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ABSTRACT

In this paper, we introduce a hedge-algebras-based methodology in vibration control of
structural systems to design fuzzy controllers, referred to as hedge-algebras-based controllers
(HACsS). In this methodology, vague linguistic terms are not expressed by fuzzy sets, but by
inherent order relationships between vague terms existing in a term-domain. Semantically
quantifying mappings (SQMs), which preserve semantics-based order relationships in term-
domains, are defined in a close relationship with the fuzziness measure and the fuzziness
intervals of vague terms. Ultilizing these SQMs, fuzzy reasoning methods can be transformed
into numeric interpolation methods with respect to the points in a multi-dimensional Euclid
space defined relying on the if-then rules of the given control knowledge. This provides sound
mathematical fundamentals supporting the construction of the control algorithm. The proposed
methodology is simple, transparent and effective. As a case study, HACs and optimal HACs
have been designed based on this methodology to control high-rise civil structures. They are
shown to be more successful in reducing maximum displacement responses of the structure than
fuzzy counterparts under three different earthquake scenarios: El Centro, Northridge and Kobe.
This demonstrates the effectiveness of the proposed methodology.

Keywords: control theory, approximate reasoning, measure of fuzziness, earthquake engineering,
hedge algebra

1. INTRODUCTION

Magnitude earthquakes result in massive movement of the ground and, therefore, cause
serious damages to civil structures, in particular, to high-rise buildings. Such situation becomes
more hazardous when in each decade, on the average, about 160 to 189 magnitude earthquakes
have been recorded on continentals (wwwe.iris.edu). Therefore, the protection of civil structure
has been becoming one of the most imperative research tasks since long time ago. Many control
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strategies and structural control systems have been examined and designed to protect the civil
structural systems from the damage caused by earthquake ground motion.

Structural vibration control systems, in general, are classified mainly into active control
systems [1, 2, 28] and passive control systems [13, 30, 33]. Passive systems using tuned mass
dampers or base-isolation techniques are designed to decrease the response to structural
vibration induced by earthquake. They have simple mechanism, require no power to operate and
hence are reliable. However, their control capacity and application is limited. Active control
systems, including active tendons and active tuned mass dampers, can generate control forces to
apply to structural systems through actuators equipped with a designed control algorithm. Given
this, they are able to dissipate earthquake energy and reduce structural damage. It has been
shown that the active devices are superior to the passive devices in capacity and suitability to
high-rise civil structures. However, they do require external power supply and hence their
operation may be interrupted during earthquake events, i.e., their reliability is critically
decreased. By these reasons, hybrid devices have been developed for designing more effective
vibration control systems, called semi-active controllers [6, 7, 12, 14, 17, 32]. They have been
shown to be more energy-efficient than active control systems, since they require so little power
for operation that they can be able to run on battery power, and become more effective in
reducing seismic structural vibrations than passive control systems.

Fuzzy control is an area in which fuzzy logic has been applied successfully since
Mamdani’s work [16] published in 1974. By applying the theory of linguistic approach and
fuzzy inference, one successfully uses ‘if-then’ rules in the automatic operating control of a
steam generator. Since that time, it has been shown that fuzzy logic provides a flexible and
effective methodology to solve many practical problems not only in control but also in other
application fields, including the problems of protection of civil structures from earthquake. They
arise there as a viable design alternative: instead of differential equations to model the structural
systems, it uses a control domain knowledge formulated in the form of fuzzy linguistic rules. It
does not require an accurate mathematical model as well as precise data describing structural and
earthquake-induced vibration characteristics of the complex systems. It can handle non-linear
uncertainties and heuristic knowledge effectively considering their ability of convertting the
selected linguistic control strategy based on control knowledge to automatic control, whose
knowledge base represent the dependencies of the desired control action on the control inputs.

In general, the main advantages of the fuzzy controllers are simplicity and intrinsic
robustness, since they are not affected by the selection of the system’s models [1]. Subsequently
in the last few decades, fuzzy control has attracted considerable attention of researchers in
natural-hazard-induced vibration control of structural systems [2, 6-12, 14, 16, 17, 27-29, 32-
36].

The key task in the design of fuzzy logic-based controllers is to construct an effective fuzzy
reasoning method. In fuzzy control, control knowledge is expressed by the following set of
fuzzy rules:

IfX,isA;;and ... and X,,is A;,, then Yis B,

(1)

If X,is A, and ... and X,, is A,,, then Yis B,
The rules describe dependencies between linguistic variables X;, j = 1, ..., m, and Y, where
Ajj=1,...,m,and B;,i=1, ..., n, are fuzzy sets whose labels are vague terms of the linguistic
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variables X; and Y, respectively. The set of fuzzy rules (1) is called a fuzzy model or a fuzzy
associative memory (FAM) [31].

In order to determine the numeric output value b, of this fuzzy model, for a given input
fuzzy sets vector Ag = (Agy, ..., Aom), the fuzzy rules have to be represented by the respective
fuzzy relations R{xi, ..., X, ¥), i = 1, ..., n, utilizing certain fuzzy sets operations and fuzzy
implication. Then, b, will be produced by exploiting certain composition operation, aggregation
operation and defuzzification method. Thus, the constructed reasoning method depends on
several factors which make the designer difficult to observe the actual behaviour of the
constructed reasoning method and adjust them to enhance the performance of the desired fuzzy
controller. Moreover, from our point of view, a fuzzy set regarded as an immediate generation of
sets represents the meaning of a vague term in the manner that each value in the reference
domain of the linguistic variable is compatible with it to a degree assuming values in the interval
[0,1]. That is fuzzy sets associated with each vague terms in the term-domain of a linguistic
variable express the meaning of the respective terms individually, but cannot express the relative
semantics present between these vague terms. The reason of this fact is that one has not
considered term-domains as mathematical structures and, therefore, has to borrow the analytic
structure of the set of all fuzzy sets defined on a universe in question. These all lead to some
critical disadvantages of fuzzy reasoning mechanisms that may limit the effectiveness of fuzzy
controllers, as it will be discussed in this paper.

In our study, we propose to apply the hedge-algebras-based methodology to design fuzzy
controllers in fuzzy vibration control of structural systems that utilize the algebraic approach to
the semantics of vague terms. In this approach, the meaning of every vague term is not
represented by a fuzzy set, but by its inherent semantic-order-based relationships with the
remaining ones in the corresponding hedge algebra, which represents much more fuzzy
information than each individual fuzzy sets. Based on this approach, fuzzy-rules-based control
knowledge is modelled by a numeric hyper-surface established from the fuzzy rules by the
quantification of hedge algebras and fuzzy reasoning methods can be developed, utilizing
ordinary interpolation methods on this surface. Such fuzzy reasoning methods depend only on
two factors, the selected numeric interpolation method and the fuzziness parameters of each
linguistic variable. Therefore, they are very simple, transparent and, as it will be shown below,
they have many advantages. Especially, it allows not difficultly design optimal controllers based
on optimization of their fuzziness parameters. It will be shown that the performance of the
controllers designed based on the hedge-algebras-based methodology for the fuzzy vibration
control of civil structural systems against earthquakes is better than those designed with
traditional fuzzy reasoning methods. The experiments were completed by using the data on
ground motion in turn of El Centro, Northridge and Kobe earthquakes. The simulation results for
the three earthquakes show that the performance of the hedge-algebra-based controllers,
especially the optimal ones, is better than that of the fuzzy controllers.

