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ABSTRACT

Wavelet theory-based algorithms have been successfully developed in the signal processing
with the use of compactly supported functions in time domain for multiresolution analysis [1 -
3]. However, like other linear filtering methods, when applying filtering algorithms in order to
remove noise from signals, discontinuous part of the signal cannot be recovered [4 - 6]. In
present paper, a class of signal containing singular points is considered to propose a combine
process for overcomming the mentioned drawback. The proposed process consists of three steps:
In the first one, the compact support property of wavelet transform is employed to identify
singular points. In the next step, the discontinuous part of signal is characterized by a method
with regression converging to singular points from both sides by the use of generalized inverse
estimator. In the last one, a combine Wavelet regression (non-parametric) with local regression
is performed for recovering the signal with optimally estimated discontinuities. It is expected
that the proposed algorithm for recovering singular parts of the signal would take part to
improve overall SNR of the process.
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1. INTRODUCTION

Denoising has become an essential process in signal analysis that removes the noise from
corrupted signal. Let us state the problem of denoising through out this paper in which an
original deterministic piecewise signal x(n) presenting sharp discontinuities has been corrupted
by additive noise as y(n) = x(n) + e(n), where distributed zero mean Gaussian with variance o”,

e(n) are independent. The denoising algorithms task is to estimate X on minimizing a defined
. . A2 .
risk function, usually mean square errors E {"x—x” }, so that one can recover the original

smooth signal while the discontinuities are being preseved.
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To the above mentioned problem, there exists many Fourier transform based methods and
wavelet-based methods seems to be useful and powerful tool (wavelet transform has capability
of analyzing both transient and stationary behaviors of a signal; are capable of grasping subtle
changes and discontinuities in signals). Traditional wavelet based denoising algorithm proposed
by Donoho and Johnstone [7] basically shrinks the wavelet coefficients on adopting an universal

threshold with dimension N, A =0+/2In N and adopting also hard-soft shrink wavelet (detail)
coefficients [8]:

)

T, (x) = x.1(x > A)
T, (x) = sgn(x).(x| - 2),

where 1(xe A) is the identity function of A, and where x, is x for x > 0 and zero elsewhere.

The algorithm proposed by Donoho and Johnstone [7] consists of the following steps:

1. Decomposition: Apply wavelet transform with J levels to noisy signal to get wavelet

coefficients dij = < ¥, l//l.j > and scaling function coefficients C}, = < ¥, gpf > .

2. Shrinkage of detail coefficients: Shrink wavelet (detail) coefficients at the j finest scales to
get new detail coefficients T, (d,.j )=n, (< v, l//l,j >) with a threshold parameter A .

3. Reconstruction: Reconstruct the denoised version X of x from the shrunken wavelet
coefficients for an orthogonal basis of wavelet and scaling functions

{{l//"j}u.ieb ’{QJ}UEZ)} :
XN ISR RAURTIIR @

ieZ j=1 ieZ

This algorithm has been widely used (simplicity, performance closed to an ideal coefficient
selection and attenuation for nonlinear thresholding estimator in orthogonal bases [1, 9]).
However, the authors’ opinions are that wavelet thresholding denoise process is still a
regularization one as measurements for parameter estimating are not sufficient and that can not
preserve discontinuities in signals showing in figure 1 below.
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Figure 1. Wavelet denoising of heavisine

(a): Original signal; (b): Noisy signal, and (c): Denoised version by wavelet shrink
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A class of signal containing singular points constitutes an important part in real,
particularly in biomedical signals, images engineering ... So, for the denoise of containing
singular points signal purpose, in this paper, a process is proposed to overcome the above
mentioned demerits consisting of three main steps: In the first one, the compact support property
of wavelet transform is used to identify singular points. In the next step, discontinuous part of
the signal is characterized by novel method proposed hereby on adopting a regression from both
sides, converging to the singular points with the use of generalized inverse estimator concept. In
the last one, a combine of wavelet regression (non-parametric) with local regression is made in
recovering the signal. The proposed process is justified by a simulation example.

The paper is organised as follows. In the next paragraph, a brief on preliminaries is made
consisting also of continuous and discrete wavelet transform, discontinuity analysis. In paragraph
I1I, the proposed algorithms is described. Different results obtained from experiments is reported
in paragraph IV and in paragraph V is for different discussions and direction for further
researches.

2. PRELIMINARIES

2.1. A brief on continuous and discrete wavelet transform

Wavelet transform is a linear transform with varying time and frequency resolutions and
non-fixed mother waveforms [3]. That permits one to choose basic functions in the
transformation to separate unintended from intended components in the analytic signal purpose
[3, 11].

