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ABSTRACT 

We propose a new quantum algorithm for the Traveling Salesman Problem (TSP). The 

algorithm is an extension of our recently introduced pattern search algorithm, which based on 

Hough transformation and Grover algorithm. Based on Lehmer code we directly build the circuit 

of acted elements of the symmetric group nS , and have a chance to add some heuristic 

informations. The result is a way of re-indexing elements of nS , so that a permutation that is a 

solution could be found at small indexes. The pattern search algorithm is then applied on a 

searching space that its size was reduced significantly. 

Keywords. Black-box, query complexity, pattern searching, TSP, symmetric group, Lehmer 

code. 

1.  INTRODUCTION 

Let us consider the following problem [6], [7]. Denote { : }F f X Y  , where 

{0,1} , {0,1}n mX Y   and ,m n  two positive integers. Assume that G is a group acting on X , 

then G  generates an action group G  on F , for each g G  there is a g G   defined by [9] 

1( ) ( ).g g
f x f x   

Problem 1. Given ,f h F , find g G  such that 1( ) ( ), ,g g
f x h x x x B   , where 

{ | ( ) 0}B x h x  . 
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In the black-box model, the inputs to the problem are provided by black-boxes have the 

form: 

  ,fx y U x y x y f x      (1) 

where f F . 

Let us remind that the query complexity [11] of a black-box algorithm is the number of 

queries to black-boxes used by the algorithmand in general, the query complexity of a problem 

is the number of queries needed to solve the problem. 

According to (1), it is well-known the black-box group { }fU f F   a subgroup of 

group (2 )n mU 
. Group G acts as G  on  , for each g G  there is a g G  defined by 

1 ( ) ( )f g g
U x y x y f x   . 

Assume that { }t t TG g   is a group depends on parameters. The above transformation can 

be constructed as follows. 

 

Where 

1 ( )
t

G g
U t x t x  .     (2) 

Denote the tranformation by fG , we have 

1 ( ) ( ) .
t

f g
G t x y t x y f x    

Using the ideas of the voting technique based on Hough transformation [3, 4, 5, 12, 16] and 

the Grover’s algorithm [8, 10, 11], we constructed a quantum algorithm for solving problem (1) 

with the query complexity  | | /O B G k , where k is the number of the solutions, see [7]. In 

[6], we applied the algorithm for searching Hamiltonian cycles. However, the complexity is too 

large when G  is the symmetric group. 

In this paper we show how to build the transformation (2) in the case of G  is the 

symmetric group of X , by using the Lehmer code [15], then apply it to solve the TSP by 

effectively reducing the size of searching space. The main results is exposed in Section 3. 

The paper is organized as follows. First, in Section 2, we briefly review the main quantum 

algorithm produced in [7]. Then, in Section 3, we show the way of building (2) and apply to 

solve the TSP. The details of the quantum algorithms and Hough transformation can be found in 

the documents cited [1 - 5, 11, 13, 14, 16]. 
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2. PRELIMINARIES 

The main idea of the algorithms built in [6], [7] is to build the black-box dU  to evaluate 

the decision function d  is defined by 

   1( ) 1 ( ) ( ), . ,
t tg g

d t h x f x x x B      (3) 

Based on Hough transformation, 
tg  is voted by the voting function ( , )v t x  and then the 

total number of votes ( )s t  used to build dU (the Theorem (1) below). 

In process of building 
vU , we used the input black-boxes ( ,h fU U ) and following unitary 

tranformations. 

 

 
1 if 

where 
 otherwise

z x y
z

z

 
  


.  

2.1. The voting black-box 

Let C X , denote by C  the characteristic function of C . 

Lemma 1. [6] Suppose C X  and ,tg G , let { }
tt gC x x X  , then 1( ) ( )

t t
C C g

x x    

Back to the problem (1), in the case 1, { ( ) 1}m B x h x   , let { ( ) 1}A x f x  . 

Based on Hough transformation, the function ,B As  determines the total number of votes of B  

for tg  corresponding to A  is defined by [7] 

 , ( ) ( ) ( ).
tt

B A A Ag
x B x B

s t x x 
 

    

In the general case, 0m  , let 
1 1( ), ( ), 0y yB h y A f y y     , then 0{ }y yB   is an 

finite partition of B . The function ,h fs  determines the total number of votes of h  for tg  

corresponding to f  is defined as follows [7] 

, ,

0

( ) ( ).
y yh f B A

y

s t s t


  
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The following result is used to build the black-box dU  to evaluate the function d  for if t  

is a solution. The black-box dU  is then used for building the transform G  for Grover algorithm. 

Theorem 1. [7] 

   1 ,( ) ( ), , ( ) .
t t

h fg g
h x f x x x B s t B       (4) 

Notice 

   1 1( ) ( ), , ( ) ( ), .
t t t

g g g
h x f x x x B h x f x x B         

Denote by 

  ( ) ( ) .
tf gt x y tG y f xx        (5) 

Let b  be an index function of B , applying | |B  times the circuit below, called vU  we get sU .  