The paper is organized as follows. In Section 2, the main components of the fuzzy
controllers will be described for making some discussion about disadvantages of the fuzzy
controllers. An overview of the algebraic qualitative semantics of vague terms is given in
Section 3 while quantitative semantics of vague terms is discussed in Section 4. It is
characterized by three features, namely fuzziness measure of vague terms, fuzziness intervals of
vague terms, and semantically quantifying mappings (SQMs) of terms-domains. Hedge-
algebras-based reasoning methods are examined in Section 5. Section 6 is devoted to computer
simulations study while conclusions are given in Section 7.
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2. FUZZY CONTROLLERS

This section aims to discuss some disadvantages of fuzzy controllers designed by the fuzzy-
set-based methodology for a comparison with those designed by the proposed hedge-algebras-
based one, called hedge-algebras-based controllers (HACs). At the same time, it aims to ensure
that the fuzzy controllers examined in this study are similar to those examined in [6, 9 - 11, 27,
32, 34].

An overall schematic view of fuzzy controllers is shown in Figure 1 [6, 32]. Its main
components comprise a fuzzifier, an inference engine and a defuzzifier.

The performance of the designed fuzzy controller is affected by several design tasks related
to the above components:

(C1) Construction of membership functions for fuzzifier: The fuzzifier is affected by the
design of the fuzzy-sets-based semantics of vague terms. The designed membership functions of
vague terms may have different forms, say triangular, trapezoidal, Gaussian, etc. The designer
has a great level of freedom to construct membership functions for vague terms, provided that
they contribute to the enhancement of the performance of fuzzy controller.

(C2) Inference engine: The construction of a computational model of the fuzzy model (1)
and a reasoning method to determine the output of the controller require determining many
factors and operators:

Inference engine

X —> g Cons. | > (?

S » Rule 1 & = > =

> = uelsf 32 ag I

X2 8 gl &g G N,
g | 28 % & > u

N . 2. =4 Q

N > Z| =& |Cons. 5 g

Xy ———p] [ Rulen © > 5 S

Figure 1. A schematic view of the fuzzy controller

First of all the exploitation of the control knowledge requires interpreting the fuzzy model
(1) as one of the two alternatives: (i) conjunctive model and (ii) disjunctive model [15].

(1) In the case of conjunctive model, to compute a desired m-ary fuzzy relation R, which
represents dependencies between the variables in (1), each fuzzy rule should be interpreted as a
fuzzy implicator 1 : [0,1]* — [0,1] by applying an aggregation operator to m premise fuzzy sets
of the rule and, then, one applies another aggregation operator to the obtained implications to
produce the relation R. The control action is then calculated by using a composition operation of
the m-dimensional input vector and the obtained fuzzy relation R. Usually, we encounter here a
max-min composition operation. In general, there are many composition operations, using t-
conorms and t-norms instead of max and min, respectively.

(i1) The disjunctive model is usually used in fuzzy control. One uses each fuzzy rule to infer
its conclusion from the given input data by a composition inference. As above, this composition
is either in the form of the max-min composition or the one in which the max and min are
replaced with t-conorm and t-norm, respectively. The derived consequences are then aggregated
by using an aggregation operator to calculate the fuzzy control action.
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(C3) Defuzzifier: This task aims to transform the calculated fuzzy control action into a
numeric one. In general, we have a high level of freedom for determining a transformation of the
area limited by the membership function of the action into a single numeric value viewed as its
representative. Thus, we have many such transformations.

Thus, there are so many fuzzy reasoning methods in principle. Therefore, in order to make
a comparative simulation study of the two design methodologies relying upon different
mathematical bases, the fuzzy controllers in this paper designed by the fuzzy-set-based
methodology will follow the following conditions that were applied in several researches (see,
e.g. [6,9-11, 18,27, 32, 34, 35]):

(fcl) Fuzzification: The fuzzy sets of the linguistic terms are assumed to be symmetric
triangular fuzzy sets that are equally spread over each range (see Figures 7 — 9). So, once the
ranges of the linguistic variable and its number of vague terms are given, these fuzzy sets are
completely defined.

(fc2) Reasoning method: It is assumed that the set of fuzzy rules in (1) are disjunctive
model [15] and the reasoning method is constructed in accordance with (ii) mentioned above.

(fc3) Defuzzification is realized as the center of gravity.

Although fuzzy sets have successfully been applied to the fuzzy control, it is worth
highlighting some disadvantages of the fuzzy set-based design methodology that may limit the
effectiveness of the resulting fuzzy controllers.

(1) The first one lies just in the first design task, the fuzzification procedure. In essence, this
is an embedding mapping from a term-set into the set of all fuzzy sets defined on U a reference
domain, denoted by F(U). This means that we had to borrow the mathematical structure of F(U)
to develop various fuzzy reasoning methods. Since term-domains can be considered as at least
an order-based structure induced by the inherent meaning of terms, on the mathematical
viewpoint, this embedding mapping will only be accepted if it is a homomorphism, i.e. it
preserves the order-based structure of terms-domains. However, the fuzzifiers in general do not
preserve this structure of term-domains, as it is difficult to define a reasonable order relation on
F(U). As the effectiveness of a fuzzy reasoning method depends strongly on the designed
membership functions of vague terms, these embedding mappings which are not homomorphism
may limit the performance of designed controllers.

(i1) On the other hand, as discussed above, the performance of fuzzy controllers depends on
several independent hard tasks, which have attracted many research efforts so far: a selection of
membership functions, fuzzy implicators, t-norms and t-conorms, aggregation operators,
composition operations, and defuzzifiers. This may make fuzzy control algorithms to become
black boxes whose behaviour is then very difficult to observe by the designer.

To alleviate these difficulties, in the next section we present a development of hedge-
algebras-based reasoning methods based on semantic-order-based structure of terms-domains.

3. HEDGE ALGEBRAS: SEMANTIC-ORDER-BASED STRUCTURE MODELLING
THE SEMANTICS OF VAGUE TERMS

In the so-called analytic approach, the meaning of vague terms of linguistic variables is
represented by fuzzy sets. In a certain aspect, this means that vague terms were understood as
being not mathematical objects and, hence, we had to use fuzzy sets to represent their meaning,
whose memberships functions are analytical objects of F(U). The motivation behind the
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algebraic approach to the semantics of terms comes from the observation that terms-domains of
linguistic variables can be considered as partially ordered sets (posets), whose order relations are
induced by the inherent meaning of vague terms. For instance, in virtue of vague terms of the
linguistic variable VELOCITY in natural language, we have

quick > medium > slow, Extremely_slow < Very_slow < slow, but that
Little_slow > Rather_slow > slow, and so on.

So, we have an algebraic approach to the semantics of vague terms. To show its
advantages, we provide a brief overview of this approach. Its detailed formal presentation can be
found in [20, 22, 24 or 26].

