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ABSTRACT 

In this paper, a road detection method based on an image segmentation and stereo vision is 

presented. Road detection process is a key issue for an autonomous driving system in urban 

environment. Image-based road detection algorithm is applied on sources of visual information 

recorded by stereo cameras when our car is running on road. Our method combines a posteriori 

probability and visual information for image segmentation. The depth map in stereo camera is 

calculated on real time by a circuit board and it is utilized to rectify the boundary on left and 

right side of road. The method is composed of three steps. Firstly, a road identifier is trained 

with supervised learning algorithm. Secondly, road regions are detected by combining a 

posteriori probability and visual information using image segmentation algorithm. In the last 

step, the segmentation result is combined with the depth-map image to correct the boundary. 

Experimental results are presented for video sequences of road in urban areas.  
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1. INTRODUCTION 

 Road detection plays an important role in autonomous driving system. Much of work on 

road detection was proposed and successfully demonstrated in the past[1, 6, 11, 15], especially 

before the Urban Challenges organized in 2007. There are two main approaches in the previous 

works: camera-based [2, 4, 8, 13, 21] and laser-range-based [5, 19, 20, 23] methods. In that 

system, road detection includes two stages: 1) Road boundary detection; 2) Road modeling. 

Road boundary detection returns the shape of road in one frame, a result in a 2D image. 

Meanwhile, road modeling process will receive these results of road boundary detection and 

transform them into a 3D map. In few works, there is an assumption that road plane is a flat 

surface. In this case, road modeling can be expressed on a 2D image as a parallel line or curve of 

boundaries. Otherwise, the result of this process must be a 3D shape of road boundaries. In much 

of work proposed recently [12, 17, 18], there are three necessary steps to solve this problem: 

feature extraction, modeling and curve fitting. Feature extraction proposes feature points in the 

road boundary and utilizes them as control points for modeling process. This process calculates 

the Inverse Perspective Mapping (IPM) to transform the coordinates of feature points from 

image plane to road plane. As mentioned above, the road plane can be a map in 2D or 3D 

coordinate based on the assumption of road surface. The curve fitting process utilizes the 

distribution of control points to fit them into a line or a curve where a car can run and track in 

following. Beside thats it is also necessary to detect and extract curvature accurately [25]. In 

practice, we need to integrate two cases (line and curve) in one module because it is not enough 

time to classify a road shape into a line or curve in urban road. In the camera-based approaches, 
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some methods like [21] considered road boundary detection as a tracking of road border or road 

markings by employing intensity, color, and texture as a dynamic model of visual cues unique 

on the road surface. The other methods like [8] employ the known edge information from image 

processing for the estimation of road boundary. The majority of image-based tracking algorithms 

were reported successfully on day light. On the other hand, image segmentation algorithms were 

applied to classify road and non-road regions of video images on the basis of color and texture 

cues [2, 13]. In there, some methods used supervised learning algorithm [4, 19] to train 

classifiers which identify the road region or utilized stereo images to estimate the depth map of 

road[14]. However, overland error, a positive error, usually occurs in image-based methods. As 

a result, image-based road detection algorithm does not work properly in many changes of 

environments. Recently, multiple prominent teams of the DARPA Urban Challenge 2007 in 

California,USA, have applied laser sensors [9] to measure surrounding environment of 

autonomous car. Although this approach is robust and convenient to keep a car on road, it still 

lacks ``roadness'' information and traffic signal. Here we call “roadness” a surrounding region 

where a car can move forward or backward safely and legally. In this paper, “roadness” is a 

region of road in front of car and it is recorded by a camera system mounted on the car bumper. 

