u−  + =  

thanking (4.3) we have 0mu   for sufficiently large m  and 0( ) .mE u M  

 Multiplying the thj  equation of (4.2) by ( )mjc t  and summing up with respect to ,j  

for sufficiently large ,m  we obtain 

( )

2 2

0 0

2

0
0 0

( ) ( ( )) ( ) ( ( ))

1 1
( ) ( ) ( ) ( )

2 2

, 0 .

t t

mt m mt m

t t

m m m

u s ds J u t u s ds E u t

E u g s u s ds g u s ds

M d t

+  +

= −  + 

    +

 

   (4.4) 

From (4.4) and Proposition 4.1, we have ( )mu t   for sufficiently large m  and 0 .t    

Combining (2.6) with (4.4), we derive 

( )
2 4

.mu t M
k

  

Now, using logarithmic Sobolev inequality (2.1), we obtain 

( )
2

2 21 1 1 4
( ) ( ) ( ) 2 (1 ln ) ln ( ) .

2 2 2 4

ka
E t u t g u t k kn a k M u t

k

    
 −  +  + + + + −    

   
(4.6) 

Choosing 

1 2 1 2
1 2 2

max ,n nk n nke e a
k k

 − − − − −  
  

  

    (4.7) 

will make  

2 4
0, 2 (1 ln ) 0 and 2 (1 ln ) ln 0.

2

ka
k kn a k kn a k M

k

 
−  + + +  + + + −  

 
 

Hence, we can deduce from (4.4) and (4.6) that 

( )
2

2 2

4 4
( ) .

2 2
m m Mu E u t M C

ka ka

 

 
   =

− −
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We also get from (4.4) that 

2

0

( ) .

t

mtu s ds M        (4.9) 

On the other hand, by direct calculation, we have 

( ) ( ) ( )
2 2 2

{ :| ( )| 1} { :| ( )| 1}

2
22 2

ln ln ln

2
,

2

m m

m m m m m m

x u x x u x

m M

u u dx u u dx u u dx

n
e S u C




   

−

= +

− 
  +   

 

  
 (4.10) 

where S  is the best constant of the Sobolev embedding 1
0 ( )H  ↪ 2 /( 2) ( ).n nL −   

By (4.8) – (4.10), we deduce that, there exists a subsequence of  ,mu  still denote by 

 mu  such that 

1
0

2 2

2

in (0, ; ) weakly*,

in (0, ; ) weakly,

ln ln in (0, ; ) weakly*.

m

mt t

m m

u u L H

u u L L

u u u u L L





 → 


→ 


→ 

   (4.11) 

Hence in (4.2)1, for j  fixed and ,m→  we have 

0
, , ( ) ( ), , ln , , 1,2,...

t

t j j j j ju w u w g t s u s w ds u w ku u w j  +   − −   +   =  = (4.12) 

On the other hand, from (4.3), we obtain 0( ,0) ( )u x u x=  in 1
0 ( ).H   Then u  is a global 

weak solution of the problem (1.1).  

5. EXPONENTIAL DECAY 

We begin this section by the following lemma which is helpful to the proof of Theorem 5.4. 

Lemma 5.1. Suppose that assumptions in Theorem 4.2 hold and (0) .E d  Then there exists 

a positive constant ,C  such that 

2 2
)  ( ( )) ln ( and ( ) ( ) .

2 (0)

k d
I u t u t E t C u t

E

 
   

 
 

Proof. Since 0u   and (0) .E d  By Theorem 4.2, we have that ( )u t   for 0t   and 

( )( ) 0.I u t   

 

 Put ( )
2

lnk u  =  for (0, ).   Then for any 0,   we have 

( ) ( )
( )

2 2 22 2

2

ln | | ln .