Let X be a linguistic variable, G = {g, g’}, g < g’, be the set of its primary terms and H be
the set of its hedges. Denote by Dom(X) the set of all terms generated from the primary terms by
using hedges acting on them in concatenation, i.e. each term in Dom(X) can be written in a
string A, ... hic, where h; € H and ¢ € G. For convenience in sequel, we assume also that
Dom(X) contains the specific terms given in C = {0, W, 1}, which are called constants, where 0
and 1 is the least and the greatest terms in the structure Dom(X) and W is the neutral concept in
between the two primary terms. We assume that 0 < g < W < g’ < I. As discussed above, there
exists a semantic order relation < on Dom(X) and (Dom(X), <) becomes a poset. Thus, the
meaning of a term in Dom(X) is represented through its order relationships with the remaining
terms in Dom(X); here we offer a certain view at the semantics of vague terms.

1) Many properties of vague terms discovered and formulated in (Dom(X), <)

In the structure (Dom(X), <) we may discover many essential properties of vague linguistic
terms as follows:

(p1) Every term has a semantic tendency expressed through hedges and an “algebraic”
sign: The semantic function of the linguistic hedges is to intensify vague terms, i.e. they either
increase or decrease the meaning of vague terms. This implies that the meaning of each term in
the structure (Dom(X), <) has a definite semantic tendency, which, while is increased by the
ones hedges, is decreased by the others. Based on this idea we can define the following notions,
which contribute to describe the semantics of terms:

- The primary terms g and g’ have their semantic tendency defined in term of <. As g < g’,
the semantic tendency of g’ is called positive and we write g’ = ¢ and sign(c") = +1. Similarly,
the semantic tendency of g is called negative and we write g = ¢~ and sign(c’) = -1.

- By these tendencies, the set of hedges H can be classified into two sets H and H'
defined as follows: H = {h € H: h¢ 2 ¢ or hc" < ¢}, which consists of the hedges that
decrease the semantic tendency of the both primary terms; while H" = {h € H: hc < ¢ or hc" >
c*}, i.e. its hedges increase the semantic tendency of the primary terms. The elements of H™ are
called negative hedges and their sign is defined by sign(h) = —1. Similarly, every h € H" is
called positive hedge and its sign is defined by sign(h) = +1.

For example, for the variable VELOCITY, it can be checked that H = {R, L} and H" = {V,

E}, where R, L, V and E stand for Rather, Little, Very and Extremely, respectively. Note that H~
and H™ are also posets. For instance, we have here R<L and V<E.

- For any two hedges & and k, k does either increase or decrease the effect of 4. In the
former case, we say that the relative sign of k with respect to & is positive and write sign(k, h) =
+1. In the second case it is negative and we write sign(k, h) = —1. This relative sign can be
recognized based on order relationships. For instance, if the effect of & acting on x is expressed
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by x < hx then x < hx < khx implies that k increases the effect of 4. Given a set H of hedges, we
can always establish a table of the relative sign of hedges. For example, it can be seen that the
relative sign of the hedges of VELOCITY mentioned above are determined as in Table 1.

Table 1. The relative sign of the hedges in the first column w.r.t. the hedges in the first row

E Vv R L
E + + - +
Vv + + - +
R - - + _
L - - + _

- The “algebraic” sign of the vague terms: It was shown that each term x € Dom(X) has a
unique canonical (string) representation x = h,, ...h;c having the property that for all i = 1, ...,
m—1, hih; ...hic # h; ... hic. The length of x can then be defined to be the length of the string of
the canonical representation of x, denoted by lxl. Now, the sign of the term x can be defined as:

Sgn(x) = sign(hy, hyp) X ... X sign(hy, hy) X sign(hy) X sign(c) 2)
It could be shown that
(Sgn(hx) =+1) = (hx>x) and (Sgn(hx)=-1)= (hx<x) 3)

For instance, the sign of x = V_L_slow of the variable VELOCITY is calculated by
Sgn(V_L_slow) = sign(V, L) X sign(L) X sign(slow) = (+1)(-1)(-=1) = +1, which implies that
V_L_slow > L_slow.

(p2) Semantic heredity of hedges: An essential property of hedges is the so-called semantic
heredity, which states that the terms generated by using hedges from a given term x must inherit
the (genetic) core meaning of x. This means that the set H(x) comprises the terms that still
contain a core meaning of x. Therefore its hedges cannot change the essential meaning of terms
expressed through the semantic order relation (SOR). The semantic heredity of hedges can then
be formulated formally in terms of SOR < as follows:

- For any term x, any hedges &, k, i’ and k’, where h # k, if the meaning of hx and kx is
expressed by the order relationship sx < kx, then we have

hx<kx = h’hx <k’kx.
- If the meaning of x and hx is expressed by either x < hx or Ax < x, then we have
x<hx = x<h’hx or hx<x = h’hx=<x.

It can be seen that these properties viewed as axioms describe the fact that the hedges 7’
and k&’ cannot change the semantic relationships of the terms x, Ax and kx expressed by the above
inequalities in the structure (Dom(X), <), when they apply to these terms.

2) Terms-domains of linguistic variables viewed as hedge algebras

Let X be a linguistic variable and X < Dom(X). From the above discussion, the set X can
be viewed as an algebraic structure AX = (X, G, C, H, <), where the sets G, C and H are defined
as previously, except that H is assumed for a technical reason that it includes the identity / which
is treated as an artificial hedge and defined by Ix = x, Vx € X, and < is a semantic order relation
on X. The elements in H are regarded as unary operations of AX. By its semantic effect, [ is
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called “neutral” hedge, since it is neither positive nor negative. Hence, it may be considered as
the least element of the both posets H and H*. Suppose that X \ C = H(G), where H(G) is the
set of all elements generated from the generators in G using operations in H, and that 0 < ¢ < W
<c*<1. Since I € H, we have x € H(x).

It is proved that the algebraic structure AX = (X, G, C, H, <) can be axiomatized, called
hedge algebra, which is named by the role of hedges. The hedge algebras have been developed
(see e.g. [19-24, 26]) and applied to solve some problems effectively [3, 4, 24, 25]. Here, for
reference we recall some facts about hedge algebras. For convenience, for any two subsets U and
V of X, the notation U < Vmeans that u <v, for Vue Uand Vve V.

Assume that H™ = {hy, h.y, ..., h,;} and H = {hy, hy,..., h,}, where hy =1 and hy < h.;<h,<
...<hgand hy < h;< ...<h,. The sets H(x), x € H(G), have the following properties:

® H(x) is partitioned into subsets H(hxx), j € [-q, p], where [-¢q, p] = {j | =g <j < p} and, by
a convention, H(hyx) = H(Ix) = {x}, i.e. the subsets H(h;x) are disjoint and

Hx=J,_, H() )
e For Sgn(h,x) =-1, H(h,x) < ... <H(hix) < {x} <H(h..x) < ... <H(h ,x) (5)
e For Sgn(hyx) = +1, H(h.x) < ... <H(h.x) < {x} <H(hx) < ... < H(hx) (6)

4. QUANTITATIVE SEMANTICS OF THE VAGUE TERMS

Since in this approach the meaning of terms is not expressed by fuzzy sets, the
quantification of hedge algebras has to be overviewed systematically. This quantification is
characterized by three concepts: semantically quantifying mapping (SQM), fuzziness measure
and fuzziness intervals of vague terms. These concepts have a very close relationship each other
and it ensures that the SQMs depend on the fuzziness of terms and can be determined
appropriately in fuzzy environments by selecting fuzziness measure values of a few special
terms, called fuzziness parameters. As previously, in this section we will give a short overview
of necessary knowledge. For more details the reader can refer to [19, 21 or 23-25].

