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ABSTRACT 

State optimization approach has been proposed to treating various different system 

problems in optimal projection equations (OPEQ). While OPEQ for problems of open-loop 

thinking is found consisting of two modified Lyapunov equations, excepting conditions for the 

rank of measurements matrices whereas required in system identification problems, the one for 

closed-loop thinking consists of two modified Riccatti or Lyapunov equations excepting 

conditions for compensating system happened to be in a problem like that of order reduction for 

controller. Apart from addditonally constrained-conditions and simplicity in the solution form 

have been obtainable for each problem, it has been found the system problems switching over to 

computing the solution of OPEQ and the physical nature of medeled states possibly retaining in 

optimal order reduction problem. 

On adopting the state optimization approach to a robustness of reduced order for a 

nonlinear series-based expressible uncertain model to enjoy the above mentioned advantages is 

reported in this paper. Necessary conditions for the robustness obtain from those for uncertain 

model to be the one of stability, joint controllability and observability characteristcs. Sufficient 

ones for reduced order by state optimization to be applicable for uncertainty of quasilinear 

model are reported next. Robustness of reduced order interpreting in terms of a concave 

optimization problem with different initial conditions, bounds and limits are also reported.        

1. INTRODUCTION 

Reduced order model has been largely accepted to be the first useful sight for System 

analysis and design and the problem of order reduction for model has been tackled by various 

different techniques in the last four decades [1]. However, if the discussion is limited to linear 

models described in the state space equations, the order reduction problem may be regarded to 

belong to either open- or closed-loop thinking of treatements [2 - 4]. Among the myriad 

references available in literature, two notable methodology contributions related with this paper 

are from internally system-theoretic argument and treatment in optimal projection equations 

(OPEQ). 

Internal system philosophy based on the contribution of dynamical elements (state 

variables) to the system input/output relationship has been originated firstly to so-called singular 

values by Moore in 1981 [5] for an open-loop thinking system and further developed to 

characteristic values for a closed-loop thinking one by Jonekheere and Silverman [6], and by 
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Mustafa and Glover [7]. Contribution of states to the system input/ouput relationship can be 

measured on the basics of diagonalizing simultaneous both controllability and observability 

gramians of the system of any loopwise thinking to the very same diagonalized matrix 

(internally balanced conditions). This methodology is found promising for system problems of 

both thinking-wises in the analysis part. However, the major drawback lies on the optimality in 

designing as no where optimal design gives to troublesome in closed-looping like the one for the 

controller, especially in a problem of projective control. The component cost ranking principle 

proposed by Skelton [8] on the basics of determining contributions of dynamical elements to a 

quadratic error criterion, from opinion of the author, may be regarded as a special method of the 

earlier philosophy since no rigorous guarantee of optimality is possible although the propose has 

been guided by an optimality consideration. Hence, on combining an optimality consideration 

and the internally balanced conditions for the design purpose is required in many cases [9]. 

Last more than three decades, an American scientists group (Bernstein, Haddad and 

Hyland) have devoted a tremendous effort on establishing OPEQ for different system problems 

in both loop-wise thinking from the first-order necessary conditions for an optimality 

consideration of each problem [10 - 14]. Important significance of treatment in OPEQ 

philosophy lies on the question of multi-extreme since certain constraint conditions, bounds 

(internally balanced, H∞ performance, Petersen-Hollt, Guaranteed cost and so on) are able to 

accommodate suitably in due OPEQs development course for each problem. This methodology 

is hence found being applicable to both analysis and design purposes. However, with a careful 

analysis, it is found that the minimization have in all the cases been carried out with respect to 

parameters, which are inherently non-separable from state-variables for a system. This gives rise 

to a drawback in regards to some difficulties lying on the complexity of mathematical 

involvement, also on the optimal projection nature, which in most cases is an oblique one, 

leading to the requirement of other conditions for computing the solution of OPEQ. Further, 

although additionally constraint conditions are able to be facilitated in OPEQ, but not a single 

provision for retaining physical nature of desired states in the result. This disvalues significance 

of the methodology from the analysis point of view. 