( ) ( ) .

kI u u u u dx u k u

I u

  

  


=  − + −

= −


   (5.13) 

Since ( ) 0,I u   we get 
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2 22(1) 0 ( ) ln | | .kI u u u u dx u


=  =  − +     (5.14) 

Moreover, it is easy to see that   is continuous, increasing and lim ( ) ,


 
→

= +  which 

combining with (5.14) to imply that there exist a * 1   such that *( ) ( )I u  =  and 

( )* 0.I u =  Taking into account this fact and the following estimate 

( ) ( )
2 2 2* * * *0 ( ( )) ( ln ( ).)I u t I u k u t   = = −  

we imply that 

( )
2*( ) ln (. ) .I u t k u t=       (5.15) 

To end the proof, it remains to estimate *.  By variational characterization of ,d  we have 

( ) ( ) ( )

( )

2 2* * *

2 2*

1
( ) ( ) ( )

2 4

( ) .
4

k
d J u t I u t u t

k
u t

  



 = +



    (5.16) 

On the other hand, by the non-increasing property of functional energy ( ),E t  we have that 

( ) ( ) ( )
2

2

1
0 ( ) ( ) ( ) ( )

2 4

( ) .
4

k
E E t J u t I u t u t

k
u t

  = +



    (5.17) 

Combining (5.15) – (5.17), one has 

1/2

* 1.
(0)

d

E


 
  
 

    (5.18) 

From (5.15) and (5.18), we deduce 

2
( ( )) ln ( ) .

2 (0)

k d
I u t u t

E

 
  

 
 

The rest estimate is implied by ( ) (0)E t E  and (5.16), i.e, 

( )
2

2 2 2*2( ) ( ) ( ) ,
4

kS
E t d u t C u t      

where 2S  is the optimal constant of the embedding 1
0 ( )H  ↪ 2 ( ).L   The proof follows from 

(5.15) and (5.18).  

For proving the decay of the solutions, we define the following auxiliary functional 

2
( ) ( ) ( ) ( ) ,

2
L t E t t u t


= +     (5.19) 

for   is a small positive number specified later. 

The next lemma tells us that ( )E t  and ( )L t  are equivalent functions. 

Lemma 5.2. For   small enough, there exist two positive constants 1 2,   such that 

1 2( ) ( ) ( ).E t L t E t    
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Proof. From the fact that ( )u t   and 

( )
2 21 1

( ) ( ( )) 1 ( ) ( ( )) ( )
2 2 4

k
E t E u t u t I u t u t=  −  + +    (5.20) 

we have 

2 22 4
( ) ( ) and ( ) ( ). 

1
u t E t u t E t

k
  

−
    (5.21) 

Since 0 ( ) (0),t    the above estimates imply that 

2 2
( ) ( ) ( ) ( ) (0) ( ),

2
L t E t t u t E t

k

 
 −    

that is 

2 2
1 (0) ( ) ( ) 1 (0) ( ).E t L t E t

k k

 
 

   
−   +   

   
 

By choosing   small such that 
2

1 (0) 0,
k


−   we claim the lemma.  

 

 The next lemma allows us to estimate ( ).L t  

Lemma 5.3. Let (G), (K) hold. Then for number a  such that 
2

0 ,a
k


   0,   and 

0 1,    we have 

( )
2

2
2

2

1 (1 )
( ) ( ) ( ) 1 ( ) ( )

2 2

( ) 1 ( )
2 2

4 2
( ) 1 ln (1 ln ) ( ) .

2 2 2

tL t t E t u t g u t

ka
t u t

k
t M n a u t

k k


   



 





− 
  −  − − − −   

 

   
− − − −    

    

      
− − + − − + + +     

     

 (5.22) 

Proof. Simple calculations and using Lemma 2.4, we have 

( )

( )( )

2

2 2

2 22

0

0

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1
( ) ( ) ( )

2 2

( ) 1 ( ) ( ) ln ( )

( ) ( ) ( ) ( ) .

t

t

t k

t

L t E t t u t t u t u t dx

u g t u t g u t

t g s ds u t u u dx u t

t u t g t s u s u t dsdx

 











  = + +

 − −  + 

  
+ − −  + −   

  

+   −  −



 

 

 (5.23) 

By using the Young's inequality and note that 
0 0

1 ( ) 1 ( ) ,
t

g s ds g s ds


−  − =   we have 
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( )( )

( )( )

( )

0

0

2 2

0 0

2

( ) ( ) ( )

( ) . ( ) ( )

1
( ) ( ) ( ) ( ) ( )

4

1
( ) ( ),

4

t

t

t t

u t g t s u s u t dsdx

u t g t s u s u t ds

u t g s ds g t s u t u s ds

u t g u t








  −  −

  −  −

  + −  −

−
  + 

 



 
  (5.24) 

for 0.   

