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ABSTRACT 

The main goal of this paper is to introduce a link between the thermodynamics and control 

systems theory. More precisely, the paper focuses on Lyapunov based control of process 

systems, specially the non isothermal Continuous Stirred Tank Reactors in a thermodynamic 

framework, using either the jacket temperature or the inlet molar flow rate as the only control 

input. As soon as the constraint on the total mass is considered and the reaction kinetics is a 

Lipschitz continuous function with respect to the temperature, it shows that the stabilization of 

thermal solicitations reciprocally entails the one of matter using La Salle’s invariance principle. 

As a consequence, these control problems can be solved if the closed loop Lyapunov functions 

are chosen to be proportional to the thermal part or material part of the so called thermodynamic 

availability function. Some numerical simulations for a first order chemical reaction with 

multiple steady states are given to validate our theoretical developments. The performance of the 

obtained nonlinear controllers with regard to the conversion rate is also discussed. 

Keywords. Thermodynamics, process control, CSTR, Lyapunov function. 

1. INTRODUCTION 

The paper deals with Lypaunov based stabilization of process systems using the variables 

directly issued from thermodynamic framework. The most representative example of the process 

systems chosen in this paper is the non isothermal Continuous Stirred Tank Reactors (CSTRs). 

In fact, the CSTRs with chemical reaction belong to general thermodynamic systems and exhibit 

inherently nonlinear dynamical evolutions, for instance, they can be operated under multiplicity 

and have a highly nonlinear coupling between energy and material balances because of the 

chemical reaction kinetics. For all these reasons, they are quite difficult to control and monitor. 

As a consequence, such CSTRs have been considerably studied in literature with respect to 

stabilization purpose [12, 16, 23, 24]. Numerous methods have been developed to control such 

nonlinear systems: input/output feedback linearization [20] for control under constraints, 
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nonlinear PI control [18], classical Lyapunov based control [23, 24], (pseudo) Hamiltonian 

framework [14, 16, 17, 26, 27], power-shaping control [15] and inventory control [5]. 

In this paper we only focus on the control design and we assume that molar 

numbers/concentrations and temperature are measured on-line. The control synthesis is based on 

thermodynamic concepts defined in [10, 9, 1, 2], specially the thermodynamic availability 

function vA . More precisely, we propose a Lyapunov based approach for the stabilization of 

CSTR about a desired steady state, using either the jacket temperature or the inlet molar flow 

rate as the only control input. In these two cases, we shall show the convergence property is 

quite equivalent but it does not lead to the same performance with regard to the conversion rate.  

This paper is organized as follows: in section 2 a CSTR case study with one reaction 

BA BA υυ → is represented from thermodynamics based view. The thermodynamic availability 

and its decomposition into the thermal and material parts are also reminded. In the section 3, we 

propose some feedback laws to stabilize the CSTR under consideration around an open loop 

unstable steady state. More precisely, our control problem is solved by two ways: 

• We first use the thermal part of the availability as a Lyapunov function candidate. The 

jacket temperature is chosen as the only control input (the inlet molar flow rate is fixed). 

• We second consider the material part of the avilability as a Lyapunov function 

candidate. The inlet molar flow rate is then used as the only control input (the jacket temperature 

is fixed). 

The perfomance of the proposed nonlinear controllers is then discussed with regard to the 

conversion rate. In this section 3 some numerical simulations are also given to illustrate our 

theoretical developments. Section 4 ends the paper with concluding remarks and perspectives. 

2. A CSTR CASE STUDY  BA BA υυ →  

2.1. Classical model of CSTR 

We consider a jacketed reactor with one reaction schema consisting of two chemical 

species A and B:  

BA BA υυ →  (1) 

we assume that the reactor is modelled with the so called CSTR model which assumes uniform 

properties such as temperature, pressure or concentrations inside the reactor see Fig. 1. As a 

consequence, the reaction mixture is homogeneous. 

 

 
 

Figurre 1. The CSTR model 
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We consider the following hypotheses: 

(H1) The fluid mixture is ideal, incompressible and under isobaric conditions. 

(H2) In the inlet, the reactor is fed by the only species A at a fixed temperature IT .  