4.1. Semantically quantifying mappings of hedge algebras

Generally, as defuzzifiers in fuzzy control which convert fuzzy sets of terms into numeric
values, the quantification of hedge algebra is a mapping from a term-domain into the reference
domain of X. Since these mappings in the algebraic approach will be defined in a closed
connection with fuzziness measure and fuzziness intervals of terms, which are fundamental
characteristics of the semantics of vague terms, they are called semantically quantifying
mappings (SQMs).

Let us consider a free linear hedge algebra AX = (X, G, C, H, <) of a linguistic variable X,
where “free” means that for every hedge 4 and every term x € H(G), we always have hx # x, and
< is a linear order relation on X. This implies that all string representations of the vague terms
are canonical and every vague term has a unique string representation.

Definition 4.1 An SQM of AX is a mapping f: X — [0,1], which satisfies

(1) It is one-to-one mapping and f(X) is dense in [0,1], where [0,1] is the normalization of
the reference domain of X;
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(ii) It preserves the order of X. u

The definition of SQMs is general, but should include their two essential characteristics.
The first one is regarded as a consequence the fact that the quantitative meaning of the terms of
X should approximate the values of its reference domain. The second is natural: SQMs should
preserve the mathematical structure of term-domains.

4.2. Fuzziness model, fuzziness measure and fuzziness interval of vague terms

Since, by the heredity of the hedges, H(x) comprises all the terms that still inherit a core
(genetic) meaning of x, it can be taken as a model of the fuzziness of x. It implies that the larger
the set H(x) the more fuzziness of the term x. Since for x = hu we have H(x)  H(u), it follows
that the more occurrences of hedges in x, the lower the fuzziness of x. This demonstrates that the
use of H(x) as a fuzziness model of x is compatible with our intuition.

Letf: X — [0,1] be an SQM of AX. Since f preserves the order relation on X, for every x €
X, the image f(H(x)) under f is isomorphic onto H(x) in the category of linearly ordered sets.
Thus, since the terms in H(x) are similar with each other and occur consecutively, the size of the
set flH(x)) < [0,1], i.e. the diameter of f{H(x)), can be interpreted as the fuzziness measure of x,
denoted by fin(x):

Jm(x) = d(f(H(x))) € [0,1] (7)

This suggests us to introduce a notion of fuzziness interval of the term x, denoted by J(x),

which is the smallest subinterval of [0,1] including f(H(x)). Clearly, 13(x)| = fin(x), where 1.3(x)I

denotes the length of J(x). Since f preserves the semantic order of X and, by (i) of Definition

4.1, flH(x)) is dense in J(x), from the semantics of H(x) it follows that J(x) comprises the values
of [0,1] that are compatible with the meaning of x to a degree indicated by k = Ixl.

From (4) — (6) and the density of f{X) in [0,1], it follows that (see Figure 2)

For Sgn(h,x) = -1, S(hyx) < F(hyx) < ... < F(hix) < J(hax) < ... < F(hyx) 8)
For Sgn(h,x) = +1, S(h.;x) < S(hyux) < ... < F(hax) < F(hix) < ... < J(hx) 9)
1501 =D (15l 1) € [-4"pl) (10)
quick
L gquick R _quick I V_ quick E_quick
w : : : : | 1
Fuzziness intervals of terms JVL_g) JLL j-“'fa'm_.g)-'m‘ff q) TRE_g) .:IEE::;]
of length 3 SEL_g) NRL_g) T{LR_g)T(VR_g) JiLE_q) JVE_g) :
Fuzziness intervals of terms €-----="- ot >i€----- i€m--- PE-mmmmm e >
of length 2 JL_guick) JR_quick)) J(V_guick) JE _quick)
Fuzziness intervals of terms = = = = >
of length 1 Jquick)

Figure 2. Fuzziness intervals of vague terms of the VELOCITY

Thus, the fuzziness measure fm of vague terms satisfies the following properties:
(fml) fin(c") + fin(c*) = 1 and, as a consequence, fin(0) = fin(W) = fin(I) = 0.
(fm2) Y Jm(hx)=fn(x), x € X, and erxk fin(x)=l1.

Jel-q"p
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It seems natural to assume that the relative effect of hedges acting on the terms remains
unchanged. This can be expressed by the following expression:

Jm(hx) _ fm(hy)

Jm(x)  fm(y)

The quantity g(h) is called the fuzziness measure of 4. Then we have

(fm3) fm(hx) = w(h)fm(x), for hx # x, x € X, and, hence, fim(y) = u(h,,) ... u(h,)fm(c), where
y = h,, ...hic is the canonical representation of y.

(fimd) z H(h)=a and z,u(h[.):ﬁ,where a,f>0and o+ f=1.

—q<i<-1 1<i<p

= w(h), forallx,ye X arn

From these it follows that in order to determine a fuzziness measure of a linguistic variable
it merely requires to provide the fuzziness measure values of one primary term and (p + g — 1)
hedges, which depend only on the linguistic variable, but not on individual terms. For
convenience, we call them fuzziness parameters in common. In practice, it is sufficient to
assume that p, g < 2. Hence, the number of fuzziness measures of hedges does not exceed 3 and
the total number of fuzziness parameters does not exceed 4. On the other hand, since human
being uses vague terms in their daily lives, they will have their practical knowledge to define
more easily the numeric values of these parameters than to define individual fuzzy sets of vague
terms. We note that these fuzziness parameters fully determine the quantitative semantics, which
comprise the fuzziness measure, fuzziness intervals and semantically quantifying mappings of
the linguistic variable in question.

4.3. SQMs induced by a given fuzziness measure of vague terms

It has been seen previously that there is a strict relationship between the notion of SQMs
and the notions of fuzziness measure and fuzziness intervals of terms. This relationship is
reinforced by the fact that a given fuzziness measure fin will induce an SQM, denoted by v, so
that fim(x) = d(v(H(x))), the diameter of the image (H(x)), for Vx € X. The inequalities in (5),
(6), (8) and (9) (refer to Figure 2) suggest that v(x) should be defined to assume the value lying
in-between the fuzziness intervals J(h.x) and J(h;x). Consequently, the mapping v can be
expressed recursively as follows:

(SQMI) oW) = 6 = fin(c), Uc) = O afn(c) = fin(c), Uc*) = O+ afn(c™);
(SQM2) k) = vx) + Sgnhy[ XL, finth0) |-ty fmth o)

i=sign(j)
1 .
where @(hx) = 5[1 +Sgn(h,x)Sgn(h,h . x)(f-a)le {a, B}, forall j € [-g"p].