Concept of state-optimization has been originated by San [15] from the fact that between 

two systems of sate-variable equations there exists always a non-similarity transformation on 

each to other state vectors and then the optimality for back-transform is achieved owing the role 

of pseudo-inverse of that non-similarity. It has shown that for a given system the non-similarity 

transformation may be freely chosen; hence the retaining physical nature of modeled states is 

possible in transformed version [16]. If the non-similarity transformation is factorized in terms 

of a partial isometry, an orthogonal projection matrix can be formed, facilitating the possibility 

of obtaining a simpler form for OPEQ. Thus, the state-optimization methodology overcomes the 

drawbacks and enjoys the merits of both early mentioned approaches. 

A robustness of reduced order models on adopting the state-optimization approach in frame 

work of linear matrix inequality (LMI) is considered in this paper to show above mentioned 

advantages over the recently proposed methods [17 - 20]. A nonlinear system series expandable 

around a quasilinear in term of uncertainty with respect to both, parameters and state variables, 

is considered in this paper. Conditions for the robustness are those for necessary, for sufficient 

with respect to the perturbations over the quasilinear model.           

Arrangement of the paper as follows: Two lemmas proposed for preliminary are retaken in 

II. The first one is related with defining a criterion for the state-optimization and the other is 

with factorizing a non-similarity transformation in terms of a partial isometry. In III, states of the 

problem of model reduction for uncertain systems. In IV, necessary and sufficient conditions for 
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robustness of reduced order models are reported. The necessay conditions are those for reduced 

order of a quasilinear model by the state-optimization approach and sufficient ones are those for 

characteristics of perturbated reduced order models to be kept the same as that of the reduced 

order one. In IV is for concluding remarks, and suggestions for further researches. 

2. PRELIMINARY 

2.1. Notations 

Throughout the paper, following conventions are used 

- Bold capital letters are denoted for matrices, while low-case bolt letters are for vectors. 

- R stands for real, E(.) for either expectation or average value of (.) when t approaches to 

infinity. 

- ρ(.), (.)
T
, (.)

+
 stand for rank, transpose, pseudoinverse of (.). 

- Stability matrix is the one having all eigenvalues on the left hand side of the S-plane. 

- Non-negative (positive) definite matrix is a symmetric one having only non-negative 

(positive) eigenvalues. 

- All the vectors norms are Euclideans or L
2
 norms, ( )

1/ 2
22

jj
x= ∑x . 

- Controllability and observability gramians of a system are denoted by 

Tt T t

c

0

e e dt

t

= ∫
A AW BVB , 

T t T t

0

0

e e dt

t

= ∫
A AW C C                                   (2.1) 

Satisfying dual Lyapunov equations 

T T

c c
T T

o o

0

0

+ + =

+ + =

AW W A BVB

W A A W C RC
                                                     (2.2) 

where
T

( )=V uuE , R is non-negative weighted matrix of order q. 

2.2. Introduction to Pseudo-inverse and Transformation in system problems 

Concept of generalized inverse seems to have been first mentioned, called as pseudo-

inverse by Fredholm in 1903, originating for integral operator. Generalized inverses have been 

studied extending to differential operators, Green’s functions by numerous authors, in particular 

by Hilbert in 1904, Myller in 1906, Westfall in 1090, Hurwitz in 1912, etc. Generalized inverse 

has been antedated to matrices on defining first by Moore in 1920 as general reciprocal. The 

uniqueness of pseudo-inverse of a finite dimensional matrix has been shown by Penrose in 1955, 

satisfying four equations [21] 

 (i),   (ii),   (iii),   (iv)∗ ∗TXT = T XTX = X (TX) = TX (XT) = XT            (2.3)                                                 

where, (.)* denotes for conjugate transpose of (.). 
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The above four equations are commonly known as Moore-Penrose ones and the unique 

matrix X on satisfying these equations is usually referred to as the Moore-Penrose inverse and 

often denoted by T
+
. 

Assume that an available system (S) and an invited (or assumed) model (AM) are described 

by 

(S): 
n n n n n

n n n

x = A x + B u

y = C x

&

                                          (2.4)
 

(AM):    
  

m m m m m

m m m

x = A x + B u
y = C x

&

                                      (2.5) 

where the letters n and m in the subscripts stand for (S) and (AM) also for their order numbers 

respectively with all of the vectors and matrices are supposed to be appropriately dimensioned. 