 

1 if ( ( )) ( ( ))
where .

otherwise

tg
z f b i h b i

z
z

 
  



 

2.2. The voting black-box with heuristic 

According to Grover algorithm, the query complexity for searching a solution is 

( / )O G k , where k  is the number of solutions. By using a proper heuristic we narrow down 

the searching space to a subset H G  [7]. Denote by a  an index function of H , the circuit 

vU  is adjusted as follows. 
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( )
1 if ( ( )) ( ( ))

where .
otherwise

a jgz f b i h b i
z

z

 
  




 

2.3. The problem of searching Hamiltonian cycle 

Let ( , )V E  be an oriented graph, where {0,1, , 1}V n    is the set of vertices and 

E X V V   the set of edges. Denote by nS  be the symmetric group of V , then nS  induces 

a group G  acting on X  defined by 

: ( , ) ( ( ), ( ))np S g G a b p a p b    

A Hamiltonian cycle is a subset 0 1 1 2 1 0{( , ),( , ), , ( , )}ni i i i i i defined by the permutation 

0 1 1

0 1 1

n

n

i i i




  
  

 
 

and vice-versa [6].  

The transform (2) is precisely built as follows 

 

Denote by {(0,1),(1,2), ,( 2, 1),( 1,0)}C n n n     , called the canonical Hamiltonian 

cycle, we solve the problem (1) with ,C Eh f    and determine the Hamiltonian cycle for 

each solution t  found. 
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3. THE NEW ALGORITHM FOR TSP 

The TSP is the problem for searching the shortest Hamiltonian cycle of a graph. In order to 

solve the problem we consider G is the symmetric group acting on the set of vertices of the 

graph. In this section we produce a type of numbering permutations based on Lehmer code. 

Depending on the specific problem we choose a proper way of numbering allows to search for a 

solution in a set of small indexes. 

3.1. Numbering permutations 

Let nG S  be the symmetric group of {0,1,..., 1}X n   and G  . Denote by 

 
0,..., 2

( ) i i n
L l

 
  the Lehmer code of  , then 

|{ | ( ) ( )}| .il j i j i     

It is not difficult to see how   can be reconstructed from the code ( )L   [15]: 

0( ) [ ]; , { (0),..., ( 1)}k k kk N l N X N X k        

3.2. An implementation of the symmetric group 

Using the cyclic permutation transformation 

0 1 1 1 2 0: ..... . ,cp k k kU x x x x x x x x   

and the extended control gates have form 

 
we easily construct the decode circuit for )(L  . The following example illustrates the case  

n = 4. 

Example 1. The circuit 
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decodes (0,2,1)l   to return (0,3,2,1)  . 

We number each permutation   by 
2

0

( ) ( 1)!
n

i

i

t l n i




    .  It is easy to recall ( )L   

by using the integer division. In order to build the circuit recall ( )L   we use the black-boxes 

to evaluate integer division 

: / ,

:

 

% .

p

r

U x n m

U

m n x m n

m n x nm n x m








 

The following example illustrates the case n = 5. 

Example 2. The circuit 

 

recalls 94 0 2 2! 3 3! 3 4!t          to return (3,3,2,0)L   is Lehmer code of 

permutation (3,4,2,0,1)  . 

Denote by decodeU  the decoded circuit and by recallU  the recalled circuit. The circuit for 

(5) is built as follows. 
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where copyU  is 

 

3.3. Renumber nS  for the TSP 

Adjusting the control values in the decode transformation decodeU  we renumber the 

symmetric group of X so that some solution tg  can be found at small indexes. In following 

example we use the greedy heuristic to adjust the control values. 

Example 3. Let G be an oriented graph defined by the edge set E  

 

Fix a vertex v V and consider group 4S  acts on { }V v . In the case 4v  , we substitute 

the set of control values {1,2,3;1,2;1} by {0,1,3;1,2;0}, then the first solution is at 1t   and 

the respective Hamiltonian cycle is {4,1,0,2,3,4}  with distance 22d  . Also with 1v   and 

select new set of control values is {1,2,3;1,0;1}, we get the first solution at 3t   and the 

respective Hamiltonian cycle is {1,0,3,4,2,1} with the distance 25d  . The circuit below is 

for the case 1v  . 
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4. CONCLUSION 

In this paper we continue to study the problem 1 started in [6, 7]. Based on Lehmer code 

we build a circuit for (5), where G is the symmetric group. Adjusting the set of control values of 

the circuit, we renumber elements of nS . In order to solve the TSP, we select a proper set of 

control values depend on an individual problem. By the way we apply the pattern seach 

algorithm for a subset H G . 
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