All three quantitative aspects of the terms, the fuzziness measure fin, the fuzziness intervals

and the fm-induced SQM v are completely determined by providing the values of the fuzziness
parameters fin(c"), fin(c*) and w(h), h € H, of X. Using the constraints given in (finl) and (fin4),
the number of the required fuzziness parameters is |H| + G| — 2 = |HI.
Example 4.1 Consider the linguistic variable VELOCITY, e.g. of motor-bikes, with the hedges
examined previously. Suppose that its reference domain is [0, 120] and its fuzziness parameters
are provided as follows: fim(slow) = 0.4, u(L) = 0.25, u(R) = 0.20, 4(V) = 0.3. Hence, we have
Jfm(quick) = 0.6 and w(E) = 0.25 and, hence, a = 0.45 and f = 0.55. Assume that it is required to
calculate the quantification values of “quick” and “L_quick”. Then
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By (SMQ1), (quick) = 0.4 + (0.25 + 0.20)0.6 = 0.67.
By (SMQ?2), AL_guick) =0.67 + (-1){[(0.20+0.25)x0.6] — 0.55%(0.25%0.6)} = 0.4825
since R = h.,, L = h, and we have
fim(hic®) + fin(hoc™) = [p(hey) + p( ho)xfm(c™)
and ahoc™) =4[ 1 + sign(Lc¥)sign(E, L)sign(L)sign(c*)(0.55 — 0.45)] = 0.55
Thus, the actual quantification values of quick and L_quick are 0.67x120 km = 80.4 km and
0.4825x120km = 57.9 km, respectively. ®

It is obvious that when we change the fuzziness parameters, the induced SQM will be
changed as well. In order to show how SQMs depend on the structure of hedge algebras, we
consider the following example

Example 4.2 Consider again the linguistic variable VELOCITY, but it has only two hedges R
and V, i.e. p = ¢ = 1, and in the same time we assume that fin(slow) = 0.4, a = 0.45 and f = 0.55
that are the same as in Example 4.1. This implies that £(L) = 0.45 and (V) = 0.55. Here, we use
the hedge L but not R, since R is usually used in the context of the existence of another negative
hedges and, moreover, intuitively its performance is weak. Then the quantification values of
“quick” and “L_qguick” will be changed as follows:

By (SMQ1), tquick) = 0.4 + 0.45x0.6 = 0.67, which is the same as above. But (SMQ2),
UL _quick) = 0.67 + (-1){[0.45%0.6] — 0.55%(0.45x0.6)} = 0.5485

since L = h.; we have fin(h.,c*) = 0.45x0.6 and
axh.c™) = Y[l + sign(Lc™)sign(V, L)sign(L)sign(c*)(0.55 — 0.45)] = 0.55

Hence the actual quantification value of quick is 80.4 km, the same as above, and of
L_quick is 0.5485x120km = 65.82 km, which is greater than the value 57.9 km above. u

5. HA-INTERPOLATIVE-REASONING METHODS AND HA-CONTROLLERS

Let us consider a fuzzy model in the form of (1), in which A, B;,j=1,..,mandi=1, ...,
n, are, however, not fuzzy sets but vague linguistic terms. Therefore, in the algebraic approach,
the set of fuzzy rules in (1) will be called a linguistic model of control knowledge.

An essence of the fuzzy controllers is the fuzzy multiple conditional reasoning (FMCR)
problem [15, 16, 31]. The reasoning method for the given inputs X; = Ag;, j = 1, ..., m, of the
linguistic model (1), helps us find an output ¥ = B.

In this section, we will present how a fuzzy reasoning method can be constructed to solve a
given FMCR problem, utilizing hedge-algebras-based semantics of terms.

5.1 HA-based interpolative reasoning method

We show that based on hedge-algebras-based approach to the semantics of vague terms, we
can easily develop HA-based interpolative reasoning methods.

5.1.1. General descriptions of hedge-algebras-based interpolative reasoning method

Although the linguistic model (1) describes a dependency of Y on X;’s, that is it expresses
certain domain knowledge of the designer, it does not provide any formal basis for computation.
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At first, an exact mathematical model of the domain knowledge represented by (1) has to be
constructed. Since a terms-domain of each linguistic variable can be viewed as a subset of a
hedge algebra, we may suppose that the linguistic variables X; and Y appearing in (1) will be
associated with certain hedge algebras denoted respectively by AX; = (X}, G;, C;, H), <)) and AY =
(Y, G, C, H, <) such that G; and H; as well as G and C contain all the primary terms and the
hedges appearing in (1),j=1, 2, ..., m.

Now, if we regard the i"-if-then statement in (1) as a linguistic point A; = (A;, ..., A, B,

then the given linguistic model defines n points in the Cartesian space X;X...xX, XY, which
describe a linguistic surface S; in this space. The surface S; can be considered as a mathematical
model that simulates approximately the linguistic model given by (1). Since hedge algebras
preserve the semantic order relations on the respective term-sets, we have a basis to believe that
the surface S, describes the domain knowledge given by (1) faithfully. Thus, a natural
requirement now is to construct a transformation to convert the linguistic surface S; into a
numeric surface Sy in a multiple-dimensional Euclidean space, utilizing SQMs of the hedge
algebras in question.

The FMCR problem is now transformed into a classical surface interpolation problem,
which will be solved by an interpolation method. A reasoning method described here is called
HA-based interpolative reasoning method (HA-IRMd, for short).

5.1.2. Construction of HA-based interpolative reasoning methods

Let be given a linguistic model (1). The methodology for the construction of HA-IRMds
comprises the following tasks:

(i) Determination of hedge algebras associated with linguistic variables

The expressions of terms of hedge algebras coincide with those in natural languages.
Therefore, assume that the linguistic terms used to formulate the fuzzy rules in (1) are terms of
certain hedge algebras. Thus, the hedge algebras associated with linguistic variables present in
(1) are constructed by the determination of the sets G;, H;, G and C, which include respectively
the primary terms and the hedges appearing in (1), j =1, 2, ..., m. Once G;, H;, G and C are
determined, the terms-set X; is automatically generated. However, as it will be seen, it is
necessary to focus attention on only the terms appearing in (1), but not all terms in X;. Notice
that since the structure of hedge algebras determines the semantics of their terms (refer also to
Example 4.2), it may happen that although some hedges do not appear in (1), they must be
included in the respective associated hedge algebra. For example, the absence of the hedge
“rather” in the context of the presence of “little” in a set of fuzzy rules does not mean certainly
that the respective hedge algebra does not contain the hedge “rather”. The presence of the hedge
“rather” in the algebra is decided by just the semantics of the vague terms, which the application
designer wishes to assign to these terms.

