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ABSTRACT 

In this study, frequency optimization of stiffened folded laminate composite plate is 
investigated with respect to fiber orientations by using genetic algorithm (GA). The first order 
shear deformation theory was used for direct frequencies calculations. The Matlab programming 
using rectangular isoparametric plate element with five degrees of freedom per node was built to 
solve the problems. The modulus of selection, crossover and mutation were used as standard 
sub-modulus. The effects of obtained optimal fiber orientation on transient response of the 
folded plate have been investigated with difference boundary conditions. A good agreement was 
found between the results of this technique and other published results available in the literature. 

Keywords: frequency optimization, folded laminated composite plate, genetic algorithm, 
transient response, finite element. 

1. INTRODUCTION 

Now a day, folded laminate composite plates are very useful in engineering. Applications 
for them have been found almost everywhere in various branches of engineering, such as in 
roofs, ship hulls, sandwich plate cores and cooling towers, etc. They are lightweight, easy to 
form, economical, and have much higher load carrying capacities than at plates, which ensures 
their popularity and has attracted constant research interest since they were introduced. 

However, there is very limited information regarding the analysis of composite folded 
structures. Haldar and Sheikh [1] presented a free vibration analysis of isotropic and composite 
folded plate by using a sixteen nodes triangular element. Suresh and Malhotra [2] studied the 
free vibration of damped composite box beams using four node plate elements with five degrees 
of freedom (DOF) per node. Niyogi et al. [3] carried out a finite element vibration analysis of 
folded laminates by using first order plate theory and nine nodes elements. In their works, only 
in axis symmetric cross-ply laminated plates were considered. So that, there is uncoupling 
between the normal and shear forces, and also between the bending and twisting moments, then 
besides the above uncoupling, there is no coupling between the forces and moment terms. Peng 
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et al. [4] presented a analysis of folded plates subjected to bending load by the FSDT meshless 
method. In this, a meshfree Galerkin method based on the first-order shear deformation theory 
(FSDT) for the elastic bending analysis of stiffened and un-stiffened folded plates is analyzed.  

In previous works, Tran Ich Thinh and Bui Van Binh [5 - 8] presented a finite element 
method to analyze of bending, free vibration and time displacement response of V-shape; W-
shape sections and multi-folding laminate plate (which having trapezoidal corrugate plate) and 
stiffened folded laminate composite plate with in-axis configuration and off-axis configuration. 
In these studies, the effects of folding angles, fiber orientations, loading conditions, stiffener 
orientations, and boundary conditions have been investigated.  

All of those analyses only investigated for a given fiber configuration. The optimal problem 
is not readily available.  

Recently, Callahan and Weeks [9], Nagendra et al. [10], Le Riche and Haftka [11], Ball et 
al. [12] are among the first who adopted and used GA for stacking sequence design of laminated 
composite materials. GA has been used for several objective functions, such as strength [11, 13], 
buckling loads [11, 14 – 20], dimensional stability [21], strain energy absorption [22], weight 
(either as a constraint or as an objective to be minimized) [23, 24 - 27], bending/twisting 
coupling [17], stiffness [22, 28], fundamental frequencies [20, 24, 29], deflection [26] or finding 
the target lamination parameters [30].  

Maximum frequency problems are of practical importance in the design of laminates for 
against resonance due to external excitation. The frequency of an external excitation can be 
placed either between zero and the first fundamental frequency or in gap between two 
consecutive higher-order frequencies depending on its magnitude. Hence, the optimal stacking 
sequence is to be determined such that the fundamental frequency or the frequency separation is 
maximized. Add-on, a practical approach is to design a laminate out of plies 00, ± 450 and 900 
orientations only that does not cover all possibilities. 

On the other hand, only one author [31] has investigated frequency optimization of the 
laminated folded plate until now. The author presented a frequency optimization of 
symmetrically one- and two-fold folded composite plates by using the modified feasible 
direction method for the optimization routine and a program based on FORTRAN is used. 
However, the method of feasible directions (MFD) is created to solve optimization problems 
with inequality constraints. Starting from a feasible initial point, MFD tries to find a move to a 
better point without violating any of the constraints. Since a composite lay-up design problem 
usually includes several inequality constraints, MFD has been a good candidate for solving these 
problems. However, like other gradient-based methods, MFD is not always able to find the 
global optimum [32]. 