(H3) BA υυ ,  are the stoichiometric coefficients and supposed to be 1−=Aυ   and 1=Bυ . 

The reaction kinetics is modeled by Arrhenius law
1  







 −
=

RT

E
kTk aexp)( 0  where 0k  is kinetic 

constant; aE  and R  are the activation energy and the gas constant, respectively. As a 

consequence, the reaction rate is then given by:  

ANTkrV )(=  (2) 

(H4) Heat capacities of species pAc  and pBc  are supposed to be constant. 

(H5) The heat flow coming from the jacket
J

Q
•

 

)( TTQ JJ
−=

•

λ  
(3) 

 

(where λ  is the heat exchange coefficient) or the inlet molar flow rate AIF  is used as the only 

control input. 

2.2. Thermodynamics based view 

2.2.1. Some concepts and balance equations 

In thermodynamics based view, the system variables are split into extensive variables (such 

as the intrenal energy U , the entropy S , the volume V , the molar number iN ) and intensive 

variables (such as the temperatureT , the pressure P , the chemical potential iµ ). The variation 

of the internal energy U 2
 can be derived from the variation of the extensive variables using the 

Gibbs equation: 

∑
=

+=
B

Ai

ii TdSdNdH µ  
 

(4) 

Since the enthalpy H is an extensive variables, it is a homogeneous funtion of the degree 1 

of  ),,( SNN BA  ([10]). From Euler’s theorem we get: 

∑
=

+=
B

Ai

iiBA TSNSNNH µ),,(  
 

(5) 

                                                 
1
 We can check that it is Lipschitz continuous function with respect to the temperature, i.e. 

+ℜ∈−≤− *

2121 ,)()( δδ TTTkTk  

2
 With isobaric conditions, the pressure P is constant, the enthalpy H can be considered instead of the 

internal energy U. 
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As a consequence of eq. (4), we obtain: 

∑
=

+
−

=
B

Ai

i

i dH
T

dN
T

dS
1µ

 
(6) 

Since the entropy S  is also an extensive variable, we get: 

∑
=

+
−

=
B

Ai

i

i

BA H
T

N
T

HNNS
1

),,(
µ

 
(7) 

The Eq. (6) can be rewritten in a compact form as follows: 

ttt Zw
Z

ZS
wdZwdS )(

)(
=

∂

∂
=⇒=  

(8) 

where
3
:  

( )HNNZ
TTT

Zw BA
BA ,,,

1
,,)( =







 −−
=

µµ
 

 

As a consequence, )(Zw  (8) is an homogeneous function of degree 0 of Z . 

The system with relation (4) and (5) is called in energy representation 

),,( SNNHH BA= and with relation (6) and (7) in entropy representation ),,( HNNSS BA=  

[10, 26, 27]. From a mathematical point of view, these representations are equivalent. 

 In practice, the models are presented in the entropy representation since the energy balance 

is used (because it is conserved extensive variable) and not entropy one. The dynamics of the 

system is then given by energy and material balances [23, 24]: 















+−+=

+−=

+−=

•

)( BBAAAIAIJ

BA

B

AAAI
A

hFhFhFQ
dt

dH

rVF
dt

dN

rVFF
dt

dN

υ

υ

 

 

 

 

(9) 

where 
AIF , ( )BA FF , , ( )BA υυ , , IAh  and ( )BA hh ,  are the inlet molar flow rate, the outlet molar 

flow rate vector, the stoichiometric vector, the inlet molar enthalpy and the partial molar 

enthalpy vector, respectively. 
J

Q
•

 represents the heat flux coming from the jacket. 

Thanks to the local equilibrium hypothesis ([8]), the energy balance 
dt

dH
 in (9) can be 

written in terms of temperature (see [24]): 

( )
JpAIAIrp QcTTFrVH

dt

dT
C

•

+−+∆−= )(  
 

(10) 

                                                 
3
 The exponent t holds for the matrix transpose. 



 
 
Stabilization of non isothermal chemical reactors using two thermodynamic Lyapunov functions 

 49

where ( )BBAAr hhH υυ +=∆  is the enthalpy of reaction and ( )
BpBApAp NcNcC +=  is the total 

heat capacity, respectively. 