For autonomous driving in our modern cities, we need an integration of camera-based and laser-

sensor-based systems with a priori knowledge of surrounding environment. Without this 

condition, an autonomous driving car is similar to a system of autonomous driving train and it 

cannot work as it is being driven. In those challenges and efforts, a combination of laser-based 

and camera-based methods has been proved to be highly applicable in practice. In this paper, we 

propose a new method of the road detection from the camera-based point of view. Our proposed 

method provides a closed-form expression of an integration between visual information with an 

knowledge-based system of road: a priori probability of road and stereo vision for generating a 

robust system of road detection. This approach is also potentially applicable in robotic vision. 

 In this paper, we formulate visual information under a geometrical structure and utilize a 

priori knowledge of road to calculate a posteriori probability of ``roadness'' through the Bayes's 

formula. A posteriori probability of road is applied as an extra information to reduce the 

ambiguity of the conventional segmentation algorithm in road detection. Then, the depth map is 

apply to rectify the segmentation result and return a correct road boundary. The structure of this 

paper is as follows; Section 2 reminds image segmentation methods; Section 3 describes our 

proposed method using image segmentation with a posteriori probability of ``roadness'' and 

principle lines of depth-map images; Section 4 presents our simulation results; and Section 5 is 

the conclusions.  

2. OVERVIEW OF SEGMENTATION ALGORITHM 

 The proposed algorithm is based on Segmentation by Weighted Aggregation (SWA) 

algorithm [22] that is a bottom-up image segmentation algorithm. The SWA algorithm 

constructs a weighted graph in which every pixel is a node and is connected to its neighboring 

pixels by an edge. A weight is associated with each edge reflecting the intensity contrast in the 

corresponding position in image. SWA algorithm produces a multi-scale and hierarchical graph 

representation of the image. The resulting segmentation takes texture (average intensity)into 

account regional properties. SWA algorithm finds the best partition from the constructed graph 

according to a saliency measure (related to a normalized-cut measure). The saliency is the 

segment's dissimilarity of its surrounding, divided by its internal homogeneity. We briefly 

describe the SWA algorithm as follows; 
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 In the SWA algorithm, a 4-connected weight graph  is constructed from the 

image, where each node  represents a pixel and each pair of neighbors are assigned 

coupling values as weight . The initial weight reflects the intensity contrast between the 

two pixels  and   

        (1) 

where  and  denote intensities of two neighboring pixels, and α is a positive constant. Every 

segment  is associated with a state vector , where 

, and  is defined initially as follows;  

         (2) 

 SWA algorithm provides a fast transformation for coarsening a graph. Result of coarsening 

process is a pyramid structure, where the top of pyramid has the least number of salient 

segments. The coarsening process runs recursively by aggregating weights as follows; 

 Let  denote a graph at initial level . Given a graph  and a state vector 

 at level , a set or representative nodes  is chosen 

so that every node in  is strongly connected to . A node is considered strongly 

connected to representative node  if the sum of its weight to representative nodes is a 

significant proportion of its total weight. Graph  at level  is generated by a 

weighted aggregation [22], where the weight  can be computed through .  

     (3) 

where , and  is called inter-scale interpolation matrix. To reduce 

complexity, the computation of the internal weight does not appear in eq. (3).  satisfies 

the following conditions 

Cond #1:  are chosen to be proportional to  for  and satisfy 

 for every   

Cond #2:  and  for  

To avoid a weak structure of weights provided by eq. (3), a modification is applied to 

update weight : 

 Given an aggregate  at scale , let  denote a weighted average of a property 

. If the interpolation matrix  is given, the regional properties are 

computed recursively using the following equation  

 .       (4) 

If we set  to be intensity of pixels, then we obtain the average intensity of an aggregation. 

These regional properties are utilized to modify weights. Then, weights in new graph are 

modified to incorporate coarse measure of the differences between neighboring aggregates as 
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follows;  

      (5) 

 

Figure  1. Proposed method 

where  is positive. The weight  takes a decrease if there is a difference between regional 

properties . This coarsening procedure is repeated recursively. As a result, a full pyramid 

structure of the image is constructed. Coarsening measurement utilizes weight to reflect the 

multi-scale regional properties [7] during the construction of the pyramid. In this algorithm, 

coarsening measurement is used to facilitate the segmentation process.  