It was observed that indifferent from orders of the two, there exists always a transformation 

between two state vectors (referred to as state transformation) and a transformation between two 

output vectors (named as output transformation). If both (S) and (AM) are subjected to the same 

input vector, output transformation is seen to be similarity (an invertible matrix) one as 

dimension of the output vector of (AM) is the same as that of (S), but it is not the case always 

for state transformation. Even if state transformation is a non-similarity one, the output vectors 

are match able, however. As non-similarity transformation on state variable vectors is not a bi-

directional one, giving rise to the idea of optimization with respect to the state variables. 

2.3. Definitions and Lemmas 

2.3.1. Definitions 

Projection matrix resulted from the first order necessary conditions for an optimality 

process is termed as an optimal projection. System of equations resulted from the necessary 

conditions for an optimality expressing in terms of components of optimal projection is called as 

optimal projection equations (OPEQ).  

Conditions for an uncertain model  to preserve properties of the respective quasilinear 

model are the necessay conditions while those for the related model obtained by a theorem 

applicable for the quasilinear case to be valid in the uncertain case are the sufficient ones. 

2.3.2. Lemmas 

Lemma 2.1. Let the vector xn of n independently specified states of a (S) be given. Assume that 

an (AM) is chosen having vector xm of m independently specified states, m ≤ n. Then there 

exists a non-similarity transformation T∈R
mxn

, ρ(T) = m, on xn for obtaining xm such that if the 

number of (S) output is less than or equal to that of (AM) order, q ≤  m, then T
+
xm  leads to the 

minimum norm amongst the least-squares of output-errors. 

Proof. Details can be found in [11]. It is necessary showing that with the condition mentioned in 

lemma one can easily obtain the weighted least-squares criterion (L2) on the output errors 

T

Oopt n m n m( ) ( )dt
o

J
∞

= − −∫ y y R y y  .                       (2.6) 
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From the criterion (L2) for state optimization 

2

Sopt n m R
|| || dtx T x

o

J
∞

+= −∫                              (2.7) 

where, R stands for non-negative weighted matrix of the appropriate dimension. 

Usually, order n of (S) is not known, order m of (AM) may be highly chosen. In such a 

case, the validity of the lemma is kept; see the remark II.1 of [11] for the details of argument. 

Lemma 2.2. Let the state vector xn of (S) be a transformed state vector xm of (AM) as 

mxn

n m ,  ,  ( ) n<m+= ∈ ρ =x T x T TR                                       (2.8) 

Then T can be factorized as  

T = EG = HE            (2.9) 

where, E = E(
T

m nx x ) ∈R
mxn

 is a partial isometry, G = E(
T

n nx x ) ∈R
nxn

, H = E(
T

m mx x ) ∈R
mxm

, 

both are non-negative definite matrices. 

Proof. See [11] for details. 

Remark 2.1. 

It is noted that since T is constant, hence 
+

n m=x T x& & . 

It is known that 
T

1σ = EE ,
T

2σ = E E  are optimal in the sense that one state vector is 

optimized with respect to the other; moreover both are of orthogonal projection matrix. 

Although xn and xm are definitely specified but T is not unique determined due to mismatch 

between the dimensions of two state vectors. The question arises regarding the construction of T 

so that xn is obtainable from the knowledge of xm. 

3. FORMULATION OF THE PROBLEM 

3.1. A consideration for study case 

Consider a nonlinear dynamic system (S) describable by time-varying parameters and states  

 
s s s s(t) (t) (t) (t) (t)= +x A x B w&                                      (3.1) 

 s s s s(t) (t) (t) (t) (t)= +y C x D w                                                          (3.2) 

where, denote 
p(t) ∈w R , 

n

s (t)∈x R , 
q

s (t)∈y R  the input, state, output vectors respectively, 

and 
nxn

s (t)∈A R , 
nxp

s (t)∈B R , 
qxn

s (t)∈C R , 
pxq

s (t)∈D R  the parameters of system model. 

