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ANALYZING AND OPTIMIZING OF A PFLUGER COLUMN 

TRAN DUC TRUNG, BUI HAI LE, CAO QUOC HUONG 

ABSTRACT 

The optimal shape of a Pfluger column is determined by using Pontryagin’s maximum 

principle (PMP). The governing equation of the problem is reduced to a boundary-value problem 

for a single second order nonlinear differential equation. The results of the analysis problem are 

obtained by Spectral method. Necessary conditions for the maximum value of the first 

eigenvalue corresponding to given column volume are established to determine the optimal 

distribution of cross-sectional area along the column axis. 

Keywords: optimal shape; Pontryagin’s maximum principle. 

1. INTRODUCTION 

The problem of determining the shape of a column that is the strongest against buckling is 

an important engineering one. The PMP has been widely used in finding out the optimal shape 

of the above-mentioned problem.  

Tran and Nguyen [12] used the PMP to study the optimal shape of a column loaded by an 

axially concentrated force. Szymczak [11] considered the problem of extreme critical 

conservative loads of torsional buckling for axially compressed thin walled columns with 

variable, within given limits, bisymmetric I cross-section basing on the PMP. Atanackovic and 

Simic [4] determined the optimal shape of a Pfluger column using the PMP, numerical 

integration and Ritz method. Glavardanov and Atanackovic [9] formulated and solved the 

problem of determining the shape of an elastic rod stable against buckling and having minimal 

volume, the rod was loaded by a concentrated force and a couple at its ends, the PMP was used 

to determine the optimal shape of the rod. Atanackovic and Novakovic [3] used the PMP to 

determine the optimal shape of an elastic compressed column on elastic, Winkler type 

foundation. The optimality conditions for the case of bimodal optimization were derived. The 

optimal cross-sectional area function was determined from the solution of a nonlinear boundary 

value problem. Jelicic and Atanackovic [10] determined the shape of the lightest rotating column 

that is stable against buckling, positioned in a constant gravity field, oriented along the column 

axis. The optimality conditions were derived by using the PMP. Optimal cross-sectional area 

was obtained from the solution of a non-linear boundary value problem. Atanackovic [2] used 

the PMP to determine the shape of the strongest column positioned in a constant gravity field, 

simply supported at the lower end and clamped at upper end (with the possibility of axial 

sliding). It was shown that the cross-sectional area function is determined from the solution of a 

nonlinear boundary value problem. Braun [5] presented the optimal shape of a compressed 

rotating rod which maintains stability against buckling. In the rod modeling, extensibility along 

the rod axis and shear stress were taken into account. Using the PMP, the optimization problem 



 2

is formulated with a fourth order boundary value problem. The optimally shaped compressed 

rotating (fixed-free) rod has a finite cross-sectional area on the free end. 

In this paper we determine the optimal shape of a Pfluger column – a simply supported 

column loaded by uniformly distributed follower type of load (see Atanackovic and Simic [4]). 

Such load has the direction of the tangent to the column axis in any configuration and does not 

have a potential, i.e., it is a non-conservative load. The results of the analysis problem are 

obtained by Spectral method. 

PMP allows estimating the maximum value of the Hamiltonian function that satisfies the 

Hamiltonian adjoint equations instead of solving the minimum objective functions directly. An 

analogy between adjoint variables and original variables holds for some cases. This is an 

advantageous condition to determine the maximum value of the Hamiltonian function.  

Although PMP have been investigated, the objective function is still implicit, the sign of 

the analogy coefficient k is indirectly determined and the upper and lower values of the control 

variable are unbounded. The present work suggests a method of supposition to determine k 

directly and exactly. The Maier functional, which depends on state variables in fixed locations, 

is used as the objective function from a multicriteria optimization viewpoint. The bounded 

values are set up for the control variable. 

The present paper is organized as follows: following the introduction section is presented 

formulation of the problem, optimization problem is considered in section 3, results and 

discussion are given in section 4, and final remarks are summarized in section 5. 