Therefore, in this study frequency optimization of the stiffened five folds folded laminate 
composite plate is investigated to fill this gap. The fundamental frequencies of the folded plates 
are maximized with respect to fiber orientations. The first-order shear deformation theory is used 
for vibration analysis of the folded plate. The GA method is used for this optimization analysis. 
The significant effects of obtained optimal fiber orientation on transient response of the folded 
plate are investigated for different boundary conditions. 

2. THEORY AND FORMULATION 

2.1. Displacement and strain field 
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According to the Reissner-Mindlin plate theory, the displacements (u, v, w) are referred to 
those of the mid-plane (u0, v0, w0) as: 
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here, xθ and yθ are the total rotations, xφ  and yφ are the constant average shear deformations 

about the y and x-axes, respectively. 

The z-axis is normal to the xy-plane that coincides with the mid-plane of the laminate 
positive downward and clockwise with x and y. 

The  generalized  displacement  vector  at  the  mid- plane  can  thus  be  defined  as  
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2.2. Finite element formulations 

The Hamilton variation principle is used here to derive the laminate equations of motion 

(see [33]). In laminated plate theories, the membrane{ }N , bending moment{ }M and shear 

stress{ }Q resultants can be obtained by integration of stresses over the laminate thickness. The 

stress resultants-strain relations expressed in the form: 
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n: number of layers, 1,k kh h− : the position of the top and bottom faces of the kth layer; [Q'ij]k and 
[C'ij]k : reduced stiffness matrices of the k

th
 layer [34].  

In the present work, eight nodded isoparametric quadrilateral element with five degrees of 
freedom per nodes is used. The displacement field of any point on the mid-plane given by:  
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where: ( , )iN ξ η  are the shape function associated with node i in terms of natural 

coordinates ( , )ξ η . 

The element stiffness matrix are given by:  
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The element stiffness matrix are given by: 
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The element mass matrix are given by: 
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where [ ]H  is the material stiffness matrix;  ρ  is mass density of material; m 
   is geometric 

inertia matrix (see [8]). 
Nodal force vector is expressed as:  
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where q  is the intensity of the applied load. 

For free and forced vibration analysis, the damping effect is neglected; the governing 
equations are [33]: 

..

[ ]{ } [ ]{ } {0}M u K u+ =  or { }[ ] [ ] {0}M K
2ω− =                   (11) 

and  
..

[ ]{ } [ ]{ } ( )M u K u f t+ = .                     (12) 

In which{ }u ,{ }u&& are the global vectors of unknown nodal displacement, acceleration, 

respectively. [ ]M ,[ ]K , ( )f t are the global mass matrix, stiffness matrix, applied load vectors, 

respectively. 

Where  
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with n is the number of element. 
When stiffener and folded plates are modeled by eight-nodded isoparametric rectangular 

plate element, the membrane and bending terms are coupled, as can be clearly seen in Fig.1. 
Even more since a rotation of the normal appear as unknowns for the Reissner–Mindlin model, it 
is necessary to introduce a new unknown for the in-plane rotation called drilling degree of 
freedom, θz. The rotation θz at a node is not measured and does not contribute to the strain 
energy stored in the element [8, 35]. The technique is used here: Before applying the 
transformation, the 40×40 stiffness and mass matrices are expanded to 48×48 sizes, to insert 
sixth θz drilling degrees of freedom at each node of a finite element. The off-diagonal terms 
corresponding to the θz terms are zeroes, while a very small positive number, we taken the θz 
equal to 10-4 times smaller than the smallest leading diagonal, is introduced at the corresponding 
leading diagonal term. The load vector is similarly expanded by using zero elements at 
corresponding locations. So that, for a folded element, the displacement vector of each node [5-8]:  

       { } [ ]{ }'u T u=                                                                             (14) 

[ ]
TT ' ' ' '

u u,v,w ;  u u ,v ,w = =    is the displacement of any generic point in global and local 

coordinate system, respectively; [ ]T  is the transformation matrix (see [7, 8]). 

 

 

 

   

 

    

 

 

 

 

 

 

Figure 1. Global (x, y, z) and local (x’, y’, z’) axes system for folded plate element, folding angle α. 