Remark 1. The dynamics of state variables either ( )HNN BA ,,  (9) or ( )TNN BA ,,  ((9), (10)) 

completely represent the behavior of the system. 

Finally, let us note that the following stoichiometric relation for the reaction (1) is always 

verified: 

0=+ BM BAA υυ  (11) 

where AM  and BM  are the molar masses of the species A and B, respectively. 

2.2.2. Thermodynamic availability 

From the concavity of )(ZS  for homogeneous thermodynamic systems (see [10]), it can 

be shows [9, 1, 2] that the availability function vA : 

)()()( 222 ZSZZwSZA t

v −−+=  (12) 

is non negative, where 2Z  is some fixed reference point (for example the desired set point for 

control) and 2w  is intensive variables associated to extensive variables 2Z . 

The availability funtion (12) can be rewritten (see ([27])): 

( ) ZwwZA
t

v 2)( −−=  (13) 

Remark 2. Because the entropy )(ZS  is an homogeneous function of degree 1 with respect to 

Z  ([10]), it is not strictly concave in general case, as a consequence )(ZAv will not be strictly 

convex. The strict concavity of the entropy can be obtained if at least one global extensive 

property (such as volume, total mass, total molar number) is fixed [6]. In the remaining of the 

paper we suppose that the total mass tm  is constant. 

2.2.3. Decomposition of the availability 

The availability function )(ZAv  defined by (13) can be explicitly written:  

H
TT

N
TT

N
TT

ZA B

BB

A

AA

v 







−−








+

−
−








+

−
−=

22

2

2

2 11
)(

µµµµ
 

 

(14) 

The Property 1 represents a separation of the availibility )(ZAv  (14) into thermal and 

material parts denoted by 1vA  and 2vA , respectively. 

Property 1. In the case of an ideal mixture, the availability function (14) can be wtritten as the 

sum of two funtions 1vA  and 2vA : 
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






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
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




−−Γ−Γ−=

BBABABAABAv
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),(),(),(
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)()(),,(

2

2
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(

15) 

where  
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(16) 

and 

i. The function ),(2 BAv NNA  has the following properties: 

• 02 =vA  if ),(),( 22 BABA NNNN =  

• 02 >vA  if ),(),( 22 BABA NNNN ≠∀  

• 2vA  is an homogeneous function of degree one with respect to (NA, NB). Consequently,  













Λ−Λ−=

Λ−Λ−=

dt

dN
NN

dt

dN
NN

dt

dA

dNNNdNNNdA

B

BAB

A

BAA

v

BBABABAAv

),(),(

),(),(

2

2

 

 

 

 

(17) 

ii. The function ),,(1 HNNA BAv  has the following properties: 

• 01 =vA  if ),,(),,( 222 HNNHNN BABA =  

• 01 >vA  if ),,(),,( 222 HNNHNN BABA ≠∀  

• 1vA  is an homogeneous function of degree one with respect to ),,( HNN BA . 

Consequently,  























−−Γ−Γ−=









−−Γ−Γ−=

dt

dH

TTdt

dN
T

dt

dN
T

dt

dA

dH
TT

dNTdNTdA

B

B

A

A

v

BBAAv

2

1

2

1

11
)()(

11
)()(

 

 

 

 

(18) 

Proof 1. First of all, we recall the definition of the chemical potential for species k (k = A, B): 
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kkk Tsh −=µ  (19) 

where hk and sk are the partial molar enthalpy and the partial molar entropy, respectively. In the 

case of the ideal incompressible mixture (see [7]),  



















−+













=

∑
=

B

Ai

i

k

kref

ref

pkk

N

N
Rs

T

T
cs lnln  

 

 

(20) 

where pkc  and krefs  are the heat capacity and the reference entropy respectively. After some 

manipulations, we obtain from (19) and (20): 

),()(
2

2

BAkk

kk NNT
TT

Λ+Γ=







+

− µµ
 

 

(21) 

where )(TkΓ  and ),( BAk NNΛ are given in (16). The availability function )(ZAv  (14) can be 

rewritten: 

),(),,(),,( 21 BAvBAvBAv NNAHNNAHNNA +=  (22) 

where ),,(1 HNNA BAv  and ),(2 BAv NNA  are defined in (15). The complete proof can be 

found in [24, 25]. 