2. FORMULATION OF THE PROBLEM 

The formulation of the problem is established basing on Atanackovic and Simic [4] and 

Atanackovic [1]: 

Consider a column shown in Fig. 1. The column is simply supported at both ends with end 

C movable. The axis of the column is initially straight and the column is loaded by uniformly 

distributed follower type of load of constant intensity q0. We shall assume that the column axis 

has length L and that it is inextensible. 

Let x-B-y be a Cartesian coordinate system with the origin at the point B and with the x axis 

oriented along the column axis in the undeformed state. The equilibrium equations could now be 

derived 

x

dH
q

dS
= − ;   

y

dV
q

dS
= − ;   cos sin

dM
V H

dS
θ θ= − +     (2.1) 

where H and V are components of the resultant force (a force representing the influence of the 

part (S, L] on the part [0, S) of the column) along the x and y axis, respectively, M is the bending 

moment and θ is the angle between the tangent to the column axis and x axis. Also in (2.1) qx 

and qy are components of the distributed forces along the x and y axis respectively. Since the 

distributed force is tangent to the column axis we have 

0 cosxq q θ= − ;    0 sinyq q θ= −       (2.2) 

To the system (2.1) we adjoin the following geometrical 

cos
dx

dS
θ= ;    sin

dy

dS
θ=      (2.3) 
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Figure 1. Coordinate system and load configuration 

and constitutive relation 

d M

dS EI

θ
= .       (2.4) 

In (2.3) and (2.4) we use x and y to denote coordinates of an arbitrary point of the column 

axis and EI to denote the bending rigidity. The boundary conditions corresponding to the column 

shown in Fig. 1 are 

x(0) = 0;    y(0) = 0;    M(0) = 0;    y(L) = 0;   M(L) = 0;   H(L) = 0.   (2.5) 

The system (2.1)–(2.5) possesses a trivial solution in which column axis remains straight, 

i.e., 

H
0
(S) = - q0(L-S);    V

0
(S) = S;    M

0
(S) = 0;    x

0
(S) = S;    y

0
(S) = 0;    θ0

(S) = 0. (2.6) 

In order to formulate the minimum volume problem for the column we take the cross-

sectional area A(S) and the second moment of inertia I(S) of the cross-section in the form 

A(S) = A0a(S);    I(S) = I0a
2
(S)      (2.7) 

where A0 and I0 are constants (having dimensions of area and second moment of inertia, 

respectively) and a(S) is cross-sectional area function. For the case of a column with circular 

cross section we have the connection between A0 and I0 given by I0 = (1/4π)
2

0A . Let ∆H,…, ∆θ 

be the perturbations of H,…, θ defined by 

H = H
0 + ∆H; V = V

0 + ∆V;  M = M
0 + ∆M;  x = x

0 + ∆x;    y = y
0 + ∆y; θ = θ0 + ∆θ.  (2.8) 

Then, by introducing the following dimensionless quantities 

2

0

HL
h

EI

∆
= ; 

2

0

VL
v

EI

∆
= ; 

0

ML
m

EI

∆
= ; 

x

L
ξ

∆
= ; 

y

L
η

∆
= ;  

S
t

L
= ;  

3

0

0

q L

EI
λ =   (2.9) 



 4

and by substituting (2.7) in (2.1)–(2.5) we arrive to the following nonlinear system of equations 

describing nontrivial configuration of the column 

( )

2

1 cos ;

sin ;

cos [ (1 ) ]sin ;

1 cos ;

sin ;

.

h

v

m v t h

m

a

λ θ

λ θ

θ λ θ

ξ θ

η θ

θ

= − −

= −

= − + − − +

= −

=

=

&

&

&

&

&

&

      (2.10) 

where ( ) ( ) /d dt• = •& . The boundary conditions corresponding to (2.10) are 

ξ(0) = 0;    η(0) = 0;    m(0) = 0;    η(1) = 0;    m(1) = 0;    h(1) = 0.   (2.11) 

Note that the system (2.10)–(2.11) has the solution h(t) = 0,…, θ(t) = 0 for all values of λ. 