A function we L'(R)NL"(R) with J.y/(t)dt=0 is called a wavelet. For every

s€ L7 (R),1< p<oo, a called mother wavelet ¥ defines Continuous wavelet transform with
the dilation a and translation 7 as:

-7

W, s(a,7)= | s(t)J%w*(

—oo

- jdt=<s’l//u,r>L2’ v, =Ly(=). forall ,7€ R xR (3)

Set {l/lm} forms an orthonormal basis and can generate any function in L (R) provided
(1) satisfying the admissibility condition [5]:
- 2
J‘_m|‘P(a))| | "dw< oo 4)

To analyze discrete signal, the scale and shift parameters are to be discredited with integer
numbers n and m (a = 2" and 7 = n.2"). In I*(R) the set of dilated and shifted versions of

wavelets forms a basis of Discrete Wavelet Transform:

w0}, ={2""w@"-m}. 5)
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A finite energy signal x(f) can always be uniquely, stably decomposed in terms of discrete

wavelet transform {Wm’n (t)} p and wavelet coefficients d, , [6]:

m,ne

x0=3 3 dy W 0 d,, = {xO.,,0)) - (©6)

—oo p=—00

In general, an exact representation of x(f) requires a discrete wavelet family {,,.(t)} of
infinite number of functions. However, from the practical (approximation) point of view, a low-
pass-natured complementary scaling function ¢(r) is employed playing a key role in multi-

resolution analysis theory. Wavelet function has zero average, each d,, measures a local
variation of x(¢) at resolution 2" and the partial sum represents an approximation of x(¢) at
resolution 2’ *'[11]:

0= S d, w0 ™

m=J+1 n=—co
Approximation function x;,,(z) can be expressed in terms of shifted versions of a function
called the scaling function @, (1) = 2% @o(t12' —n)as:

X)) = Z Yy aPra () 3)

n=—oco

Hence, an any function in I*(R) can be completely represented by using J-finite
resolution of wavelet and scaling function y, , = <x(t), . (t)> (measure of the local regularity

of x() at scale 2’) as:

o J 0
XO= y,,0,O+ > D d, v, @) 9)

n=—oco Mm=—o00 np=—00

Therefore, Z V.9, ,(t) represents a coarse version of x(#) as opposed to presented by

n=—oo

J o
> >d, .0

m=—o0 p=—o0

Wavelet function and scaling one are related but relationship between them does not reduce
to the expansion in (9) which is used for describing the multi-resolution structure of the wavelet
transform [7].

2.2. Lipschitz exponents

Irregular, singular structures usually carry important informations of signals, hence
efficient charaterization of these structures is crucial. However, wavelet transform is capability
of characterizing the regularity of functions and Lipschitz exponents can be used for
characterizing discontinuous functions [3]. With respect to the Lipschitz exponents, some
important informations are listed as:
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1. Function f{(r) is called Lipschitz degree ¢ >0 at V if there exists a constant K > 0 and
polynomial p,(¢)degree m = LO!J asto Vte R,|f(t)— D, (t)| <Klt—vI*.

2. Function f(r) is uniformly Lipschitz & over [a,b] if it satisfies the above mentioned

inequality with every V € [a,b] for a constant K independent with v.

3. Lipschitz regularity of f(f) at v or over [a,b] is superior bound (supremum) of & in order
to f(¢) be Lipschitz.

4. A function is singular at Vif it is not Lipschitz 1 at V-
3. PROPOSED ALGORITHM

3.1. Singularity analysis and identification

For a given function x(7), the Taylor expansion of function x(z) around vicinity ¢ =1, is:
x(t)=x(t,)+a, (1 =1,)+a, (1 =1,)" +..+a, (t—1,)" +.. (10)
Denote 7 =t—t,, then one has:
x(t)=x(t,)+ar+a,0" +..+a,7" +R, (" )=P,(1)+R, (") (11)

Tn-H
X e [2,.1] is the remainder.
(n+1)!

where P, (t) is a polynomial degree of n and R, =

When the vicinity of ¢ is small enough, one can find a non-negative constant A such that:
|x(t,+7) =P, (t,+7)| 0 R (") < Ale]". n<a<n+1 (12)

Lipschitz regularity of x(¢) at f,is defined as the superior bound of all values ¢ . For the

wavelet w(f) with at least n vanishing moments (wavelet orthogonal to polynominals up to
degree of n), one has:

[ro(t)dt=0  me[0,n] (13)