Remark 3. It can be shown that there exists a positive constant ρ  so that (see [25]): 

vA
T

T

T

T
1

22

ln10 ≤

















+−−≤ ρ  

 

(23) 

We can take for ρ , for example: 

p
NN

C
BA ,

min=ρ . 

Remark 4. Let us note that a positive continuous function )(xW  is a Lyapunov candidate for 

stabilization problem at a desired state x  of the dynamical evolution: 

uxgxf
dt

dx
)()( +=  

where 
nt

nxxxx ℜ∈= ),...,( 21  is the state vector, 
nxf ℜ∈)(  represents the smooth nonlinear 

function with respect to x , 
mnxg ×ℜ∈)(  is the input-state map and 

m
u ℜ∈  is the input; if and 

only if it satisfies the three following conditions [11]:  

(a). 0)( =xW  

(b). xxxW ≠∀> ,0)(  
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(c). xx
dt

xdW
≠∀< ,0

)(
 and xx

dt

xdW
=∀= ,0

)(
 

The same conditions can also be stated for the partial dynamical stability xxi ∈  only. 

Remark 5. vA1  and vA2  are also strictly convex functions with respect to ),,( HNNZ BA=  if 

one constraint on extensive variable has been fixing (see Remark 2). We recall that the total 

mass tm  is assumed to be constant. 

The availability )(ZAv  has been successfully used for Lyapunov based control or closed 

loop Hamilonian function of transport reaction systems [3, 4, 23, 24, 26, 27]. As we saw in 

Property 1, vA1  and vA2  have the same properties as )(ZAv  that will entail their use as close 

loop Lyapunov functions for control design. 

 Up to this point, we just remind some existent results and nothing is substantially new. 

3. MAIN RESULTS 

In this paper, we consider the total mass BNAAt NMNMm +=  is constant. As a 

consequence, the outlet molar flow rates AF  and BF  can be directly expressed from the inlet 

molar flow rate AIF  (see [27]): 













=

=

AI

t

AB
B

AI

t
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A

F
m

MN
F

F
m
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F

 

 

 

(24) 

Using (24), the non isothermal balance equations given in (9) are rewritten (25): 
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υ

υ
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(25) 

All numerical parameters can be found in [23, 24]. 

3.1. Open loop 

Manipulated variables are chosen as: 

)(300),(310),/(0183.0 KTKTsmolF JIAI ===  (26) 
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with this operating conditions, the system has three steady states 1P , 2P  and 3P . The states 1P  

and 3P  are locally stable. Otherwise, the state 2P  is unstable. A mathematical analysis and 

numerical value of these stationary states can be found in [23, 24]. 

For simulation, we use the two following initial conditions: (IC1) with 

( ))(2.0)0(),(8.1)0(),(325)0( 000 moltNNmoltNNKtTT BBAA =========  

and (IC2) with  

( ))(4.0)0(),(6.1)0(),(300)0( 000 moltNNmoltNNKtTT BBAA =========
.
 

The open loop simulations from these two initial conditions are given in Fig. 2. It shows 

that the dynamical trajectory converges to state 1P  (or 3P ) and not 2P . 

 

Figure 2. Some trajectories in the phase plane 

Let us notice that at steady states ( )TNN BA ,, , one can get the following relation from (25) 

using the hypothesis (H3): 








 −
+

=

TR

E
kF

m

M

F
N

a

AI

t

A

AI
A

exp0

. 
 

(27) 

 Hence the relation between AN  and T  is bijective. It means that if we can regulate the 

temperature inside the reactor, consequently the concentrations immediately follow, or vice 

versa. This statement leads to the Control Problem. 

Control Problem: we are interested to operate the reactor at the unstable operating point P2 

(corresponding to T = 330.1997 (K), NA = 1.3585 (mol)) using the feedback law either on the 

only TJ  (with fixed FAI) or the only FAI (with fixed TJ). 
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3.2.  Nonlinear controllers synthesis 

This subsection proposes nonlinear controllers to solve the Control Problem. 