Next we linearize (2.10) to obtain 

2

0;

;

(1 ) ;

0;

;

.

h

v

m v t

m

a

λθ

λ θ

ξ

η θ

θ

=

= −

= − + − −

=

=

=

&

&

&

&

&

&

       (2.12) 

By using boundary conditions (2.11) in (2.12) we conclude that h(t) = ξ(t) = 0 and the rest 

of Eqs (2.12) could be reduced to 

2
(1 ) 0m t m

a

λ
+ − =&&       (2.13) 

subject to: 

m(0) = m(1) = 0.      (2.14) 

The system (2.13) – (2.14) constitutes a spectral problem. 

3. OPTIMIZATION PROBLEM 

To determine the optimal shape of the column, we will use the PMP (Geering [8]). Let us 

write optimization problem as: find out a(t), amin ≤  a(t) ≤ amax, t ∈ [0, 1], satisfies the objective 

function 

1(1 ) min .J JG k k Jλ λλ= − − + =     (2.15) 

where λ1 is the first dimensionless eigenvalue, kλJ is non-negative weight, kλJ ∈ [0, 1], the 

dimensionless volume of the column J is defined as 
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1

0

( )J a t dt= ∫        (2.16) 

The state differential equations are 

1 2x x=& ;    1
2 12

(1 )x t x
a

λ
= − −& .     (2.17) 

subject to  

x1(0) = x2(1) = 0.      (2.18) 

Proposition: with the above-mentioned suppositions, Eqs. (2.15)–(2.18), the Hamiltonian 

function H is maximized, and the analogy coefficient k between adjoint variables and original 

variables is positive, where: 

2 21
2 12

1
(1 ) maxJH x t x k a

k a
λ

λ 
= − − − − =  

(in a).    (2.19) 

Proof. 

The first eigenvalue λ1 is here considered as a state variable. It means that the role of λ1 is 

equivalent to those of x1 and x2 in the state differential equations (2.17). The volume of the 

column J is also a state variable. So, the state equations (2.17) can be rewritten in the form 

1 2

1
2 12

1

(1 )

0

x x

x t x
a

J a

λ

λ

=

 = − −

 =


=

&

&

&

&

       (2.20) 

The objective function can be rewritten in term of the Maier’s one:  

1(1 ) (1) (1) minJ JG k k Jλ λλ= − − + = .     (2.21) 

From the Eqs. (2.20) the Hamiltonian function H can be established in the form as follows 

1
1 2 2 1 1 12

(1 )x x JH p x p t x p p a
a

λ

λ
λ

 
= + − − + +  

& ,  0λ =& .   (2.22) 

The adjoint equations can be expressed in the following form: 

1
1 22

1

(1 )x x

H
p t p

x a

λ∂
= − = −

∂
&       (2.23a) 

 

2 1

2

x x

H
p p

x

∂
= − = −

∂
&        (2.23b) 

1 1 22

1

1
(1 ) x

H
p t x p

a
λ

λ

∂
= − = −

∂
&        (2.23c) 
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0
J

H
p

J

∂
= − =

∂
&        (2.23d) 

The conjugate variables 1 2 1, , ,x x Jp p p pλ  are determined from the expression: 

1 1

(1) (1) (0) (0) 0
n n

i i i i

i i

p x p x Gδ δ δ
= =

− + =∑ ∑ .    (2.24) 

Thus 

1 1 2 2 1 1(1) (1) (1) (1) (1) (1) (1) (1)
x x J

p x p x p p Jλδ δ δλ δ+ + +

1 1 2 2 1 1 1(0) (0) (0) (0) (0) (0) (0) (0) (1 ) (1) (1) 0
x x J J J

p x p x p p J k k Jλ λ λδ δ δλ δ δλ δ− − − − − − + = (2.25) 

or 

[ ] [ ]1 1 2 2 1 1(1) (1) (1) (1) (1) (1 ) (1) (1) (1)x x J J Jp x p x p k p k Jλ λ λδ δ δλ δ+ + − − + +  