2.3. Genetic algorithm 

A genetic algorithm (GA) is an evolutionary optimization technique using Darwin’s 
principal of survival of the fittest to improve a population of solutions. If the population size is 
suitably large, GA is not at the risk of being stuck in a local optimum. However, finding a global 
solution is not necessarily guaranteed to be successful unless an infinite number of iterations are 
performed. Despite the high computational cost, GA has been the most popular method for 
optimizing the stacking sequence of a laminated composite [36]. Its simple coding, which 
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escapes gradient calculations, and its flexibility of being applied to a large variety of problems 
with different types of variables and objective functions make GA particularly useful for 
problems with multimodal functions, discrete variables, and functions with costly derivatives. 
The working principle of a GA is shown in Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Flow chart of genetic algorithm. 

When GA is applied to solve a practical problem, the parameter set of the problem first 
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In optimal problem of this paper, the GA is applied to determine optimal fiber orientation 
that the first frequency of the problem maximized. So that, the objective of optimization problem 
is formulated as: 

Maximization: ( )1 1 :  =1,2,3,4i iθω = ω  

Subjected to 0 0
1 2 3 40 , , , 90≤ θ θ θ θ ≤  

The natural frequency 1ω  for a given fiber orientation is determined from the finite element 

program given by Eq. (13).  
The parameters of the GA are given in Table 1 for all cases. 

Table 1. Parameter of genetic algorithm. 

Parameter Value 

Number of individuals 10 

Number of generations 100 

Generation gap 0.9 

Precision of variables 5 

Number of variables 4 (for θi: i = 1 - 4) 

3. NUMERICAL RESULTS 

3.1. Validation examples 

Firstly, to observe the accuracy of the present Matlab code and applied GA, the optimal 
fiber orientations of one fold and two folds folded laminate plate which plotted in Fig.3 are 
recalculated, which is a previously reported by Topal et al [31], 2008. Dimension parameters of 
the plate are illustrated in Fig 3 with L = 1 m, thickness of h = 0.01 L; for one-fold folded 
laminate plate: b1 = b2 = L/2; for two-folds folded laminate plate: b1 = b2 = b3 = L/3. Material 
properties (T300/5208 graphite/epoxy): E1 = 181 GPa, E2 = 10.3 GPa, G12 = 7.17 GPa, υ12 = 
0.28, density ρ = 1600kg/m3. The symmetrically laminates folded plate is constructed of four 
layers with θ1 = -θ2 = -θ3 = θ4 = θ. The thickness of each lamina is the same and not varied during 
the optimization. The results are compared with numerical results given by [31].  

The first natural frequencies obtained from the present code and the results obtained by 
[31] are present in table2 for comparison. It is observed that the optimal fiber orientations and 
non-dimensional frequencies are in good agreement with other authors results. 

Table 2. First five natural frequencies of isotropic stiffened flat plate. 

Boundary 
conditions 

One-fold Two-folds 

Topal et al [31] Present (GA) Topal et al [31] Present (GA) 

θopt(deg) ω  θopt(deg) ω  θopt(deg) ω  θopt(deg) ω  

CCFF 0 27.738 0 27.468 0 29.159 0 28.912 

CCCC 90 76.245 90 74.614 74.3 129.852 74.557 127.782 
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The non-dimensional frequency is defined as 2
2/ /L E hω = ω ρ . 

The boundary conditions are: 

(CCFF): Two edges clamped and two edges free: At y = 0 and y = L: clamped; At straight 
lines: free. 

(CCCC): Four edges clamped: At y = 0 and y = L: clamped; At straight lines: clamped. 

The geometry parameters are taken as: L = 1 m; total thickness t = 0.01 L; folding angle             
α = 1500. 

 

Figure 4, figure 5 plotted the variation of the population distribution as generations proceed 
in order to maximize the first fundamental frequency for different boundary conditions of one- 
and two folds folded laminated plates. 

From Figs. 4,  5 we can see that the optimal value converges around the generation of 40. 

 

 

z 

y 

x 

θ 

α 

b2 
b1 

L 

 

θ 

α 

z 

y 

x 

b2 

b1 

L 

b3 

One fold folded plate Two folds folded plate 
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Figure 5. The variation of the objective function value with generation using GA of two-folded plate. 

(a) and (b): Two-folds with CCFF and CCCC boundary condition, respectively. 
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In the following subsections, several new numerical examples have been analyzed. 