After coarsening graph, sparse matrix  is recorded and utilized in sharpening 

process as follows;  

  

           (6) 

 where 1,...=
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s
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−
 is selected as follows;  

       (7) 

 where values  and  are two thresholds of state values.  
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 [Straight road in depth map]             [Corner in depth map]   [Principle lines in road map]  

Figure  2.  Line detection on depth-map images. 

3. ROAD BOUNDARY DETECTION 

 We utilize a condition of road shape as a priori knowledge and depth map as the first 

information in real-time estimation. Figure 1 presents our designed system for road boundary 

detection. In Part 1.1, a line-detection process is applied to find the main line which has a shape 

of road based on its direction. In Part 1.2 , a posteriori probability of road region is calculated on 

each block of image and it is utilized as a condition to select results of SWA segmentation. In 

this system, the depth map is calculated on real-time by a circuit board in camera system. There 

are two kinds of principle lines in road image: horizontal line, and vertical line. The vertical line 

has a direction from rear to center of image and the horizontal line usually has a tilt direction 

from bottom to top of image. When the distribution of horizontal line appears more frequently, a 

corner or a cross street may be in front of the car. Similarly, if the distribution of vertical line in 

which its direction is from center to rear instead of rear to center appears more frequently, the 

car may come into a curve. Figure 2  presents one of our principle line detection on the depth-

map images. The Hough transform is applied for line detection. Our camera system can provide 

a processing time of 10 fps for depth map and line detection with the image size of 320×240.  

3.1. Road Identifier 
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 We assume that an image taken in the urban environment is composed of two regions: the 

road region and the non-road region. This problem is a two-category classification. Let  denote 

one state in practice, with 
 
 for road and  for non-road at one rectangle  of size 

 in input image. Let  denote a priori probability, where . A 

priori probability  is calculated from a training data set. A priori probability of one 

road image is segmented into 3 regions. In the top region,  is always set to 0. In the 

middle region,  is larger or equal to 0 and less than or equal to 1. In the bottom region, 

 is always set to 1. It means that it is not necessary to consider a posteriori in the top 

and bottom regions of training results because the probability is set to 0 and 1, respectively. This 

is presented by some samples in Fig. 3. 

 

Figure  3.  Probability of road region. 

    In the feature extraction process, we utilize moving average variance of intensity 

obtained from samples of video sequences. The average variance  is utilized as a feature of 

our road-detection process because the boundary of road in the average-variance images is 

clearer than that in the average intensity does. This process is calculated from sequential images 

as follows; 

 The variance of the  frame at position  is calculated using an average value of  

previous frames as follows;  

       (8) 

       (9) 

 where  is the intensity of 
th

x  frame at position .  

3.2.  A posteriori probability of road regions 

 We can estimate a posteriori probability  according to the Bayes formula if the 

value of  has been measured. The road identifier is described as a posteriori probability of 

road region on condition of variance  
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      (10) 

 Similarly, a posteriori probability of non-road class is  

      (11) 

 where  is the likelihood probability function of class . In this case, we have 

estimated them by using a non-parametric approach to estimate the probability density function 

from training data. It is noted that non-parametric approach can be used for arbitrary distribution 

no matter how the forms of the underlying densities change.  

 

Figure  4. Histogram at position of rectangle φ  

   We consider boundaries of road and non-road regions where their priori probability is 

larger than 0 and less than 1.  is calculated by using information from both ground 

truth and variance images. Each sample image in learning step is divided into many small 

rectangles  of the size   and calculate the likelihood probability  for each 

rectangle  instead of working on each position of pixel. For each position of rectangle , we 

generate two histograms, one for road and another for non road, by using ground truth and 

variance image to count the number of pixels in all learning samples. Normalization of two 

histograms  corresponding to position of  gives us a likelihood probability . 