Determine conditions for a reduced model of order r n≤ , described by 

r r r r(t) (t) ( t) (t) ( t )= +x A x B w&                           (3.3) 

r r r r(t) (t) (t) (t) (t)= +y C x D w                                                      (3.4) 



 
 

Nguyen Thuy Anh 

  30

where, denote 
r

r (t)∈x R , 
q

r (t)∈y R  respectively the state, output vector and 
rxr

r (t)∈A R , 

rxp

r (t) ∈B R , 
qxr

r (t)∈C R , 
pxq

r (t)∈D R  the parameters of reduced model, 

On satisfying the state-optimization criterion 

JSopt = SupE{ }2
+

s s r R
(t) (t) (t)x T x− , Ts(t) ∈R

mxn
                (3.5) 

and corresponding quadratically weighted output-error criterion 

JOopt = SupE{ }2

r s s R
(t) (t) (t)y K y− , Ks(t) ∈R

pxp
, ρ(Ks(t)) = q.                     (3.6) 

The above system may represent some system dynamics and parameters that are not 

precisely known or are difficult to be exactly modelled. However, without losing the generality 

one may assume s pxq(t) = D 0  and a quasilinear model having constant, nominal values 

0 0 0( , , )A B C so that the system described in (3.1) and (3.2) can be expanded in series as 

k n l

0 i i 0 i i 0 i i

i=1 i = 1 i=1

(t) = + (t) (t) + (t)  + + (t) (t)
     
     
     

∑ ∑ ∑s
x A A r x B  B s w& ε ηε ηε ηε η        (3.7) 

p n

0 i i 0 i i

i=1 i = 1

(t) = + (t) (t) + (t)
   
   

  
∑ ∑s

y  C C v x ε ηε ηε ηε η                       (3.8) 

where, denotes iεεεε = 
'

i iα λ  for uncertain state variables and 
' '

i i i i i id e , f g= =A B ,
'

i i i h e=C  of 

the rank 1 for uncertain parameters and the respective vector of uncertain state (t)∈ηηηη χ, and the 

matrices of uncertain parameters (t)∈r R , (t)∈s S , (t) ∈v V  are bounded within sets  

χ
n

i { :  = η∈ η ≤ η� ,  i = 1, 2, …, n} ; 0η ≥                                 (3.9.a) 

R
k

i {r : r  r= ∈ ≤� ,  i = 1, 2, …, k} ; r 0≥                                (3.9.b) 

S
1

i {s : s  s= ∈ ≤� ,  i = 1, 2,…, l} ; s 0≥                                  (3.9.c) 

V
p

i {v : v  v= ∈ ≤� , i = 1, 2, …, p} ; v 0≥ .                              (3.9.d) 

Assume that the above mentioned uncertain (t)ηηηη , (t),  (t)r s  and (t)v  are of measurable 

vector functions Lebesgue for all t 0≥  that (t)ηηηη ∈ χ, r(t)∈ R , s(t)∈S  and v(t)∈V  [24]. 

Then, for short, one can denote  

 
n

i i

i = 1

(t)=∑x∆ ε η∆ ε η∆ ε η∆ ε η ,  
k

i i

i=1

(t)=∑A A r∆∆∆∆ , 
l

i i

i=1

s (t)=∑B B∆∆∆∆ , 

p

i i

i=1

(t)=∑C C v∆∆∆∆      (3.10) 

Moreover, one can also represent the uncertain state and output vectors as respective 

variation around the constant, nomional values of the quasilinear model as follows 

n

s 0 i i 0

i = 1

(t) (t) ( )= + = +∑x x x x&& & & &ε η ∆ε η ∆ε η ∆ε η ∆  and s 0(t) ( )= +y y y∆∆∆∆    (3.11) 
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It is clearly seen that the conditions in (3.9.a-d), (3.10) and (3.11) are those for the validity 

of expanding in series of respective functions in the convergent sense of each expansion, also for 

preserving the stabilty, controllability and observability properties of the quasilinear model. 

It is also seen that the nonlinearity problem can be treated to be a robustness one on 

adopting the perturbation method. However, in the present case whereas variations of the state 

variable can directly come in to the scene to be dealt with, which is the major different aspect 

from the earlier contributions on the parameter-based optimization procedure.  