3.2 Study case: Folded laminated plate 

3.2.1. Free vibration analysis and frequency optimization 

Consider a five folds folded composite plate is shown in Fig. 6, the material properties 
shown in table 3, the dimension L = 1 m, total thickness t = 0.02 m, folding angle α = 1200.  

Four following cases for different stiffener orientations are studied: 

Case 1: Unstiffened folded composite plate (Fig. 6a). 

Case 2: Six x-stiffeners are attached below the folded plate running along the length of the 
clamped edges; width of stiffening plate taken equal to 5 cm and thickness remaining same as 
the original folded plate (Fig. 6b). 

Case 3: Two y-stiffeners are attached below the folded plate along transverse direction; 
width of stiffening plate taken equal to 5cm and thickness remaining same as the original folded 
composite plate (Fig. 6c). 

Case 4: Six x-stiffeners and one y-stiffener are attached below the folded plate (Fig. 6d). 

The boundary conditions are: 

- Clamped: at edges AB and CD: u = v = w= θx = θy = θz = 0. 

- Cantilever plate: clamped all edges at x = 0; (u = v = w= θx = θy = θz = 0). 
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Figure 6. Geometry of stiffened five-folds folded composite plate. 
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Figure 4. The variation of the objective function value with generation using GA of one-folded plate 

(a) and (b): One-fold with CCFF and CCCC boundary condition, respectively. 
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Table 3. Graphite-Epoxy (AS4/3501) material properties. 

E1 (GPa) E2 (GPa) G12 (GPa) G23 (GPa) G13 (GPa) υ12 ρ (kg/m3) 

144.8 9.67 4.14 3.45 4.14 0.3 1500 

Before frequency optimization, the folded plate with two basically lamination schemes: 
symmetric and anti-symmetric off-axis configurations [450/-450/450/-450/-450/450/-450/450]; 
[450/-450/450/-450/450/-450/450/-450] and [600/-600/600/-600/-600/600/-600/600]; [600/-600/600/-
600/600/-600/600/-600] are taken to free vibration analysis. The reasons that we take the 
configurations to investigate in this section are [34]: For symmetric laminates, from the 
definition of [Bij] (see Eq. 4) matrix, it can be proved [Bij] = 0. Hence, there is uncoupling 
between the bending deformation and shear strain. For anti-symmetric laminate, the matrix [Bij] 
do not vanish. However, these two types of laminate configurations have uncoupling bending-
twisting. For this reason, the method used for calculating natural frequency should take into 
account this effect in order to avoid the associated error and the resulting false optimum designs. 

Then, the optimization procedure involves the stages of evaluating the natural frequencies 
and improving the fiber orientation θi to maximize the first frequency ω1 using genetic 
algorithm. 

The configurations of the folded laminate plates for optimal design are:  

Symmetric configurations: [θ1
0/-θ2

0/θ3
0/-θ4

0/-θ4
0/θ3

0//-θ2
0/θ1

0]: and we denoted as OPT_SC1; 
OPT_SC2; OPT_SC3 and OPT_SC4 for cases (1 to 4), respectively. 

Anti-symmetric configurations: [θ1
0/-θ2

0/θ3
0/-θ4

0/θ4
0/-θ3

0//θ2
0/-θ1

0]: similarly, we denoted as 
OPT_Anti_SC1, OPT_Anti_SC2, OPT_Anti_SC3 and OPT_Anti_SC4 for cases (1 to 4), 
respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The first three natural frequencies of the given symmetric and anti-symmetric off-axis 
configurations and obtained optimal frequencies of the plates are compared in Table 4 for 
clamped at edges AB,CD and in Table 5 for folded cantilever plates, respectively. 
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Figure 7 to figure 10 are shown for the variation of the population distribution as 
generations proceed in order to maximize the first fundamental frequency for cases (1 to 4) with 
clamped at edges AB and CD. 

 From Table 4 and Table 5, it is observed that the optimal natural frequencies of anti-
symmetric and symmetric configurations are similar for all studied cases. All the obtained 
optimal solutions exhibit higher natural frequencies than those given routine configurations. 
Case 3 gives the highest optimal frequency among the four cases, although mass added is least in 
the stiffened folded plates. 