Figure 4  presents one histogram  counted on all learning samples at position of rectangle .  

3.3.  Integration phase 

 In the conventional SWA algorithm, it is not necessary to utilize feature information. Our 

proposed method is a modification of SWA by combining visual information and a posteriori 

probability of road. This helps to improve accuracy of segmentation considerably in road 
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detection. Let  denote a set of road region probability. Here  

denotes an output of the road identifier at position , and  denotes the number of the pixels of 

the input image. The average road region is calculated by the following condition;  

 .       (12) 

 We use intensity of the image as visual information, and also use the road-region 

probability of the road identifier. In the construction of a new level of s , the weight is generated 

according to using a fine-scale weight and interpolation matrix. We modify  to account for 

similarity of the road region between two aggregates k  and l  as follows;  

  .     (13) 

 In practice, we can combine more information from average intensity, road region, and 

result of previous frame for calculating frame. The equation (13) is modified as follows;  

    (14) 

where  is the average intensity of image at level  and  is the segmentation result of 

previous frame at level . In this process, an image is given as input and the a priori road 

identifier has been trained. Firstly, the feature of  is extracted from sequential input images 

for each pixel and we estimate its probability of road region from the road identifier. Secondly, a 

fitness level graph is generated for the SWA algorithm. Then, weights at the finest-level graph 

are the intensity contrast. During the coarsening procedure, the average road region of the 

aggregates is calculated by fine-tuning weights between them. This procedure allows the 

neighboring aggregates of similar road region to merge at the next levels of the coarsening 

process and permits the aggregates of different road region to stand out.  

3.4. Road-boundary selection and rectification 

 Results of road segmentation process is corrected by using results of learning phase and 

the principle lines of depth-map images. Based on feature  of the current frame, 

 is calculated to provide a map of probability for each block in the current frame. 

To keep the smoothness boundary of road, we combine principle lines of depth-map images with 

result of the SWA algorithm at the lower level of the pyramid. In practice, we select the lower 

level s  until there ia a boundary which can be matched to the principle lines of depth-map 

image. Then, the boundary of road is selected by the average probability of road region in each 

segmented regions. If the average probability value of one saliency is larger than a threshold , 

it will be recorded as a road region. Otherwise, it is a non-road region. This is described in eq. 

(15) as follows;  

     (15) 

where  is a classification function of road region and non-road region, and  is an 

expectation of  calculated in a saliency . This step is useful to prevent large error 

which usually appears in the two-segment results, road and non-road, of the SWA algorithm. 

Figure 5a presents a result of two-segment level in the SWA algorithm. There is error in the left 

side of the image caused by weighted aggregation as shown in Fig. 5b. Figure 5b describes a 
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result of the SWA algorithm for a level of , where the principle lines of depth map is 

matched to segmentation boundary. Figure 5c presents a map of a posteriori probability with its 

segmented regions for the current frame. In Fig. 5c, the average probability of  is 

presented for each segmented region . Figure 5d describes the final result of segmentation. Its 

regions are correspondent to saliencies of the map of a posteriori probability in Fig. 5c such that 

its average probability is larger than a threshold  and it belongs to the road region of Fig. 5a. 

  

a) Two-segment result b) Multi-segment result matched to principle 

line of depth map 

  

c) Probability map of segments d) Final result  

Figure  5.  Sample result of rectification 

4. SIMULATIONS 

 In simulation, our proposed method is applied into video sequences with 10 frames per 

second. Images in video sequence are gray scale image with the size of 184 × 130.  

