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ABSTRACT 

Vehicle detection at night time is a challenging problem due to low visibility and light 

distortion caused by motion and illumination in urban environments. This paper presents a 

method based on the deformable object model for detecting and classifying vehicles using 

monocular infra-red camera. In proposed method, features of vehicles are learned as a 

deformable object model through the combination of a latent support vector machine (LSVM) 

and histograms of oriented gradients (HOG). The proposed detection algorithm is flexible 

enough in detecting various types and orientations of vehicles as it can effectively integrate both 

global and local information of vehicle textures and shapes. Experimental results prove the 

effectiveness of the algorithm for detecting close and medium range vehicles in urban scenes at 

night time.  

Keywords: Pattern Recognition, Vehicle Detection, IR Camera, Histogram of Oriented 

Gradients, Support vector Machine. 

1.  INTRODUCTION 

Collision prevention, especially at night time, is a crucial safety requirement in developing 

new vehicles. Many automobile manufacturers are trying to enhance the night vision by 

developing advanced headlight and safety systems. Existing work in the field of vehicle 

detection can be differentiated mainly by the type of sensors used [1]. Until now, vehicle 

detection at night is only successful when using expensive sensor systems. In the last years, the 

detection of vehicles using monocular video sensors, even at night, has attracted more attention. 

Initiated by the research on algorithms for traffic surveillance cameras, Cucchiara presented a 

system for night-time detection of vehicles using morphological operators, only by their position 

lights [2]. However, when using fixed camera positions, image regions can be masked out to 

prevent detection failures; thus, this method cannot be used by on-road vehicle systems. 

Even in darkness, in cases where vehicle contours are still visible, edge detection 
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algorithms may be used to find possible vehicle candidates [3]. After a potential candidate is 

detected, a color-based classification is used to detect the various light types, like front and rear 

position, break, or turn indicator lights. To detect vehicles by their position lights only, binary 

threshold filters can be used [4]. However, these methods are prone to illumination changes. 

More promising solutions for light blob detection are available; for example the morphological 

top-hat operator used in the video based detection of traffic lights [5]. Besides the detection of 

position lights, clustering a pair of lights the clustering of two light pairs is essential to form 

proper hypotheses. The correct association of light pairs is usually achieved using rule-based 

methods [6], or symmetry [2]. The existing methods presented methods for vehicle detection at 

night mainly use light blob features, such as headlight or taillight, for vehicle detection and 

classification. In the urban environment, there are many similar light blob features that could be 

mistakenly detected as a vehicle.  

The presented methods, based on light blob features, cannot be used to detect parked 

vehicles. In urban roads, there are many streetlights, strong ambient illumination and unshielded 

bulkhead lightening, which can easily interfere with a vehicle’s head or taillights. Light blob 

detection methods are vulnerable since vehicle light blobs vary in their appearance (such as 

bumper lights, extra HID light bulb, etc.). In this paper, we present a method, which considers 

more vehicle features for night-time detection compared to only light blob features. We used a 

deformable object model, which showed high pattern recognition ability in the 2008 PASCAL 

Visual Object Classes Challenge [7]; the research results of one of the authors was used in this 

paper [8]. The object detection algorithm is flexible enough in detecting various types of 

vehicles as it can effectively integrate both global and local information of vehicle textures and 

shapes. The deformable objects model has already produced state of art results for detecting and 

tracking vehicles at day time [8]. Though at night time the visibility of the vehicles on the road is 

limited, there are still some features, such as headlights and taillights, which are more visible for 

oncoming and preceding vehicles. The main contribution of this paper is to use and adapt 

deformable part model for vehicle detection at night time.  

We define the deformable part model of the vehicle and try to learn the parameters through 

an enormous number of positive and negative samples. We use the latent SVM and stochastic 

gradient method to learn the model parameters, and a data mining algorithm that allows for 

learning in very large datasets. The proposed method can be used in on-road systems to detect 

vehicles and in complex environment, such as urban roads, to detect moving and parked 

vehicles. 