1 1 2 2 1 1(0) (0) (0) (0) (0) (0) (0) (0) 0x x Jp x p x p p Jλδ δ δλ δ− − − − = .  (2.26) 

Hence 

2 2 1 1(1) (0) 0; (1) 1 ; (0) 0; (1) ; (0) 0x x J J J Jp p p k p p k pλ λ λ λ= = = − = = − =   (2.27) 

assigning 

1 2 2 1;x H x Hp x p x= − =        (2.28) 

We obtain 

1 2H Hx x=& ; 1
2 12

(1 )
H H

x t x
a

λ
= − −& .     (2.29) 

subject to 1 1(1) (0) 0H Hx x= = .     (2.30) 

It is seen that Eqs. (2.17) are similar in form as ones of (2.29) and the boundary conditions 

(2.18) are also similar in form as the conditions (2.30). As a result, we reached the following 

conclusion: the same analogy between the adjoint variables and the original variables holds, or 

1 1 2 2;H Hkx x kx x= = .      (2.31) 

The sign of k can be determined by integrating the Eq. (2.23c) with appropriate conditions 

in Eq. (2.27): 

1 1 2

1
1 1 1 2

0 0

(1 )1
(1) (0) 1 0J

t x
p dt p p k dt

k a
λ λ λ λ

−
= − = − = >∫ ∫&    (2.32) 

Thus, the sign of the analogy coefficient k is larger than zero for the case of maximizing λ1. 

It was demonstrated by considering the first eigenvalue λ1 as a state variable. The Hamiltonian 

function (2.22) will be maximized if: 

2 21
2 12

1
(1 ) maxJH x t x k a

k a
λ

λ 
= − − − − =  

 (in a).   (2.19) 

Thus, basing on the PMP in optimal control for above-mentioned system’s first eigenvalue, 

the obtained optimal necessary conditions consist of: the state equations (2.17), the boundary 
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conditions (2.18), the control variable a(t) ∈ [amin, amax] and the maximum conidition of the 

Hamiltonian function (2.19). 

 

 

 

 

 

 

 

Figure 2. The general algorithm used in the present work 

From the multicriteria optimization viewpoint, the Pareto front between the criterion (λ1, J) 

is build basing on the Definition 6 in Coello Coello et al. [6] (page 10): A solution x ∈ Ω is said 

to be Pareto-optimal with respect to Ω if and only if there is no x’ ∈ Ω for which v = 

F(x’)=(f1(x’),...,fk(x’)) dominates u = F(x)=(f1(x),...,fk(x)). The phrase Pareto-optimal is meant 

with respect to the entire decision variable space unless otherwise specified. In words, this 

definition says that x* is Pareto-optimal if there exists no feasible vector x which would decrease 

some criterion without causing a simultaneous increase in at least one other criterion (assuming 

minimization). 

4. RESULTS AND DISCUSSION 

4.1. Validation of the model 

In order to verify results obtained in the present work, the model in Atanackovic and Simic 

[4] is studied for both validation analysis and optimization problems.  

4.1.1. Analysis problem 

The first eigenvalue of the studied column with constant circular cross-section was shown 

in Table 1. 

Table 1. The first eigenvalue of the studied column 

Methods 
The first eigenvalue λ1 

a(t) = 1 a(t) = 0.81051 

Present 18.957240 12.453513 

Atanackovic and Simic [4] 18.956266 12.452807 

4.1.2. Optimization problem 

We take J = 0.81051, 0 < a(t) < ∞. The aim of this section is to determine the column’s 

optimal shape (variable circular cross-section) and maximum value of λ1 according to above 

input data. The results are shown in Table 2 and Fig. 3. 

a(t) 

(initial) 

Optimization module 

Results  

a(t), λ1, J 
Analysis module 

a(t) 

(new) 

True 

False 

 Converged 

(λ1, J) 
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Table 2. The maximum value of λ1 

Methods 

Present 18.950876 

Atanackovic and Simic [4] 18.956266 

Via sections 4.1.1 and 4.1.2, it is evident that the results of the authors, those of 

Atanackovic and Simic [4] are in good agreement (see Atanackovic and Simic [4] to compare 

the column’s optimal shape). 