Table1. Parameters 

  Parameter Value 

1δ  0.25 

2δ  0.25 

1α  4 

r  7 

2α  2 

 ρ  0.6 
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Figure  6. Error calculation 

   In the set of ground truth using in learning step, there are 50 pictures for turning left road, 

50 pictures for turning right, and 30 pictures for running straight. We use k-mean algorithm to 

classify small rectangles of ground truth images into road and non-road classes based on their 

intensity. After that, a normalization on the distribution of road and non-road patches for each 

position in the size of 184 × 130 is applied to get a priori probability . This process 

takes 168.4 second. In eq. (14), the values of , and 
 
 are set to 4, 7, 2, and 0.6, 

respectively. The value of  plays an important role for road information, and the value of 
 
 is 

the lower bound of road-region probability. The selection of 
 
value is based on the probability 

values of all road patches in training process. If it is larger, the segmentation of road region is 

more confident and its boundary is also smaller. We have observed influences of parameter   to 

our algorithm in many video sequences with a total length of 12 minutes and a video rate of 10 

frames per second. Table 1 presents a summary of all parameter values. The error of our method 

is calculated as follows;  

         (16) 

where  and it denotes error regions,   denotes road regions in the 

ground truth generated manually,  denotes the road region of segmentation result, and   

denotes the whole image. The operator  returns the number of pixels belonging to region . 

It is noticed that these parameters mentioned above express an important degree of information 

in weighting of segmentation. The changes of surrounding environment will affect to one 

parameter  only. In our experiments,  is set to 0.6 for sunny conditions. It should be set to a 

value larger than 0.6 when the front light of car is turned on. Figure 6 presents one sample of the 

ground-truth boundary , segmentation result   and error regions . Results corresponding 

to some frames in our experimental video are presented in Fig. 7. Figure 7(a) presents the 

original image with the road boundary in the ground truth. Figures 7(b) to 7(e) present the 

segmentation results corresponding to some changes of . 
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a) Ground truth 

 

b) r = 3, Error = 11,7% 

 

c) r = 7, Error = 3,7% 

 

d) r = 10, Error = 11,1% 
 

e) r = 15, Error = 10,3% 

Figure  7.  Varying parameter of r 

 

It shows that the average error of road segmentation is smaller than 6.3% when the value of 

 is equal to 7. In practice, an autonomous driving car must have a GPS device to locate its 

position on road map. The GPS system, steering angle sensor, and road map recorded in car 

navigation will help our algorithm estimate the next direction of car movement. Our method 

takes 300 ms per frame by the Matlab program with a CPU of Dual-Core Xeon 3.0 GHz. In the 

C program, it takes an average time of 126 ms per frame. Table 2 presents a comparison with the 

previous work using single camera in road detection. Our proposed method can return a correct 

boundary and integrate information from many other sources easily. From our point of view in 

practice, road detection problem could not be solved completely by using only one picture of a 

single camera. The common errors are overland boundary and not excluding vehicles on road 

region. Therefore, we utilize the source of information coming from the previous frames and 

road patterns. It is shown that we can combine many sources of information easily to improve 

robustness and accuracy of road detection based on segmentation method.  Comparison of road-

detection methods using only single camera  

Methods Merit Drawbacks 

 Jeong et.al.[10] - Low complexity (0.02 s, 160 × 

160) 

- Incorrect boundary 

 Lombardi et.al.[13] - Correct boundary - High complexity and not 

excluding vehicle on road 

 Sha et.al.[24] - Low complexity  - Not clear boundary and sensitive 

with shadow 

 Proposed method  - Correct boundary, excluding 

vehicle on road, integrating 

information easily 

- High complexity  (0.126 s,             

184 × 130) 

5. CONCLUSIONS 

 We have proposed a road detection method based on image segmentation algorithm. Our 

proposed method is a combination of visual information in stereo images and a posteriori 
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probability for the detection of road in the urban environment. The proposed method has been 

applied on many video sequences under varying urban road condition and returns a robust result 

in varying illumination, environment, and shape of road. In those results, vehicles on road are 

also classified correctly without any post- or pre-process. Moreover, it is easy to integrate many 

other source of information such as data of GPS and laser range sensor into our proposed 

method to make a robust and confident system of road detection.   
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