In fuzzy control, a FAM-table contains usually vague terms like positive big and negative
big ..., which are compatible with the reference domain [-1,1] while the terms of hedge algebras
are compatible with the reference domain [0,1]. In the sequel, it is required that the vague terms
in a FAM-table must be transformed into linguistic terms in the respective hedge algebras so that
the term-transformation should preserve essential order-based semantic properties of terms,
including: (i) The semantic order relation between the vague terms and (ii) The symmetric
property of the vague terms under consideration, which states that each vague term has its own
symmetric term, which is the antinomy or has an opposite meaning of the former one (see
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Section 6). For instance, the pair of the terms positive and negative or of the terms positive big
and negative big is symmetric. The term zero in a FAM-table corresponds to the neutral element
W in hedge algebras.

(ii) Determination of SQOMs vUx; and Uy and normalized surface S,,..: Since the image
domains of an SQM is [0,1], first of all the reference domains of linguistic variables must be
normalized. Given a reference domain in the form of an interval [a, b] of a linguistic variable X,
the normalization of this interval domain is realized by the following linear transformation,
which is determined uniquely by the given interval [a, b]:

gx: lab] — [0.1] (12)
The converse mapping gx_ of gx is called the denormalization mapping of X.

As discussed above, the linguistic model (1) interpreted as n linguistic points simulates a
linguistic surface S;. Let vx; and vy be SQMs of the constructed hedges algebras AX; = (X, G,
C,H;,<)and AY = (Y, G, C, H, <) of the variables X; and Y, respectively, where j=1, 2, ... m.
These SQMs transform n points (A;, ..., A, B;) in the linguistic space X;X...xX,XY into n
points in the Euclidean space [0,1]'"“, which simulate a surface in [0,1]’”*1, called the normalized
surface of the linguistic model (1), denoted by S,,.,. Thus, we can say that the vector (v, ...,
Uxm, Vy) of the SQMs vx;, j=1, ..., m, and vy transforms S, into S,

(1)X17 ) 1)Xms UY) : SL - Snorm
The surface S,,,,, can also be considered as being defined by an m-argument function,

v =fSn[)ﬂ7l(u19 sy um)s Vs u] E [07 l]sj = 19 ceey m (13)

which satisfies the conditions that Vy(B;) = fsuorm( Ux1(Ai)s -y Uxm(Ain))s i =1, ..., n. The function
Ssnorm OF Sy can be considered as a normalized numeric model of (1).

Similarly, the vector (gXl'l, gxz’l, - gx,,,’l, gY'l) of the denormalization mappings of the
respective linguistic variables transforms S,,,, into a hypersurface S, in the Euclidean space [ax;,
bxi] X [axs, bxo]X ... X [axm bxm] X [ay, byl, where [ax;, bx;] and [ay, by] are the reference
domains of X; and Y, respectively, where j = 1, ..., m. Sg is called a denormalized model of the
linguistic model (1).

Next, for convenience, we apply however a selected interpolative reasoning method on the
surface S,,,,,, instead of Sk.

Since the SQMs preserve the essential semantic properties of linguistic terms, we can state
that S, is similar to S, or S,,,,, is a “faithful” computational model of (1). S; is determined
immediately by the given linguistic model (1) or by the fuzzy associative memory (FAM) called
in the fuzzy control FAM-table, whose rows are formed by the linguistic terms of the
corresponding if-then sentences in (1). Thus, S,,,, is determined by the quantification of the
terms in the FAM-table, which results in a numeric table, called in this study quantified FAM-
table (gFAM-table, for short).

In order to construct the mathematical model S,,,, of (1) it is required to determine the
vector of SQMs, (Uxi, ..., Uxnm Uy). However, these SQMs will be determined simply by
assigning the values to the fuzziness parameters of the respective linguistic variables X; and Y. In
applications, the determination of these parameter values can be provided either by the designer
based on his intuitive domain knowledge or by solving an appropriate optimization problem
utilizing an evolutionary algorithm. The set of all these parameters consists of the following
categories:
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- m+1 parameters of the fuzziness measure of primary terms: 8 = fin(c;),j=1,2, ... m, and
0= fin(c").

- p; + q; — 1 fuzziness parameters of the hedges in H; of the algebra AX;, 1(h; ), ..., t(hj 1),
HChin), ..., f(hip), j=1,2,...m.

- p + q — 1 fuzziness parameters of the hedges in H of the algebra AY, u(h_), ..., u(h_),
HChy), ..., u(hy).

It is worth emphasizing that, for each j"-dimension, the number of these fuzziness
parameters does not depend on the cardinality of the term-set X;, but depends only on the
semantics of the linguistic variable X;. For instance, assume that p; = 2 and g; = 2, the required
number of fuzziness parameters for determining the SQM vx; is always (1 +2 + 2 — 1) = 4, for
any possible term-set X;. That is it depends on the linguistic variables of interest, but not on a
particular set of terms Xj.

(iii) Determination of an interpolation method on S,,»: Suppose in general that input of the
linguistic model (1) is a vector Ag = (Ao 15 ..., Ag.n) Of m linguistic terms whose meaning is now
defined by the structure of their respective hedge algebras AX; = (X;, G;, C;, H;, <)) and AY = (¥,
G, C, H, ), where j = 1, 2, ... m. An FMCR problem requires finding an output B
corresponding to the given input A.

In the fuzzy control, the input of (1) is a crisp vector, Ao = (a1, - .., dom), do; € lax;, bx;] for
j=1,2, ... m, and the output is required to be a numeric value in [ay, by], as well.

Since in the algebraic approach, we will take advantage of the surface S,,,., and a classical
interpolation method on this surface, the vector A, should be normalized to become Ag,orm =
(gxi(ao1), ---» &xml@om)) € [0,11", and the calculated input is a numeric value. We can find many

interpolation methods and computation tools to solve this problem in the literature. Thus, hedge
algebras approach provides another methodology to solve FMCR problems.

Such a constructed HA-IRMd produces a numeric value bg,,.,, € [0,1], which is

approximately equal to fo.om(gx1(@0.1)s - .., &xm(do.m)), the function described in (13), for a given
Ay. The actual output value b, is calculated from by, as follows:
by = gX-l(b(),norm) € [ay, by] 14)

Another way to define HA-IRMd for an application is to transform the surface S,,,, to a
curve C,,, in a 2-dimensional Euclidean space and apply a linear interpolation method on C,,,.
This transformation can be realized by an m-ary aggregation Agg of the quantitative values of
the vague terms in each fuzzy rule in (1). Thus, the curve C,,,, is expressed by the following n
calculated points:

(Agg(vxl(Ai,l)s ey Z)Xm(Ai,m))s I)U(Bl))s i= 13 cey 1.

In this study, the aggregation operator Agg is chosen to be the weighted averaging
operation. In this case, the weights are also parameters of the HA-IRMd to be designed or
optimized and called also fuzziness parameters of HA-IRMd in common, for convenience.

5.2 Hedge-algebra-based controllers
Based on the HA-IRMds examined above, we introduce a general fuzzy control model
based on the theory of hedge algebras, called hedge algebra-based controller (HAC). Figure 3

shows a general schematic view of the HA-control algorithm for HAC. In accordance with the
construction of the HA-IRMds described above, there are three components of the HAC
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modules that are different from the corresponding components of fuzzy control algorithm
described in Figure 1. Component (/) has the tasks to normalize the reference domains of the
linguistic variables and to compute the values of the determined SQMs. Component (/]) realizes
the inference task based on the rules base and the constructed HA-IRMds. The task of
Component (/1) is to calculate the actual numeric value of the control action.