Wavelet transform is then expressed as the n order derivative of the signal x(f) smoothed by
a smoothing function 6(x) of the form [9]:

n

W,/,x(s,t) :x(t)*l/ls (x) = s"%(x*&sjt, 0, (t) :lﬁ(t/s) (14)
s
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Therefore, one can estimate the rate of change in the signal by choosing suitable wavelet
function at a scale. With a wavelet having n vanished moments, there exists a constant A such
that for a point in vicinity fy and at a scale s [10, 11]

‘Wy,x(t,s)‘ < A(s“ +|t—t0|“) (15)

If ‘wa(to,so)‘ is a local maxima at ¢ = 7y, then modulus maxima at the point (#,,s,) an be

used to estimate the singularity. Consider a signal formed by a single Dirac at f
x(t)=ad(t— t,), Jlevel wavelet decomposition of this signal as:

o J I
XO)=y,,0,O+ > D d, v, @) (16)

n=—oco M=—o00 p=—00

By moving from discontinuous- to discrete-time signal x[n], n = 0,...,N-I with Haar
wavelets, one has:

127 -1 127

N J N -1
x[n]= > v, [n]+>. > d, v, [n] (17)
j=1 1=0

=0 j =

Haar wavelet has one vanishing moment and finite support. Hence, only a limited number
of wavelets which overlap the location ¢, is influenced by this Dirac. Set of points such that 7, is
included in support of wavelet is known as cone of influence [3], illustrating in Fig 3. The only
non-zero wavelet coefficients of (11) are the coefficients in this cone of influence. Thus (17)
becomes:

N/2! -1 J
x[n] = Z VP, [n]+2dj,kjl//j,kj [n], where k| =Lk/2’J (18)
1=0 =1
Therefore, for a signal with only one Dirac at position k, a scale-space vector f, [n] is

obtained by gathering all the wavelet coefficients together in the cone of influence of k then
imposing its norm equal to 1:

J
flnl=Y ¢, v, [n), where e, =d;, 1, /ijldzm (19)
j=1

One can express a step discontinuity at k signal in terms of the scaling functions and f, [n]

as:

N/2 -1

x[n]= > v [nl+af[n], a=(xfn) =2 cnd, (20)

=0

For a signal with one discontinuity at location #, p(t) = a(()o)l [(t) + al(o)l[[] T[(t), wavelet

[0.4
coefficient at m,n is < p(),¥,,., (t)> . If wavelet has k degrees of freedom and fast decay, it can be

rewritten as the k™ order of derivative of a function @ (also fast decay) [6]:
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w(n) = (Ndem and y,, (1) = (=1)" ddtg() where 8, (1) = — 6(2"t-n) (1)

m,n m/ 2

Since the k™ derivative of a function is well defined distribution and

< o, d0(t)> <d1;(t) 9(t)> then:

(P, (0)==2 j d’;()emn(r)dr j(a“” a8t —1)8, ,(Ddt  (22)

—oc0

From (22), it is seen that the wavelet coefficients depend on the difference of (a(o) (O))

which is argument of the discontinuity.
Identification algorithm: Procedure of identify the discontinuities is described as follows:

1.Compute discrete wavelet transform coefficients within a period signal using Haar wavelet
as:
Set cl.o =x[i];i=1.N-1;
-1 -l
Cri TG,
V2
j-1

_S%i ~Gin

V2

2. Set universal threshold equals to A = 0+/2In N due to noise with variance o .

Compute scaling function coefficients by Cij =

Compute wavelet function coefficients by dij

J .
3. Compute de/ where k; =Lk/2’J;
J
Compare to threshold, if it is greater than threshold, there exits a discontinuity at k.

3.2. Wavelet semiparametric regression combined with generalized inverse estimator
approach

As wavelet transform is linear and orthogonal one. Then it can be expressed by an isometry
transformation W (matrix with condition W' = W"). Denote y for input vector of dimension n
where n = 2/, one has:

Y=Wy, W'=W" (23)

Practically, wavelet transform are carried out in fast algorithms by quadrature mirror filters
and a wavelet decomposition can be written in terms of quadrature mirror filters G (high) and H
(low) as:

Y=(H'y,GH"y,...,GH’y,GHy,Gy) (24)
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where [=1...J =log, w, with (Ha)K =Z h,_,.am and (Ga)K =Zmezgm72kam,ke Z,

mez" m=2
g and h are high and low pass filters.