 

Figure 3. The column’s optimal shape 

4.2. Results and discussion for the optimization problem of the authors 

The content of the problem consists in finding out the changing rule of the circular cross-

section a(t) ∈ [amin, amax], t ∈ [0, 1] which satisfies the state differential equations (2.17); 

maximizing the first eigenvalue λ1; the total volume J of the column is given. We take amin = 0.9; 

amax = 1.1. Thus, J ∈ [0.9, 1.1]. 

4.2.1. Optimization problem with above-mentioned input data 

Table 3. The maximum values of λ1 corresponding to five cases of J in the section 4.2.1 

Notation J λ1 

Case 1a 1.100 22.937693 

Case 2a 1.050 22.817520 

Case 3a 1.000 21.570576 

Case 4a 0.950 18.705883 

Case 5a 0.900 15.354985 
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The results shown in Table 3 and Fig. 4 are the maximum values of λ1, the column’s 

optimal shape configurations corresponding to five cases of J.  

The Pareto front or trade-off curve which includes the set of points that bounds the bottom 

of the feasible region is shown in Fig. 5.  

4.2.2. Optimization problem with above-mentioned input data and an additional constraint 

The additional constraint in this section is that a(t) = 1, t ∈ [0.1, 0.2]. It means that the 

distribution of the cross-sectional area along the column axis is discontinuous.  

The results described in the Table 4, Figs. 5 & 6 are the maximum values of λ1, the 

column’s optimal shape configurations corresponding to five cases of J and the Pareto front. 

 

Figure 4. The column’s optimal shape configurations corresponding to five cases of J in the section 4.2.1 

Table 4. The maximum values of λ1 corresponding to five cases of J in the section 4.2.2 

Notation J λ1 

Case 1b 1.089 22.431435 

Case 2b 1.050 22.386033 

Case 3b 1 21.487410 

Case 4b 0.950 18.427398 

Case 5b 0.911 15.661187 
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Figure 5. The Pareto front of the optimization problem in the section 4.2.1 

 

 

Figure 6. The column’s optimal shape configurations in the section 4.2.2 

 

A(λ1 max, J min) 
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Figure 7. The Pareto front of the optimization problem in the section 4.2.2 

4.2.3. Discussion 

From the Table 3&4, we can see that the maximum value of the first eigenvalue λ1 is 

directly proportional to the value of the column’s volume J. It is a sensible relation.  

The results shown in Fig. 4 & 6 are the column’s optimal shape configurations 

corresponding to five cases of J and two cases of constraints. So, the optimization problem could 

be solved for both continuous and discontinuous control variables. 

The Pareto front represents the possible trade-off among different objectives (λ1, J). From 

the Fig. 5 & 7, we reached the following conclusion: we never have a situation in which all the 

objectives can be in a best possible way satisfied simultaneously (point A). 

5. CONCLUSION 

This paper mentioned about the optimal design of a Pfluger column. The objective function 

used in this research is the Maier functional from a multicriteria optimization viewpoint (λ1, J). 

The sign of the analogy coefficient k between the adjoint and the original variables was 

determined exactly. The optimal necessary conditions for the objective function (2.15) were 

established. The results can be applied to determine the shape of a column that is the strongest 

against buckling under some given conditions. Using an optimal control principle – PMP – 

shows that we can control the value of the Pfluger column’s first eigenvalue with the bounded 

and unbounded control variables. 
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TÓM TẮT 

Biên dạng tối ưu của cột Pfluger được xác định nhờ nguyên lí cực đại Pontryagin. Phương 

trình chủ đạo của bài toán được rút gọn thành một bài toán giá trị biên của phương trình vi phân 

bậc hai phi tuyến. Kết quả của bài toán phân tích nhận được nhờ phương pháp Spectral. Điều 

kiện cần đối với trị riêng thứ nhất cực đại được thiết lập để xác định phân bố tối ưu của diện tích 

mặt cắt ngang dọc theo trục của cột. 
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