[0)) un Inference engine (020}
(HA-IRMd) o
— | Z ¢
X1 g — =3
5w » ~ Snorm =3 Z g

Xy — h__{g £ | (m-dimensional |5 g Bosorp 3 "
g » :.; space) = & > E
X ———p g > 2 g_ 2 g.
Clmrm B =

Figure 3. An overview of the HA-control algorithm for HAC

It is obvious that, except its fuzzy rules base, there are only two factors that affect the
performance of HACs: (i) The fuzziness parameters of the linguistic variables to calculate SQMs
values and (ii) The selected interpolation method on S,,,,.. In the case the designer prefers to use
a numeric interpolation method on the curve C,,,,, an additional factor that the designer must
require to pay attention to is the aggregation operation. In comparison with the design of fuzzy
controller, there are here only a few factors and it is important that they are much simpler than
the factors affecting the effective construction of fuzzy controllers examined in Section 2. Based
on the simulation study in Section 6, the designer can adjust these factors to construct a high
performance controller.

In addition, as a consequence, the fuzziness parameter optimization problem can easily be
solved to enhance its performance. A HAC designed with optimized fuzziness parameters is
called optimized HAC or opHAC, for short.

The new methodology to construct HA-IRMds and HACs has many significant advantages:

1) The ability to establish a “faithful” mathematical model of (1): Since SQMs are
homomorphic in the category of ordered sets, transforming the set of fuzzy rules in (1) into a
crisp surface S,,,,, or, equivalently, a function fs,,,,, in (13), they preserve the essential semantic-
order-based structure or essential knowledge information of the linguistic model given by (1).
We regard it as an essential factor to enhance the performance of fuzzy reasoning methods.

2) The surface S,,,,,, or the function f,,,, is a simple, transparent mathematical model that is
easily constructed. At the same time, its construction based on the calculation of SQMs values is
very simple. By providing fuzziness parameters of linguistic variables, the SQMs values of
vague terms in the linguistic model (1) can be automatically computed.

3) The numerical output of (1) corresponding to the given input vector is calculated
utilizing a classical (numeric) interpolation method on the surface S,,,,, or the curve C,,.,. Itis a
well-known task and there are many interpolation methods that can be found in the literature.
Defuzzification methods are not required here.

4) In the case the designer prefers to realize an interpolation method on the surface S,
there are only two factors which affect the performance of the designed HACs. Since the factor
of the numeric interpolation is well-known, once it is fixed, the fuzziness parameters are the total
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parameters that affect the effective construction of HACs, he may concentrate his effort to
determine the fuzziness parameters to enhance the performance of the desired controller. This
implies also that the fuzziness parameters optimization problem has a significant positive impact
on the controller performance.

6. APPLICATIONS

To show the advantages of the proposed methodology, it will be applied to design HACs
and opHAC:s for vibration control of high-rise structural systems with active tuned mass damper
(ATMD) against earthquakes. The designed controllers will be simulated with the recorded
seismic data of three typical earthquakes, El Centro, Northridge and Kobe to demonstrate their
performance and, through this, to explain the advantages of the proposed methodology. In the
simulation study, the recorded seismic data of El Centro will be used in the design of the
controllers, while the remaining ones will be used for testing their performance.

6.1. Determining the control problem and its discrete control model

For a comparison study between the effectiveness of fuzzy-logic-based controller and
HAC, a structural system model similar to those examined in [11] will be considered here. A
high-rise building modelled as a structural system with ATMD, which is described in Figure 4,
is assumed to have fifteen degrees of freedom all in a horizontal direction. The system is
modelled with two active actuators of different types to suppress structural vibrations against
earthquakes. Accordingly, one is installed on the first storey and the other on the fifteenth storey,
since the maximum inter-storey shear force occurs on the first storey and the maximum
displacements and accelerations are expected from the top storey of the structure during an
earthquake, assuming equivalent storey stiffness and ultimate capacities. In Figure 4, m, is
movable mass of the ground storey and my, ms, ..., ms are the mass of the remaining storeys,
where the mass of all storeys include both the ones of storeys and their walls. The mass m g is of
the ATMD installed on the fifteenth storey. The variables x;, x, x3,..., x;4 and x;5 indicate the
horizontal displacements and x4 indicates the displacement of ATMD. The variable x, is the
earthquake-induced ground motion disturbance to the considered structural system. All springs
and dampers are acting in the horizontal direction. The system and ATMD parameters examined
in [11] are given in Table 2.
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Table 2. The system parameters with ATMD

Storey i Mass m; (10° Damping ¢; | Stiffness k;
kg) (10°Ns/m) | (10° N/m)
1 450 261.7 180.5
2-15 345.6 2937 3404
16 (ATMD)| 104.918 5970 280

The discrete control model is established based on the dynamic model of fifteen-degrees-
of-freedom structural system equipped with ATMD. The equations of motion of the system

subjected to the ground acceleration X, for each earthquake described in Figure 5, with control
force vector {F'}, can be described in (15) (see [11]):

[MUX}+[CHx}+K]{x} ={F} = [M{r}X, (15)

where {x} = [x; X X3... x4 X5 X6l {F} = [-u24,000000000 000 uys -us5]" and the
16x1 vector {r} is the influence vector representing the displacement of each degree of freedom
resulting from static application of a unit ground displacement. u, and u;s are the control forces
produced by linear motors; the 16x16 matrices [M], [C] and [K] represent the structural mass,
damping and stiffness matrices, respectively.

El Centro earthauake

Acceleration
(m/s?)

) ) . ) Time (s)
0 10 20 30 40 50

"
BN o oo o

- Northridee earthauake B

(m/ )

L&)Ol\)bm

Acceleration

0 5 10 15 20 25 30 35 40

Kobe earthauake .

Acceleration
(m/s?)

Shvovro

0 5 10 15 20 25 30 35 40 45
Figure 5. The ground acceleration X, (m/s?)