Wavelet semiparametric regression takes the form:

5., (1) =SB + WT, (Wy) (25)
r=1
Second part of the above expression is wavelet regression, getting of the form in practice
as:
4 J-12/-
T Wy ZCONDI +sz1,l Jd (26)

j=0 1=0

Local regression model expressed by the first term of (26) can be used to characterize
singularity part of the signal. By least square errors criterion to estimate the parametric vector f§,
one gets:

B=(X"X) X"y 27)

t—t.
By fitting locally-weighted @, (2,7,;4)=K [ lJof local bandwidth A at each point

i

with Kernel function K for local polynomial smoother, the model to be minimized becomes:

S - 5[] )
i=1

One has
(X"QX)p =X"QY, where Q = diag (@, ..., ®, ) (29)

Mean square errors of B in terms of variance ¢ of Gaussion noise and of ranked
eigenvalues 4, of X' QX (4 >4, >...> A, >0) becomes:

MSE(p) = GZZ”:% (30)
i=1 1

4

If either ’117 << 1 or rank of X" QX less than the degree of that product matrix, an ill-

conditioned problem arises then. In such a case, generalized inverse estimator is used in an
iteration procedure:

B = (I-hGX)B"™ +hGy 31)
where,

0<h<5i, 5i:zcjﬂ’ij >0, l=1,,p’ G:|:CIIﬁ.+C2XTQX+...+Cq (XTQX)q_ljle.

max J=1
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The iterative process is started from:
B =hGy (32)
By UDV decomposition (U, V are of (nxn) orthogonal matrices, D’ =[A”2,0] with

A"? =diag {/11.”2}:) then X = UDV" and canonical model (27) becomes:
Y=Zd+e, withZ=UD=XV anda=V'p (33)
a=(Z'2) Zy=A"Zy (34)

In present case, (Z Z)" is known as a group or Drazin inverse if the rank of this product
matrix is equal to the order of that product matrix and (Z'Z)'Z" is known as left generalised
inverse of Z. In the case, where (Z'Z)'Z" is of full rank, then the left generalised inverse
(uniquely determined) becomes a pseudo inverse or Moore Penrose inverse denoted by Z'.
Generally, (Z'Z) is ranked deficit (rank of this product matrix is less than the order of the said),
Drazin inverse does not exist. In this case, the concept of generalized Drazin inverse is required.
Thus:

G=V[gl, +eA+cA +.+c A DU (35)

& = VB = (1-/HA) @ + hHAG, with H=[ ¢, +c,A+c,A” +.+¢, A" | (36)

The above proposed method is verified by simulating different typical wave forms
describing here by.

4. SIMULATIONS

Two results on assessing the performance of the proposed algorithm are reported in this
paragraph. The first one is for comparing the present method to some other ones in term of
signal to noise ratio (SNR) and of recovered mutations. In second experiment, two typical
signals considered by other authors (heavisine with two discontinuities, blocks with more
dicontinuities) are retaken hereby for the comparison purpose.

Signals used in simulation are of 15 and 10 mutation amplitudes at the time of 1/3 and 2/3
cycle. Signal including non-linear part contains AWGN with S/N = 18 dB, with length of 1024.
The SNR depends on the size (length N) of the signal [11]. So, length N of the signal must be
large enough to ensure the experiment to be properly carried out.

Table 1. Denoising of signal with two break points in Fig. 2

N (length of signal) 256 512 1024 2048

Hard thresholding with db4 Wavelet 20.2dB | 20.7dB | 21.6dB | 21.8dB
Soft thresholding with db4 Wavelet 19.7dB | 20.7dB | 21.1dB | 21.7dB
Proposed method 20.6dB | 21.9dB | 22.0dB | 22.0dB
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Table 1 shows numerical results of different denoising methods according to different
length of signals with two break points. It is shown that at each length N of the signals, the
presently proposed denoising method gives a better result but not so much with respect to that
obtained by the others [8 - 11].

Figure 2 illustrate the results of denoising by the different methods and variable length of
the signal of sine form with two discontinuities (a), signal corrupted by noise (b), signal
denoised by soft thresholding (c), signal obtained by hard thresholding (d) and signal obtained
by proposed method of denoising.

By soft thresholding method with db4 wavelet, SNR of recovered signal is 19.7dB with
lenghth of 256; 20.7dB for 512 and 21.7dB for 2048, respectively. As the original signal
contains the discontinuities, the hard thresholding methods gives better results, respectively 20.2,
20.7 and 21.8dB for different values of signal length N. It is also found out that the proposed
methods didn’t improve SNR so much but in Figure 2, the mutations recovery and evaluation
ability has improved evidently.