When the plates clamped at edges (AB, CD), case 1 and case 2 give the same optimal 
stacking sequences but the first optimal frequency f1 of case 2 is lower than optimal frequency of 
case 1. The phenomenon should be explained that the flexural rigidity of the plate decrease as 
the effect of inertial momentum of x-stiffeners. The optimal frequency of case 4 do not make any 
significant change over the unstiffened folded plates, although mass of structure is increase. 

Figures 11 to figure 14 are shown for the variation of the population distribution as 
generations proceeds in order to maximize the first fundamental frequency for cases (1 to 4) with 
cantilever boundary condition. The optimal values were determined around the generation of 45. 

Table 4. Frequency optimization of five folds folded plate with respect to fiber orientations. 

Boundary condition: Clamped at edges AB and CD 

 Fiber orientations 
Natural frequencies 

f1 f2 f3 

Case 1 

SC1_1 [450/-450/450/-450/-450/450/-450/450] 17.38 36.27 49.15 

SC1_2 [600/-600/600/-600/-600/600/-600/600] 11.46 23.88 39.56 

Anti_SC1_1 [450/-450/450/-450/450/-450/450/-450] 17.54 36.57 49.12 

Anti_SC1_2 [600/-600/600/-600/600/-600/600/-600] 11.54 24.15 40.05 

OPT_SC1 [00/00/00/00/00/00/00/00] 33.57 56.47 71.68 
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Figure 9. The variation of the objective function 
value for Case 3 with anti-symmetric configurations 

and clamped at edges AB, CD: OPT_Anti_SC3. 
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Figure 10. The variation of the objective function 
value for Case 4 with anti-symmetric configurations 

and clamped at edges AB, CD: OPT_Anti_SC4. 
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OPT_Anti_SC1 [00/00/00/-10/10/00/00/00] 33.57 56.34 71.78 

Case 2 

SC2_1 [450/-450/450/-450/-450/450/-450/450] 16.83 35.42 47.71 

SC2_2 [600/-600/600/-600/-600/600/-600/600] 11.14 23.18 39.42 

Anti_SC2_1 [450/-450/450/-450/450/-450/450/-450] 16.97 35.28 48.15 

Anti_SC2_2 [600/-600/600/-600/600/-600/600/-600] 11.25 23.48 39.52 

OPT_SC2 [00/00/00/00/00/00/00/00] 32.13 54.42 68.26 

OPT_Anti_SC2 [00/00/00/00/00/00/00/00] 32.14 54.17 68.34 

Case 3 

SC3_1 [450/-450/450/-450/-450/450/-450/450] 23.15 51.41 55.23 

SC3_2 [600/-600/600/-600/-600/600/-600/600] 20.15 49.36 50.97 

Anti_SC3_1 [450/-450/450/-450/450/-450/450/-450] 23.13 51.27 54.93 

Anti_SC3_2 [600/-600/600/-600/600/-600/600/-600] 19.46 49.05 51.23 

OPT_SC3 [00/-60/270/-850/-850/270/-60/00] 38.15 64.86 84.73 

OPT_Anti_SC3 [00/00/10/-680/680/-10/00/00] 38.12 63.96 84.72 

Case 4 

SC4_1 [450/-450/450/-450/-450/450/-450/450] 19.62 43.58 48.61 

SC4_2 [600/-600/600/-600/-600/600/-600/600] 21.46 39.15 50.48 

Anti_SC4_1 [450/-450/450/-450/450/-450/450/-450] 19.92 43.46 48.21 

Anti_SC4_2 [600/-600/600/-600/600/-600/600/-600] 21.43 38.97 51.24 

OPT_SC4 [880/00/90/-240/-240/90/00/880] 32.05 41.32 67.24 

OPT_Anti_SC4 [10/-900/10/-300/300/-10/900/-10] 32.15 40.18 67.93 
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Figure 11. The variation of the objective 
function value for cantilever plate of case 1 with 

anti-symmetric configurations. 
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Figure 12. The variation of the objective 
function value for cantilever plate of case 2 with 

anti-symmetric configurations. 
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Table 5. Frequency optimization of five folds folded plate with respect to fiber orientations. 