3.2. Statement of the problem 

Given a nonlinear system described by uncertain quasilinear model of order n 

[ ][ ] [ ]0 0 0(t) (t)= + + + +sx A A x x B  B w& ∆ ∆ ∆∆ ∆ ∆∆ ∆ ∆∆ ∆ ∆                          (3.12) 

[ ][ ]0 0(t) = + +sy  C C x x∆ ∆∆ ∆∆ ∆∆ ∆                               (3.13) 

Determine a reduced order uncertain quasilinear model of order r, r n≤  

[ ][ ] [ ]r r r r r r(t) (t)= + + + +rx A A x x B  B w& ∆ ∆ ∆∆ ∆ ∆∆ ∆ ∆∆ ∆ ∆                          (3.14) 

[ ][ ]r r r r r(t) = + +y  C C x x∆ ∆∆ ∆∆ ∆∆ ∆                               (3.15) 

and related robust conditions on satisfying state-optimization (3.5) and quadratically weighted 

output-error criterions (3.6). 

The above stated problem can be solved in two steps reporting in the next paragraph. The 

first one is related to order reduction for the quasilinear model of the nonlinear uncertain system. 

The next is related to the necessery and sufficient conditions for the robustness. 

4. SOLUTION OF THE PROBLEM 

4.1. Reduced order of quasilinear model 

Theorem 4.1. For an n order quasilinear model with appropriately dimensioned matrices and 

vectors 

           0 0 0 0ux A x + B=&                                                      (4.1) 

 0 0 0y = C x                               (4.2) 

there exists in the set of r-th order, q r n£ £ , jointly controllable and observable models, the 

one called optimal model on satisfying L2 model-reduction criterion with optimal parameters 

expressed in term of an rxn partial isometry E and nxn non-negative definite matrix H 

+ T + T

r 0 r 0 r 0, , A = EHA H E B = EHB C = C H E             (4.3) 

Further, there exists an nxn optimal projectorσ  and two nxn non-negative definite matrices 

Q and P such that the coupled Lyapunov equations are to be satisfied 

 
T T

0 0 0 1 0σ HA Q + QA H + HB V B H = 0é ù
ê úë û

                 (4.4) 

 
+ T + + T +

0 0 0 2 0H A P + PA H + H C R C H σ = 0é ù
ê úë û

                   (4.5) 
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where, ( )T

1V uu= E , 2R is weighted matrix in the criterion for order reduction. 

Proof. By the use of Lemma 2.2, first (2.8) then (2.9), relations in (4.3) are derived. Adopting 

dual Lyapunov equations to the reduced order model with defined optimal projection and two 

mentioned optimal non-negative definite matrices, (4.4) and (4.5) are obtained.  

Converse of Theorem 4.1. Let the r-th order model jointly controllable and observable with 

q r n£ £ , with parameters determined by (4.3) on satisfying (3.4) and (3.5). Then, σ, Q and P 

are optimal. 

Proof. It is evident to show that the optimal is achieved in the sense of satisfying the criterion for 

state-optimization and the quadratically weighted output-errors.  

Remark 4.1. Physical significances of various particularly quasilinear modeled states can be 

retained in the reduced one. Considerable effort is reduced for finding the global amongst multi-

extreme due to the effect of partial isometrics E. Actually, H, Q and P consists of the states 

measurements, controlability and observability gramians of quasilinear model.  

If the quasilinear model of order n is yet to be known, the reduced order model in such a 

case has to be considered as a mis-order modelling case. The theorem deals with the 

measurements of quasilinear models controllability and observability gramians. However, if 

(4.4) and (4.5) are solvable, Q and P are obtainable and E follows. Parameters of reduced order 

model are determinable irrespective of the measurability of controllability and observability 

gramians. A difficulty in solving these equations stands on the fact that no standard algorithm is 

available yet regarding the guarantee for convergence of solutions.  

It shows next that conditions for robustness of reduced-order model can be found in the 

same manner as that for robustness of modeling. However, great effort would be reduced in 

tackling the mentioned robustness by adopting state-optimization approach with respect to 

parameter-based optimization technique.  