2.  DEFORMABLE PART MODEL 

Robust vehicle detection method for practical driving at night time in urban scenes should 

satisfy the following conditions: 

1. Detection ability for various sizes and aspect ratios 

2. Reliable in illumination, light distortion and light flood at night time at urban environment.  

3. Detection ability of plural vehicle directions (front, rear, side) 

4. Low false positive rate．  
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HOG features are robust for local shape variations. HOG features produce fewer false 

positives than Haar-like features in vehicle detection [9]. In this paper, the deformable object 

model-based detection algorithm is adopted for vehicle detection and generating detection scores 

map for the following advantages:  

1. It can integrate global vehicle body information and local parts information such as wheels 

and windshield for increasing the efficiency and accuracy of detection. 

2. It can be learned and used for detecting vehicle with different sizes and various aspect ratio 

vehicles. 

2.1   Vehicle Model 

All proposed models for vehicle detection involve linear filters that are applied to dense 

feature maps. A feature map is an array whose entries are d -dimensional feature vectors 

computed from a dense grid of locations in an image. In practice we use a variation of the HOG 

(Histogram Of Gradient) features from [10]. To calculate the HOG features, the input image is 

divided into many cells comprised of 8 × 8 pixels; each pixel votes for the orientation of its 

gradient with a strength that depends on the gradient magnitude for the cells as shown in Figure 

1. A filter F , is a rectangular template defined by an array of d-dimensional weight vectors with 

sizes ,f fwl   . The response, or score, of a filter F  at a position ( , )x y  of the feature map H , 

is the “dot product” of the filter and a subwindow of the feature map H  with the top-left corner 

at ( , )x y .  

,

., ,
f f

f f f

wl

fF l l y wH xw        
(1) 

A model for a vehicle with n  parts is formally defined by a 2n -tuple,  0 1, ,..., ,nPF P b , 

where 0F  is a root filter with sizes 
0 0,f fl w   , iP  is a model for the i -th part and b  is a real-

valued bias term. Each part model is defined by a 3-tuple,  , ,,i i

i f f i iF w dl v   , where iF  is a 

filter for the i -th part with sizes ,i i

f fl w   , iv  is a two-dimensional vector specifying an 

“anchor” position for part i  relative to the root position, and id  is a four dimensional vector 

specifying coefficients of a quadratic function defining a deformation cost for each possible 

placement of the part relative to the anchor position. 

   
(a) Original image             (b) HOG feature map 

Figure 1.  HOG representation of the image 
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(a) Vehicle front model         (b)  Vehicle back truncated model 

 

Figure 2.  Deformable vehicle detector model structure  

2.2   Mixture Models for Vehicle 

A mixture model with m  components is defined by a m  -tuple,  1,..., mM M M , 

where cM  is the model for the c -th component of the vehicle. In this paper, we consider four 

components for the vehicle including front, back, front truncated and back truncated. Figure 2 

shows the front and back truncated models. In Figure 2, the red rectangle represents the root 

filter, 0F , and the eight blue rectangles express part filters,  1,2,...,8,iF i  . The six springs 

connecting the root filter to each part filter are quadratic deformation cost functions. 

2.3    Hypothesis Score Calculation 

We would like to define a score at different positions and scales in an image. This is done 

using a feature pyramid, which specifies a feature map for a finite number of scales in a fixed 

range. In practice we generate feature pyramids by computing a standard image pyramid via 

repeated smoothing and subsampling, and then computing a feature map from each level of the 

image pyramid as shown in Figure 3. An object hypothesis specifies the location of each filter in 

the model in a feature pyramid, H , where ( , , )i i i ix y lp   specifies the level and position of the 

i  -th filter. 

Let ( , , )H p l w   denote the vector obtained by concatenating the HOG feature vectors in 

the l w  subwindow of H , with the top-left corner at p , in row-major order. The score of iF  

at p  is . ( , )iF H p , obtained by concatenating the weight vectors in iF  in the  
i i

f fl w  

subwindow of H , with the top-left corner at p , in row-major order. We require that the level of 

each part is such that the feature map at that level was computed at twice the resolution of the 

root filter level. 