I/ VN

5 L L L L L L L L L L 1 L L L L L L L L L L 5 L L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 80 900 1000

(a) (b) (©

TN

0 0w 40 S0 a0 70 0 a0 i S i a0 a0 a0 5w e
(d) (e)
Figure 2. SNR results for denoising

L L I L
700 800 900 1000

(a): Original signal (sine with two discontinuities); (b):Noisy signal (18 dB);
(c):Soft thresholding (21.6 dB); (d): Hard thresholding (21.1 dB); (e): Proposed method (22.0 dB)

10
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In Fig. 3 and Fig. 4 show the graphs resulting SNR for denoising of heavisine and of blocks
signals obtained by presently proposed method. In which, original signal (a) is either heavisine
in Fig. 3 or blocks signal in Fig.4, corresponding corrupted noisy signals (b) for both figures and
denoised signals (c) respectively also for both. It is found that mutations recovery and evaluation
ability has proved evidently.

200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

(a) (b) (©)

Figure 3. SNR results for denoising of heavisine signal.

(a): Original signal; (b): Noisy signal; (c): Denoised signal

2 200 400 600 800 1000 O 20 400 600 800 100020 200 400 600 800
(a) (b) ()

Figure 4. SNR results for denoising of blocks signal.

(a): Original signal; (b): Noisy signal; (c): Denoised signal

4. CONCLUSION

A denoising method on the basics of combining wavelet semiparametric regression with
generalized inverse estimator approach has been proposed. On adopting exponential power
series for nonlinear dynamical presentation, an optimization-based algorithm has been suggested
which allows one to model more accurate different types of discontinuities in signals. The
method has been verified by a simulation process with different wave forms and shown that the
suggested algorithm not only improves the signal to noise ration, but allows measuring
accurately the mutations of signals also.

However, with the idea of using the concept of generalized inverse in proposed method,
different research topics may be carried with respect to the algorithm point of view. First one is
related with dynamical linear (LD) for measurement data of first order derivative of signals with
respect to time; in present case is for the measurement of kernel in exponential power series.
Second is related with representation of signal in multi-dimension so that different spectrum can

11
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be obtained giving rise to different algorithms that may be constructed from the generalization

concept.
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TOM TAT

VE MOT PHUONG PHAP LOAI TRU NHIEU DUA TREN HOI QUY WAVELET BAN

THAM SO KET HOP NHAN DANG DIEM KY DI

Bién d6i wavelet 1a cong cu manh trong Iinh vuc xur Ii tin hiéu, cé kha nang thuc hién céc

phuong phép phan tich da phan giai khi st dung cdc ham compact support. Nhung, khi dp dung
céc thuat toan loc dé loai trir nhiu thi phan dot bién cua tin hiéu khong khéi phuc duoc. Bai bdo
nay d& cap dén phwong phdp loai trir nhiéu cho mét 16p tin hiéu ¢6 cdc doan giao nhau béi cdc
diém ki di 4p dung hdi quy wavelet ban tham s két hop nhan dang diém ki di gdm cac budc nhu
sau. Pau tién, sur dung tinh chat compact support cua bién dbi wavelet dé nhan dang céc dot
bién; sau d6 mo hinh héa va danh gid dot bién bang phuong phép hoan toan mdi (hdi quy hai
phia theo thoi gian vé diém ki di bang bd danh gid nghich dao tong quét) va cubi cling két hop

12
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hoéi quy tich phan wavelet va hdi quy cuc bd (ban tham s6) dé téi tao tin hiéu trong mién thoi
gian. Thudt todn gom cac budc sau:

Budc 1: Xéc dinh tap cdc diém ki di theo thuét todn nhan dang diém ki di & trén.

Bude 2: Véi mdi diém ki di:

(1) x4c dinh tap cic mau nam phia phai va phia trdi cua diém ki di;

(2) xdc dinh viing ki di diing hdi quy wavelet khong tham s vé hai phia cta diém ki di;

(3) Xdc dinh tap cic gid tri mau va gid tri bién gidi han phai va gidi han tréi clia mién ki di.

Budc 3: Thuc hién hoi quy c6 tham s6 nghich dao tong quét ding phuong phép lp trén tap
cac gid tri tir budc 2.3; 1ap dén khi hoi tu.

Budc 4: Khoi phuc cdc mau tir khau hdi quy wavelet va hdi quy nghich déo tong quat.

Phuong phap nay duogc kiém ching qua m6 phong va thay rang phuong phép cho két qua
danh gi kh4 tot nhitng dot bién, khoi phuc dwoc phan ki di cua tin hiéu va cai thién duoc ty sb
SNR.

Tir khéa: Hoi quy séng con, logi trir nhiéu, nhdn dang ky di
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