By using assumption (G, (ii)), (5.24), it implies from (5.23) as follows 

( )
2

2

1 (1 )
( ) ( ) ( )

2 4

ˆ ˆ( ) ( ) 1 ( ) ( ) ( ) ( ) ,
2 2

tL t u t g u t

t I t t I t t u t






    

− 
  − − −  

 

  
− − − +  

 

  (5.25) 

where 

2 22

0

ˆ( ) 1 ( ) ( ) ln ( ) ( ) ( ( )),
t k

I t g s ds u t u u dx u t I t I u t


 = −  − +  = 
    

and 0 1.    

 By the fact that 

/2
2 4 2

( )

n

nu t M e
k k

 
 =  

 
 

and using (3.3), we have that 

2
2 2 2 2

2
2 2 2 2

(1 ln )
( ) ln

2 2

(1 ln ) 4
ln .

2 2 2

ka kn a
I u u u u k u u

ka kn a k
u u u u M

k





  +
 −  + + − 
 

  +  
 −  + + −   

  

 (5.26) 

Furthermore, we imply from (2.3) that 

( )
2ˆ( ) 2 ( ) ( ) ( ) .

2

k
I t E t g u t u t= −  −      (5.27) 

By (5.26) and (5.27), it implies from (5.25) that 

( )
2

2
2

2

1 (1 )
( ) ( ) ( ) 1 ( ) ( )

2 2

( ) 1 ( )
2 2

4 2
( ) 1 ln (1 ln ) ( ) .

2 2 2

tL t t E t u t g u t

ka
t u t

k
t M n a u t

k k


   



 





− 
  −  − − − −   

 

   
− − − −    

    

      
− − + − − + + +     

     

 (5.28) 

The proof is complete.  
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Theorem 5.4. Under the assumptions of Theorem 4.2 and g  satisfies (G). Then solution ( )u t  

to (1.1) decays exponentially. 

Proof. Consider the function 

0
( ) ( ) , 0.

t

t s ds t =   

It is clear that   is a non-decreasing function of class 1C  on +  and  

( ) as .t t →+ →+  

 First, we choose 

1 2 2
1 2 2

max ,n nk nke e a
k k

 
−

− − −  
  

  

 

to obtain 

2

0
2

ka


−   

and 

/2
4 2 2 2

ln (1 ln ) ln (1 ln ) 0.

n

nM n a e n a
k k k k

    
− + + + = − + + +     

     

 

Next, we choose 0   such that 

2

0
2

ka




 
− −  

 
 

and then choose   small enough such that 

1
1 0

2




−
−   

after that we choose 0 1    such that 

2(1 )
1 0, 1 0,

2 2 2

ka
 

 

 −  
− −   − − −   

  
  

and 

  
4 2

1 ln (1 ln ) 0.
2 2

M n a
k k

     
− + − − + + +     

    
 

From Lemma 5.1, 5.3 and the definition of ( ),E t  we can find a positive constant   such that 

( ) ( ) ( ), 0L t t E t t  −    

and thanking Lemma 2.4, we have 

2

( ) ( ) ( ), 0L t t L t t




  −    

which implies 

2

( )

( ) (0) , 0.
t

L t L e t





−

    

This completes the proof.  
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6. CONCLUSION 

The paper is dedicated to study a nonlinear viscoelastic heat equation with logarithmic 

sources. By introducing a family of potential wells, we prove the global existence and 

exponential decay for solutions with initial data in the potential wells.  

Here the blow up of local solutions of the problem is open, although we prove the non 

blow up at finite time of solution.  
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Trong bài báo này, nhóm tác giả nghiên cứu một phương trình nhiệt đàn hồi phi tuyến với 

nguồn logarit. Bằng cách giới thiệu một họ thế vị tốt (potential wells), chúng tôi chứng minh sự 

tồn tại nghiệm toàn cục và tắt dần mũ của nghiệm với dữ liệu ban đầu trong tập ổn định. 
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