2.2. Robustness of reduced order model 

Under perturbation, quasilinear model (4..1), (4.2) becomes the one with uncertain 

parameters and states described by (3.12), (3.13) in the present consideration, which requires the 

reduced order model obtained by theorem 4.1 to have also uncertain parameters and states. 

Conditions for the model described by (3.12), (3.13) to preserve the properties of the quasilinear 

model described by (4.1), (4.2) are known as the necessay ones while those for the reduced 

model obtained by the theorem 4.1 to be valid in the uncertain model case are sufficient ones. 

There may establish several methods to obtain necessay and sufficient conditions on 

adopting equivalent vector and matrix norms in either time, frequency domains or combined 

both (L
2
 limit, H2 , H∞  bounds), or in other space also.  

Theorem 4.2 (Necessay conditions) 

For a nonlinear dynamic system described by uncertain model with time-varying 

parameters and uncertain states (3.12) and (3.13) to preserve the stability, controllabitity and 

observability properties of the quasilinear model desribed by (4.1) and (4.2), following 

conditions are to be satisfied by the uncertain parameters 
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( ) ( ) ( ) ( )
1/2 1/2 1/2

n 1 12 ,  (1 ) ,  1A B Ca n b n g n£ £ + £ +D D D
           

(4.6) 

and by the controllability, observability gramians of uncertain states  

T
( ) 0A Q QA Q+ + £D D W                                                     (4.7) 

T
∆PA + A ∆P +Ω(P) 0£                                                      (4.8) 

where, 
T T T T

( ) 2 ; ( ) 2Q AQ Q A BV B  P P A A P C RC= + + = + +W D D D W D D D . 

Proof. For a linear model of canonical (minimal) realization to be stability, controllability and 

observability properties, all poles positions predicted by 0 0 ... )T
A A a a=

1 n
diag(    are on the left 

hand side of complex-plane having number higher than the number of nulles related with 

0 0 ... )TB B b b= 1 pdiag(    and 0 0 ... )TC C g g= 1 qdiag(   .  

To preserve stability property of the quasilinear model under the uncertainty perturbation 

with Petersen-Hollot bound and presume (i). Model (3.12), (3.13) with transform matrix norm be 

consistent with the state vector norm s 0 1x x x£ + = + nD ; (ii). Positions of poles related 

to the smallest eigenvalue of A0 be not shifted to the righ hand side of complex-plane due to 

variations of parameters in As, of states in xs; (iii). All non-zero eigenvalues of 
T

s sB B ,
T

s sC C are 

unchanged by number (no eigenvalue of 
T

s sB B ,
T

s sC C are annulled by eigenvalues of As due to 

AD , ∆B , CD ). By some arithmetic manipulations the relations (4.6) are then obtained. 

Substituting the values of controllability and observability gramians of uncertain model 

(3.12), (3.13) then (4.7), (4.8) are obtained. These relations imply that variations of states with 

respect to both, input and output sides, are to be bounded. 

It is clearly seen that the relations in (4.6)-(4.8) give a strictly bounded range for 

parameters, state variables than the limited range in (3.9). The fact lies on the characteristics of 

stability, jointly controllability and observability to be satisfied by the model of uncertainty. 

Theorem 4.3 (Sufficient conditions). Let a reduced order model be obtained by theorem 4.1 for 

a given quasilinear model. Assume  that the quasilinear model satisfies the necessay conditions 

for uncertainty perturbation stated in theorem 4.2. Then, the obtained reduced order model has to 

satisfy following conditions 

a) For optimal transformation: 

{ }1/ 2 1/2 1/2

1 n n

1/ 2 1/2 1/ 2

n n n

( ) . 1 ( ) (( ) )

( ) (( ) ), ( )

 H

∆H H  H H

             l l l n

l l n l n
+ +

= + +

= + D =                  (4.9.a)
 

( )( ) ( ) ( )( )

Oopt n

1/ 2 1/ 2 1/ 2

s s n 1 n

. 2

1 , 3 2 . 2

  J x H x

K H  ∆K

                  

l n l l n

+
£ D + D =

= = + +                    
(4.9.b) 

b) For variation of parameters: 