Proposition 1 (The jacket temperature as the only control input): The system (25) is stable and 

asymptotically converges to the desired operating point 22 PZx ≡=  with the nonlinear 

feedback law (where T1 and FAI  are fixed as their open loop values (26)): 

T
dt

dN
T

dt

dN
T

TT
F

m

HM
h

TT
KT B

B
A

AAI

t

A
AIJ +






















Γ−Γ−








−+








−−








−=

−

)()(
11111

1

22

1
λ

      (28) 

and 01 >K  is tuning parameter. 

Proof 1. Using the thermal part of the availability 1vA  (18), we can write: 

dt

dH

TTdt

dN
T

dt

dN
T

dt

dA B
B

A
A

v









−−Γ−Γ−=

2

1 11
)()( . 

By introducing the 
dt

dH
 (given in (25) with QJ (3) using the feedback law TJ (28)) into the 

above equation, we obtain: 

0
11

2

2

1

1 ≤







−−=

TT
K

dt

dAv . 

Because 01 ≥vA , it is a Lyapunov function for stabilization of thermal oscillations inside 

the reactor. As a consequence from (23), the temperature T radically decreases and converges to 

its desired value T2 after finite time t∆ . Once T reaches T2 at tt ∆>∀ , from (17) 2vA  qualifies 

as a Lyapunov function for stabilization of the state variables (NA, NB) at (NA2, NB2). In fact, 

using the law of conservation of mass (11), the hypothesis (H3) and the constraint on mt = const, 

we can write from (17): 

dt

dN

dt

dA A

B

A

B

A

v









Λ−Λ−=

υ

υ2  

and it is (or becomes) negative: 02 <
dt

dAv  (at tt ∆>∀ ), see ([24]) for more details. The largest 

invariant set contained in 








= 0),( 2

dt

dA
NN v

BA
 equals{ }),( 22 BA NN . Asymptotic stability 

immediately follows invoking La Salle’s invariance principle [11]. The latter ends the proof. 

 Remark 6. Let us note that (see [24]) 

∞<Γ

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∞<Γ







−
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→

)(
11

1

2

lim
2

T
TT

B

TT

 

The feedback law control (28) is well-defined. 

The stabilizing feedback control law similar to (28) has been obtained by [24, 25]. By this 

way, we have already used the thermal part of availability to stabilize the temperature inside the 

reactor. Consequently the concentrations immediately follow. 

In what follows, we shall show the use of the material part of the availability to stabilize the 

concentrations and as a matter of fact, the temperature is then accomplished (see the relation 

(27)). It is completely given in the Proposition 2. The following developments are main 

contributions of the paper. 

Proposition 2. (The inlet molar flow rate as the only control input): The system (25) is stable 

and asymptotically converges to the desired operating point 22 PZx ≡=  with the nonlinear 

feedback law (where T1 and TJ are fixed as their open loop values (26)): 

Θ−
Θ

Λ+Λ
= 2KF BBAA

AI

υυ
    (29) 

where   

t

AB
B

t

AA
A

m

MN

m

MN
Λ+








−Λ−=Θ 1      (30) 

and  02 >K  is tuning parameter. 

Proof 2. Using the material part of the availability 2vA  (17), we can write: 

dt

dN
NN

dt

dN
NN

dt

dA B
BAB

A
BAA

v ),(),(2 Λ−Λ−=  

By introducing the expressions of 
dt

dN A  and 
dt

dNB  ((25)) into the above equantion, we 

have: 

( )rVF
dt

dA
BBAAAI

v Λ+Λ−Θ= υυ2       (31) 

where Θ  is given in (30). Using AIF  (29), we obtain: 

02

2

2 ≤Θ−= K
dt

dAv  

because 02 ≥vA , it is a Lyapunov function for asymptotic stabilization of the state variables 

),( BA NN  at ),( 22 BA NN . The later and the relation (27) end the proof. 

Remark 7. In the case under consideration (hypothesis (H3)), (31) becomes: 
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( )rVF
dt

dA
BAAI

v Λ+Λ−−Θ=2        (32) 

and the equation (30) is (using (11) with MA = MB) 









−Λ+Λ−=Θ

t

A
BA

N

N
1)(       (33) 

where Nt =NA+NB is the total molar number. 