Boundary condition: Cantilever plate: clamped at x = 0 

 
Fiber orientations 

Natural frequencies 

f1 f2 f3 

Case 1 

SC1_1 [450/-450/450/-450/-450/450/-450/450] 65.93 73.76 87.82 

SC1_2 [600/-600/600/-600/-600/600/-600/600] 60.54 67.17 72.48 

Anti_SC1_1 [450/-450/450/-450/450/-450/450/-450] 69.93 70.77 87.97 

Anti_SC1_2 [600/-600/600/-600/600/-600/600/-600] 63.48 65.12 72.99 

OPT_SC1 [80/-250/560/-770/-770/560/-250/80] 78.61 79.23 121.58 

OPT_Anti_SC1 [70/-280/450/-850/850/-450/280/-70] 78.69 79.32 121.19 

Case 2 

SC2_1 [450/-450/450/-450/-450/450/-450/450] 67.48 75.34 86.37 

SC2_2 [600/-600/600/-600/-600/600/-600/600] 65.15 71.83 76.15 

Anti_SC2_1 [450/-450/450/-450/450/-450/450/-450] 71.24 73.48 86.37 

Anti_SC2_2 [600/-600/600/-600/600/-600/600/-600] 67.83 69.91 74.92 

OPT_SC2 [110/-350/900/-860/-860/900/-350/110] 81.52 82.06 116.17 

OPT_Anti_SC2 [160/-330/740/-870/870/-740/330/-160] 82.17 82.93 115.78 

Case 3 

SC3_1 [450/-450/450/-450/-450/450/-450/450] 77.73 85.15 103.46 

SC3_2 [600/-600/600/-600/-600/600/-600/600] 77.87 89.14 113.24 

Anti_SC3_1 [450/-450/450/-450/450/-450/450/-450] 81.56 82.94 103.48 

Anti_SC3_2 [600/-600/600/-600/600/-600/600/-600] 75.23 92.46 111.98 

OPT_SC3 [150/-350/660/-840/-840/660/-350/150] 98.67 100.58 147.99 

OPT_Anti_SC3 [120/-320/600/-830/830/-600/320/-120] 98.39 100.77 147.79 

Case 4 

SC4_1 [450/-450/450/-450/-450/450/-450/450] 75.18 77.47 93.14 

SC4_2 [600/-600/600/-600/-600/600/-600/600] 83.42 89.15 112.76 

Anti_SC4_1 [450/-450/450/-450/450/-450/450/-450] 76.37 78.43 91.19 

Anti_SC4_2 [600/-600/600/-600/600/-600/600/-600] 85.46 87.94 113.52 

OPT_SC4 [860/-630/580/-860/-860/580/-630/860] 90.42 91.07 127.73 

OPT_Anti_SC4 [860/-640/590/00/00/-590/-640/-860] 92.16 93.12 131.11 
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The optimal frequencies of cantilever folded plates are extremely higher the others which 
having clamped at edges (AB, CD). The obtained stacking sequences of cantilever plates are 
more different comparing with clamped at edges (AB, CD) cases. The phenomenon makes sense 
to us because the difference of mode shapes between two kinds of boundary conditions. We can 
conclude that the optimal result is significant that depend on geometry and boundary condition 
of the plates. 

3.2.2 Transient displacement response 

In order to investigate the effect of 
optimal fiber orientation on transient response 
of the plates: the plates are subjected to a 
uniformly exploded load of intensity q = 10 
kN/m2 on the top individual plate, towards the 
negative direction of the z-axis (plotted in Fig. 
16). 

The exploded loading condition scheme 
(with t1 = 1 ms, t2 = 2 ms, t3 = 50 ms) is 
illustrated in Fig. 15.  
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Figure 13. The variation of the objective 
function value for cantilever plate of case 3 with 

anti-symmetric configurations. 
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Figure 14. The variation of the objective 
function value for cantilever plate of case 4 with 

anti-symmetric configurations. 
 

Figure 15. Exploded loading condition scheme 
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Figure 16. Unstiffened and stiffened five folds folded composite plate  
      subjected to uniformly distributed load of density q. 
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Figure 17. Center displacement response of the unstiffened folded plate (Case 1) with and without 
optimal design subjected to uniformly distributed load. 
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Two lamination schemes: symmetric and anti-symmetric off-axis configurations: [450/-
450]4; [600/-600]4 are re-taken as routine configurations. The comparisons of displacement 
responses at the center point M of the plates are plotted in Fig. 17 - Fig. 20 for different 
boundary condition. 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

Figures 17a, Fig. 18a, Fig. 19a, Fig. 20a and Fig. 17b, Fig. 18b, Fig. 19b, Fig. 20b plotted 
the comparison of center displacement response of case (1 to 4) for clamped at edges (AB, CD) 
and cantilever boundary condition, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Center displacement response of the stiffened folded plate (Case2) with and without 
optimal design subjected to uniformly distributed load. 