( ) ( )( ) ( )( ) ( )
1/ 2 1/ 2 1/ 2 1/2

s 1 1 n n n 1 1
2 ,  2A Aa l l n n l a l n£ + + D £

                 
(4.10.a) 
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( ) ( )( ) ( )( ) ( )
1/ 2 1/2 1/2 1/ 2

s 1 n n n 1
,  B Bb l n n l b n£ + + D £       (4.10.b) 

( ) ( )( ) ( )( ) ( ) ( )( )
1/2 1/ 2 1/2 1/ 2 1/ 2

s 1 1 n n n 1 1 n n
2 ,  C Ca l l n n l g l l l n£ + + D £ +

      
(4.10.c) 

( ) ( )
1/2 1/2

n s m1 1xl l£ £              (4.10.d)
 
 

c) For controllability and observability: 

• ( ) ( ) ( ) ( ) ( ) ( )( ) ( )
1/2 1/21/2 1/2 1/2 1/2 1/2

1 1 sn 1 sn 1 1 n n sn2 , ,a l n a b n b g l l l n g£ £ + £ , 

• ( ) ( )T T

m m m m

+ +
H A Q + QA H = Q , HA P + PA H = PD D W D D W , 

• ( )T T T

m m m m

+ + +
H A Q + QA H + Q + H B B H = 0W ,           

( )T T

m m m mHA P + PA H + P + HC C H = 0W  

• QD , PD  are bounded. 

Proof. From (2.8), (2.9) one gets 
1/2

1( )H l= ,
1/2

n1/ ( )H l+ =
 
where λ1, λn are the maximum 

and the least non-zero eigenvalues of HH
T
. State-optimization criterion with T + ∆T = Ts  and 

related quadratically weighted output-error criterion with K + ∆K = Ks are satisfied for robust 

performance with bounds of As, Bs and Cs so that the reduced model (3.14), (3.15) is to be 

controllable and observable. So, conditions for optimal transformations (4.9s) are obtained. 

3.2.2. Solution of problem 

1. Sufficient conditions for robust performance 

2. Uncertainty structure: 

a) Assumption: 

• V = Ip, K = R = Iq, 

• ( )m 1 m...diagA a a= - - , ( )T

m m 1 m...diagB B b b= , ( )T

m m 1 m...diagC C g g= , 

• Maximum variations of parameters are computed by theorem 3.1. 

b) Variation of parameters: 

• ( )
1/ 2

n 1 12A a l nD £ , ( )
1/ 2

n 1B b nD £ , ( ) ( )( )
1/ 2 1/ 2

n 1 1 n nC g l l l nD £ + , 

• ( ) ( )( ) ( )( )
1/ 2 1/ 2 1/ 2

s 1 1 n n2A a l l n n l£ + + , 

• ( ) ( )( ) ( )( )
1/ 2 1/ 2 1/ 2

s 1 n nB b l n n l£ + + , 

• ( ) ( )( ) ( )( )
1/2 1/2 1/2

s 1 1 n n2C a l l n n l£ + + . 

3. Stability, Controllabity and Observability 

a). Assumption: 
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• Positions of poles corresponding to sn-a  be not shifted to R.H.S of complex-plane, 

• Number of non-zero eigenvalues of 
T

s sB B  and of 
T

s sC C be kept unchanging (none of 

eigenvalues of 
T

s sB B  and 
T

s sC C  be annulled due to nBD  and nCD ), 

•  n eigenvalues of 
T

s sB B be differed from those of 
T

s sC C , 

• ( ){ } ( ){ }
1/ 2 1/ 2

T T

m m m m m m, , ,+ +
σH A σH B B C C H σ A H σD D D D be stabilizable, detectable. 

b) Conditions: 

• ( ) ( ) ( ) ( ) ( ) ( )( ) ( )
1/2 1/21/2 1/2 1/2 1/2 1/2

1 1 sn 1 sn 1 1 n n sn2 , ,a l n a b n b g l l l n g£ £ + £ , 

• ( ) ( )T T

m m m m

+ +
H A Q + QA H = Q , HA P + PA H = PD D W D D W , 

• ( )T T T

m m m m

+ + +
H A Q + QA H + Q + H B B H = 0W ,

( )T T

m m m mHA P + PA H + P + HC C H = 0W  

• QD , PD  are bounded. 