 

We derive from (32) and (33): 

( ) 







−








−Λ+Λ−= rVF

N

N

dt

dA
AI

t

A
BA

v 12 .     (34) 

 

The feedback law (29) is then simplified to: 

( )









−

Λ+Λ−−
=

t

A

BA

AI

N

N

KrV
F

1

2        (35) 

with (35), the eq. (34) becomes ( ) 0
2

2

2 ≤Λ+Λ−−= BA

v K
dt

dA
. As a consequence, 2vA  is a 

Lyapunov fuction for the stabilization of the state variables ),( BA NN . Finally, the feedback law 

(35) is also well-defined because 01 >







−

t

A

N

N
. 

Remark 8. The stabilization of the system (25) at the unstable operation point P2 (via the state 

variables ),( BA NN  using the feedback law (35) is related to the inventories control (see [5], 

Case I, page 3557). But our result is quite interesting because we have shown that the material 

part 2vA  of the thermodynamic availability can be used as Lyapunov function candidate for 

inventories. 

Remark 9. The convergence speed of the controlled system goes faster by increasing the 

parameters 01 >K  and 02 >K . 

3.3. Simulation for controlled dynamics 
 

1) Simulation: For the continuity of control variables (see [24]), the tuning parameters 01 >K  

and 02 >K  are calculated from the following conditions: 

2)                                                      0)0(,)0( 0 ==== tFTtT AIJ                    (36) 
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where T0 is the initial temperature inside the reactor. The Figures Fig. 3 and Fig. 4 present the 

time responses of the state variables. Their evolutions converge to the unstable point P2 (T = 

330.1997(K), NA = 1.3583 (mol)). 
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Figure 3. Time response of the controlled non isothermal system with (IC1) 
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Figure 4. Time response of the controlled non isothermal system with (IC2) 
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The controlled inputs JT  (28) and AIF  (29) are given in Fig. 5. Their dynamics are smooth 

and acceptable. 
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Figure 5. The controlled inputs JT  and AIF  

Finally, Fig.6 shows that 1vA  (for the jacket temperature JT  used as the only control input) 

and 2vA  (for the inlet molar flow rate AIF  used as the only control input) are Lyapunov 

functions for the initial conditions (IC1) and (IC2). 

 

Figure 6. Lyapunov functions: 1vA  and 2vA  
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3) Performance of nonlinear controllers: In this part, we shall discuss about the 

performance of synthesized nonlinear controllers with regard to the conversion rate. Let us recall 

the expression of the conversion rate defined for the reactant A [22, 13], 

 

0

0)(

=

=

−

=Χ

t

A

t

A

t

A

A

dt

dN

dt

dN

dt

dN

t . 

Let us note that 0)0( ==Χ tA  and 1)( =∞=Χ tA . The Figures 7 and 8 present the 

conversion rate )(tAΧ  with JT  or AIF  used as the only control input, respectively. 

 

Figure 7. Conversion rate curve by using JT  as the only control input 

 

Figure 8. Conversion rate curve by using AIF  as the only control input 
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Depending on the operating conditions, the conversion rate curve may present an 

overshoot, see Fig. 7. However, the conversion ratio controlled by the jacket temperature JT  

generally reaches faster its final value. This result matches with the one obtained in [21] using 

simple extensive variables for the control design by regulating the fast mode. 

4. CONCLUSION 

In this work, we have presented an interesting link between the thermodynamic insight and 

systems theory for process control. In fact, we have shown by means of Lyapunov based method 

how to stabilize the CSTR system at a desired operating point (an unstable middle steady state 

for instance) using thermal and material parts of the thermodynamic availability. The numerical 

simulation results showed that convergence objective is satisfied and that the state feedback laws 

are physically implementable. Moreover, it also showed that the conversion rate controlled by 

the thermal part goes faster to its final value. It remains now to generalize the proposed approach 

to complex reaction networks. Furthermore the irreversible nature of the chemical reaction 

systems is an inherently natural property. A perspective of the work is the use of the 

thermodynamic passive (pseudo) Hamiltonian representation to capture the irreversibility. The 

most recent result of such an approach is given in [28]. 
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