0 0.01 0.02 0.03 0.04 0.05
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10

-3

Time(sec)

D
e
fl
e
c
ti
o
n
s
(m

)

0 0
4[45 /-45 ]

0 0
4[60 /-60 ]

Optθ

(a)-Clamped at edges AB and CD 

0 0.01 0.02 0.03 0.04 0.05

-6

-4

-2

0

2

4

x 10
-4

Time(sec)

D
e
fl
e
c
ti
o
n
s
(m

)

0 0
4[45 /-45 ]

0 0
4[60 /-60 ]

Optθ

(b)-Clamped at x=0 (cantilever folded plate) 



 
 

Tran Ich Thinh, Bui Van Binh, Tran Minh Tu 

 418

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Figs. 17 to 20, it is observed that the displacement amplitude and wave of optimal 
configurations change more dramatic. It is a significant increase of frequencies and significant 
decrease of amplitudes. The effects become more rapidly for cantilever plates. This observation 
provides us a clue that the cantilever plate could be vibrative extinction more quickly than other 
case. 

For the same boundary condition and loading condition, the displacement response of case 
3 is least. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. Center displacement response of the stiffened folded plate (Case3) with and without 
optimal design subjected to uniformly distributed load. 
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Figure 20. Center displacement response of the stiffened folded plate (Case4) with and without optimal 
design subjected to uniformly distributed load. 
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4. CONCLUSION 

In this study, a computer code has been developed for optimization of the unstiffened and 
stiffened folded laminate composite plate using genetic algorithm. The code has two distinct 
modules. First, a finite element code using an eight-nodded isoparametric plate elements, based 
on the first order shear deformation theory for calculating natural frequencies of the folded 
laminate composite plate. In this module, the transverse shear deformation, the rotary inertia of 
plate and stiffeners are considered to see that the more advanced in presented model. Second one 
is the GA module for solving optimization problem.  

We conclude that GA can be successfully employed for optimal design the unstiffened and 
stiffened folded laminate composite plate with any number of design variables. The GA is 
guided random and exhaustive search process, hence the probability of finding the global 
optimum is high and the variables could be real. 

By using more than one variables approach, the optimal results of stacking sequence can be 
modified to suit the designers' requirement.  

Some set of new results are presented to see the effects of optimal fiber orientations on 
dynamic responses of unstiffened and stiffened folded laminate composite plates for different 
boundary conditions.  

The applicability of the present approach covers a wide range of forced vibration problems, 
with varying material combinations, geometric features, and boundary conditions. 

The results of this study will serve as a benchmark for future research for designing folded 
composite structures and sandwich structures made of composite materials, as it was extremely 
quick and reliable in producing design results. 
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Bài báo trình bày bài toán tối ưu tần số của tấm composite lớp có gân gia cường bằng thuật 
toán di truyền (GA). Chương trình Matlab bằng phương pháp PTHH dựa trên lí thuyết biến dạng 
cắt bậc nhất với việc sử dụng phần tử đẳng tham số 8 nút, mỗi nút có 5 bậc tự do được thiết lập 
cho bài toán phân tích dao động riêng và phân tích đáp ứng tức thời của chuyển vị tấm theo thời 
gian. Mô đun thuật toán GA được tác giả áp dụng cho bài toán tối ưu tần số với việc điều khiển 
các biến số thiết kế của bài toán (một biến và nhiều biến thiết kế). Ảnh hưởng của cấu hình tối 
ưu đến đáp ứng tức thời của tấm được xem xét với các điều kiện biên khác nhau. Sự đúng đắn 
của thuật toán và chương trình được khẳng định khi so sánh các kết quả với kết quả giải bằng 
các phương pháp khác đã công bố trên các tạp chí thế giới có uy tín.  

Từ khoá: bài toán tối ưu, tấm compozit cố gân, thuật toán di truyền, điều kiện biên. 

 