In term of convex optimization 

Denote transformation between the input and output of model (3.12), (3.13) by Пs and that 

of model (3.14), (3.15) by Пr as 

0 r r0 0 r r r r

r

0 r r

,  s

x x x xA A B B A A B B

u w u wC C C C

ì ü ì üé ù é ùé ù é ùï ï ï ï+ ++ + + +ï ï ï ïê ú ê úê ú ê úí ý í ýê ú ê úê ú ê úï ï ï ï+ ++ +ë û ë ûï ï ï ïë ûë û î þî þ

@ @
D DD D D D

P P
D D

 (4.15) 

Then, there exists an error transformation representing the mismatch between Пs and Пr 

e e e e e

e e e

( , )s r

x A x B u

y C x           

ì = +ïï
í
ï =ïî

&
@P P P .                                         (4.16) 

On satisfying criterions (3.5), (3.6) with the initial conditions of rP (parameters 

determinated by (4.3) 
T T

r 0 r 0 r 0= , = , =+ +A EHA H E B EHB  C C H E ), and 

    
0

e

r r

A ∆A 0
A

0 A ∆A

é ù+
ê ú=
ê ú+ë û

, 
0

e

r r

B ∆B 0
B

0 B ∆B

é ù+
ê ú=
ê ú+ë û

,  

T
T

T 0

e T

r r

( )

( )

C ∆C
C

C ∆C

é ù+
ê ú=
ê ú+ë û

, 
0

e

r r

x ∆x
x

x ∆x

é ù+
ê ú=
ê ú+ë û

. 

The robustness of reduced order model becomes a convex optimization that minimizes 

errors arising in (4.16). That is, one has to find the minimum amongst the values obtainable by 

(3.5), (3.6). However, it has been shown that (3.6) is deducible from (3.5) in time domain […]. 

Here, different measurements in frequency domain are considered. 

Defining H2-error (H2 norm): The H2 norm of model (4.16) is defined as 
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{ }
s r e2 2

s

r

( , )

:
. :

:
Stability, Controllability, observability

Stability, Controllability, observability

Sup y

                         Subj  to

@P P P

P
P

             (4.17) 

That is, a guaranteed H2 error bound for QD , PD on inferimizing quadractically stable 

of (3.6) from optimization (4.17) with respect to both controllability and observability gramians.    

Defining H∞-error (H∞ norm): The H∞ of the model (4.16) is given by 

{ }

s r( , )

:
. :

:

e

e

s

r

Stability, Controllability, observability

Stability, Controllability, observability

y
Sup

u

                         Subj  to

¥

¥

¥

@P P P

P
P

           (4.18) 

An H∞ characterization for (4.16) is bounded by a real value for QD , PD  on 

optimization of (4.18) so that for an uncertain parameter model of stability, controllability and 

observability jointly, an uncertain reduced model can be obtained of the same characteristics. 

4. CONCLUDING REMARKS 

Optimal projection equation (OPEQ) has been recognized to play an important contribution 

to finding the uniqueness amongst multi-extreme in the effect sense of an aditionally constrained 

condition. However, a complexity happened to be in mathematical involvement of that OPEQ on 

adopting parameter-optimization process from both aspects; in the establishment and in the 

solution to the mentioned OPEQ. State-optimization has been found removing that complexity 

due to the role of factorization in term of a partial isometry and mentioned factorization has an 

effect of that of an additionally constrained condition to the optimization process.     

State-optimization approach can be employed to treating different various problems where 

an optimization is asked for. In the case of an infinite-dimensional (S) like distributed parameter, 

non-linear modeled by a series, ect., where partial or functional equations are required, then the 

concept of generaliazed Green function and its inverse are to be adopted, however. This may 

gives rise to the concept of a poly-optimization in stead of state-optimization and various 

researches can be carried out in this direction apart from treating the above mentioned infinite-

dimensional (S) also for treating many different optimization problems happened to be in non-

finite dimensional space. 

It will show in the coming report, through consideration of a typical uncertain closed-loop 

thinking problems (robustness of reduced state estimator), great efforts would be reduced with 

respect to parameter-optimization approach on adopting the results obtained for opened-loop 

thinking ones.    
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