The score of a hypothesis is given by the scores of each filter at their respective locations, 

minus a deformation cost that depends on the relative position of each part with respect to the 

root (the spatial prior), plus the bias. 
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(a) image resizing                        (b) HOG pyramid 

 

Figure 3.  Procedure of HOG pyramid calculation. In the first level the far taxi has been detected 
and in the last level close gray sedan car has been detected in the HOG pyramid. The green and 

red boxes in the HOG feature map corresponds to the root filter and the red rectangles in the 
green box corresponds to the part filters 

0 1

) . ( , ) . (( , )
n

i i i i d i

n

i i

iH p dx dyscore bp F d 
 

        (2) 

where, 

0 0, ) ( , ) (2(( , ) )i i i i idy x y x y vdx         (3) 

gives the displacement of the i- th part relative to its anchor position and 

2 2( , ) ( , , , )d i i i i i idx dy dx dy dx dy      (4) 

are deformation features. 

Note that if (0,0,1,1)id  , the deformation cost for the i -th part is the squared 

distance between its actual position and its anchor position relative to the root. In general 

the deformation cost is an arbitrary separable quadratic function of the displacements. 

The bias term is introduced in the score to make the scores of multiple vehicle models 

comparable when we combine them into a mixture model. 

There exist a large (exponential) number of potential placements for a model in a HOG 

pyramid. We use dynamic programming and distance transforms techniques [8] to compute the 

best location for the parts of a model as a function of the root location. This computation takes 

( )O nk  time, where n  is the number of parts in the model and k  is the number of cells in the 

HOG pyramid. To detect objects in an image, we score the root locations according to the best 

possible placement of the parts and threshold this score.  
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An object hypothesis for a mixture model specifies a mixture component, 1 c m  , and a 

location ip  for model cM . The score of this object hypothesis is the score of the hypothesis for 

the c -th model component. 

The score of a hypothesis z  can be expressed in terms of a dot product, ,. ( )H z , 

between a vector of model parameters   and a vector ( , )H z , 

0 1( ,..., , ,..., , )n nF F d d b      (5) 

0 1 1( , ),..., ( , ), ( , ),..., (( , , )( ,1) )n d d n nH p H p dx dy dx dyH z      (6) 

this relationship illustrates a connection between our models and linear classifiers. We use this 

relationship in the latent SVM framework to learn the model parameters. 

3  MODEL TRAINING 

We use the learning algorithm presented in [11] for training the parameters  . A latent 

       
Root filter                               Part filter                          Deformation costs 

(a) Front model 

                  
Root filter                     Part filter                   Deformation costs 

(b) Back model 

 
Root filter                               Part filter                         Deformation costs 

(c) Front truncated model 

 
         Root filter                                   Part filter               Deformation costs 

(d) Back truncated model 

Figure 4.  Trained parameters for four component vehicle models at nigh time 
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SVM is defined as follows. We assume that each example x  is scored by a function of the form; 

( )( ) . ( , )z Z xx mf ax x z    (7) 

where,   is a vector of model parameters and z  is a set of latent values. For our deformable 

models, we define (( , ) ( ), )H x zx z   so that . ( , )x z   is the score of placing the model 

according to z . 

In analogy to classical SVMs, we would like to train   from the labeled examples 

 1 1 ,...,, ,n nD x xy y , where { 1,1}iy   , by minimizing the following objective function, 

2

1

max(0,
1

( ) . ( )1 ),
2

D i i

n

i

L C f xy  


       (8) 

where max(0,1 . ( ))i iy f x  is the standard hinge loss and the constant C controls the relative 

weight of the regularization term. Note that if there is a single possible latent value for each 

example ( | ( ) | 1iZ x  ), then f  is linear in  , and we obtain linear SVMs as a special case of 

latent SVMs. The results of training for filters of mixture models with four components are 

depicted in Figure 4. 

4  EXPERIMENTAL RESULTS 

The proposed method was applied and evaluated for practical detection and tracking in 

urban scenarios. The movies were generated in an urban environment by a vehicle-mounted 

monocular camera (Land cruse with close range IR monocular camera). The width and height of 

the movies were 640 (horizontal) and 480 pixels (vertical), respectively, and the frame rate was 

set to 30 fps. We trained four model components for close and medium range vehicles (less than 

50 meter). Movies were evaluated for false positive FP  (misdetection of non-vehicle regions), 

false negative FN  (lost detection of vehicle regions) and true positive TP  (correct detected 

vehicle regions) detections. For calculating TP , we only considered vehicles that totally 

appeared in the image, while for calculating FN  we did not consider the occlusion FN .  

A TP  is considered when there is an overlap greater than 70% between the detected region 

D  and the ground truth region G . Movies include various types of vehicles (sedans, wagons, 

and small cars) in Japan. Example results of the weighted deformable object model in various 

situations are shown in Figure 5 (detected vehicles are represented by rectangles). The proposed 

method detected various type and directions of vehicles for close and medium range, as shown 

in Figure 5 (a)–(q). The proposed method also correctly detects multiple vehicles (of varying 

size and type) in complex, congested intersection, scenarios. The proposed method could 

robustly detect parked vehicles as shown in Figure 5(k). Even light distortion due to motion blur 

did not affect the detection as it can be seen in Figure 5(m) and (n); however, detections depend 

on the distortion strength. 
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 (a)Close oncoming and preceding (b) Far oncoming and preceding (c) Different appearance on coming 

 
(d) Different appearance preceding (e) Close preceding truncated (f) Detection in crowded scene 

 
(g) Detection in crowded scene (h) Detection in urban crowded (k) Detecting parked vehicle 

 
(l) Detecting in low visibility (m) Detection in blurred image (n) Detection in blurred image 

 
(o) Detecting at intersections (p) Detecting truncated vehicle (q) Detection in illumination 

Figure 5.  Some correct detection results in different urban scenarios. 

 



 
 

Dual analysis by stabilized displacement and equilibrium meshfree methods 

 

 

 
55 

Table 1. Results of vehicle detection for proposed method 

Scene 
Frame 

No. 
Ground 
Truth 

Deformable object model 

Detected 
vehicle 

Rate 
% 

False 
positive 

Rate 
% 

False negative 
Rate 

% 

I 3000 3981 2730 68.58 8 0.20 1250 31.40 
II 1815 1148 845 73.60 1 0.08 302 26.30 
III 3000 3120 1814 58.14 16 0.5 1304 41.79 

Total 7814 8249 5389 65.33 28 0.33 2856 34.62 

 

 

 

 

 

 

 

Table 1 shows the evaluation results for the proposed method compared to the deformable 

object model. The proposed weighted deformable object model has correctly detected vehicles 

for more than 65.33% of the frames for all scenarios. In particular, the false positive rates in all 

scenarios were less than 0.33%, and there were only a few misdetections of non-vehicle regions. 

Thus, for the weighted deformable object model, the detection rate and false negative have 

improved, while the false positives have slightly increased. The primary reasons for false 

negatives include strong distortion due to vibration, occlusion, black vehicles and customized 

shape vehicles and lightening. Finally, some of the failure results of the proposed method are 

shown in Figure 6. False negatives tended to occur in strong distortion cases due to motion, as 

shown in Figure 6(a). An example of a false positive is shown in Figure 6(b) caused by the 

strong reflection of the vehicle headlights on the asphalt. In this paper we proposed a method for 

detecting the headlight reflection and removing it. Figure 6(c) shows a misdetection due to 

occlusion of two vehicles at an intersection. In this case, the two vehicles were detected as one 

because the deformable model incorrectly considered the taillight of the preceding vehicle as the 

headlight of the oncoming vehicle. This is a problem of windows based detection methods using 

deformable object models, which needs to be solved. Figure 6(d) shows false detections of light 

blobs as headlights of incoming vehicles. 

         
(a) Misdetection due to blur (b) Detection of light reflection on 

asphalt as vehicle (FP) 

         
(c) Misdetection due to occlusion (d) False detection of light blobs of two 

vehicles at cross intersection as vehicle 

Figure 6.  Failure results of the proposed method 
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5. CONCLUSION 

This paper proposed a robust on-road multi vehicle detection method at nighttime for 

various practical driving scenes using an IR monocular camera. The proposed method is able to 

detect vehicles in low visibility conditions and complex situations at intersections in an urban 

environment. The presented method can detect different type and directions of vehicles in 

complex urban scenarios with illumination and light distortion due to motion blur. Some 

experimental results from practical urban scenarios showed that the proposed method can 

achieve an average vehicle detection rate of 65.33% with a low rate of false positives for 

complex environment such as urban roads. In the future, we are trying to expand the model to 

detect far range vehicles and improve the efficiency of the detection algorithm. 
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