The mass matrix [M] for the high-rise building structure with the assumption of masses
lumped at floor levels is a diagonal matrix given in (16), in which the mass of each storey and
the ATMD are ordered on its diagonal:
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(m, 0 0 0]
0 m, 0 0
M]=| .. o i (16)
0 0 .. m; O
10 0 .. 0 m]

The structural stiffness matrix [K] is formed based on the individual stiffness k; of each
storey is defined by (17):

ki+k, i=j#16

ki i=j=16

K;=y -k i—j=1 17
—ki Jj-i=1
0 otherwise

The structural damping matrix [C] is defined as follows:
c,tc,, Ii=j#16
Ce i=j=16

C, = —c; i—j= (18)
—Cin j_ i=
0 otherwise

Assume that the reference domains of the four state variables of the discrete control model
are given by —a, <x,<a,; —b,<x,<b,; —a,;<xs5<a, and —b <X, <b, and those of the
control forces are given by —c; < uy < ¢ (N) and —cj5 < uys < ¢15 (N), where a;, by, fori =1, ...,
15, indicate respectively the absolute peak displacement and velocity vectors of the uncontrolled
state of the structure excited by earthquake ground shaking and ¢, and ¢;5 are the maximal values

of the control forces of the corresponding storeys.
The goal function g of the control is defined as follows:

—ZHZZ(X (])j (19)

j=0 i=1
where 7 is the number of control cycles, and the a;’s are specified above.
6.2. Constructing fuzzy controller for the considered structural system
For comparative purposes, based on the discussion in Section 2 and the closed-loop fuzzy

control algorithm given in Figure 6, the construction of the fuzzy controllers is realized by the
design of the following factors which are the same as examined in [11]:
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(a) (b)

X,
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Figure 6. Schematic of fuzzy control algorithm of the structural system, (a) The actuator on the first
storey, (b) The actuator on the fifteenth storey (ATMD)

(i) Fuzzifier: The linguistic variables of the variables x, and x5 are denoted by x; and x;s, of
X, and X5 by 15 and s, respectively, and of u by ¥. The vague terms of the both % and ;s are

NB, NS, Z, PS and PB, of the both 15 and ¥}5 are N, Z and P and of U are NB, NM, NS, Z, PS,
PM and PB. The memberships of these terms are designed as depicted in Figure 7 — 9, which are
the same as examined in [11].

NB NS1 Z PS PB NB NS1 Z PS PB
X2 X15
—a, 0 —a, 0

—dis —dais

Figure 7. Membership functions for X; and X5

15 0 blS

Figure 8. Membership functions for 75 and 15

NB NM NS Z 1PS PM PB NB NMNS 7

U Uuis

—d 0 d» —d5 0 dis

Figure 9. Membership functions for U5, and U5

Since the recorded seismic data of El Centro earthquake will be used to design controllers,
the universes of discourse of four state variables of the discrete control model of the from —a, <
X L ay, —by £ X, < by, —a15 < x5 < ay5 and —by5 < X5 < bys will be determined by, respectively,
the absolute peak displacement and velocity vectors of the uncontrolled state of the structure
excited by El Centro earthquake ground motion. The control forces u, and u,5 are assumed to
subject to the constraints —3.83%10° < u, < 3.83%x10° (N) and —6.9x10° < u;5 < 6.9x10° N).

(i) Inference engine: The construction of the inference engine is also the same as examined
in [11]. It comprises two main components, first of which is its fuzzy rules base given in Tables

723



Hai Le Bui, Cat Ho Nguyen, Duc Trung Tran, Nhu Lan Vu, Bui Thi Mai Hoa

3 and 4. The remaining one is the fuzzy reasoning method which is selected to be the one of
Mamdani.

(ii1) Defuzzifier is usually the centre gravity method, which was chosen also in [11].

3) Constructing control algorithm for the desired HAC

The design of HAC in this subsection is based on the HAC scheme depicted in Figure 3.
The following tasks should be implemented:

o To determine hedge algebras of the considered linguistic variables for representing
control knowledge: The hedge algebras need be determined only for the following variables: x,,

562, X5 s )'cls, up and uys. The numerical values of the variables corresponding to the remaining

storeys are computed by the established discrete control model. As previously, although the
linguistic variables under consideration are different, their hedge algebras may be defined with a
similar structure as follows: G = {small, large}, C = {0, W, 1} and H = {h", h"} = {L, V}, where
L and V stand for Little and Very, respectively, as previously. However, in order to indicate their
different quantitative semantics, we denote these hedge algebras by the same notations with

different indexes. For instance, the hedge algebra of the variable x, is denoted by AX,« with G
= {smally, large,«}, C = {0+, Wy, 15} and H = {L,«, V,+}. Similarly, in accordance with this
convention, the hedge algebra of x,is denoted by AX,s with G = {small;s, large;s}, C = {05,

W15, 115} and H = {L15, V15}, but for Us it is denoted by AU15 with G = {smallu15, largeuls}, C=
{0uis, Wais, 1uis} and H = {Ls, Viuis}, and so on.

The FAM tables for the fuzzy control of the first and fifteenth storeys examined in [11] are
given in Tables 3 and 4, the vague terms in which are only the labels of the designed fuzzy sets
defined on symmetric intervals of the form [—a, a]. In the algebraic approach, they are however
elements of the respective constructed hedge algebras with the qualitative and quantitative
semantics with the normalized reference domain [0,1] examined in Sections 3 — 5. Thus, the
vague terms in these tables must be transformed into terms of the respective hedge algebras by a
term-transformation, which preserves essential order-based semantic properties of vague terms
appearing in FAM-tables. Usually, the potential vague terms used in fuzzy control like these
FAM tables can be linearly ordered and grouped into pair of terms with opposite meanings, i.e.,
they are symmetrical with respect to the term ‘zero” - the neutral. For instance, the pair of terms
positive and negative or of positive big and negative big is symmetric. The desired term-
transformations should preserve their order and symmetry. In this experiment, they are defined
by Tables 5 and 6.

Table 3. FAM table for the actuator on the first storey

X
2 N Z P
X2

NB NB NM NS
NS NM NS Z

Z NS Z PS
PS Z PS PM
PB PS PM PB
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Table 4. FAM table for the actuator on the fifteenth storey

is N z P
X15
NB NB NM NS
NS NM NS z
z NS z PS
PS z PS PM
PB PS PM PB

Table 5. Linguistic transformation for X,, X,, X5 and X

NB N Z P PB

small Little small | W Little large | large

Table 6. Linguistic transformation for u, and w5

NVB NB N Z P PB PVB

Very small | small |Little small| W | Little large |large|Very large

e To construct HA-IRMds for the application under consideration: For each application,
once reference domains of the considered linguistic variables are determined, the normalization
transformation for every variable can be automatically produced. The SQMs of the linguistic
variables will also easily be determined by providing their fuzziness parameter values, which are
either designed by the designer or produced by an evolutionary procedure to solve the fuzziness
parameter optimization problem, as discussed previously. Then the required g-FAM tables are
constructed.

In this subsection, the HA-IRMds are defined by the linear interpolation with respect to the
established hyper-surfaces S, modelled approximately by the available data given in the g-
FAM tables of the first and fifteenth storeys.

6.3. Optimization of fuzziness parameters

In this subsection, we deal with the El Centro, Northridge and Kobe earthquakes, where the
seismic data of El Centro earthquake in USA were recorded at the El Centro Terminal
Substation Building on May 18th, 1940 with Peak Ground Acceleration (PGA) 0.35g, which can
be found at http://www.vibrationdata.com/elcentro.htm, and the seismic data of Northridge
earthquake in USA were recorded at the Castaic - Old Ridge Route Station on January 17th,
1994 with PGA 0.57g and the ones of Kobe earthquake in Japan were recorded at the KIMA
Station in  Kobe on  January 16th, 1995 with PGA  0.60g, see
http://peer.berkeley.edu/smcat/search.html.

The idea of solving the fuzziness parameter optimization problem here is described as
follows: since it is difficult for the designer to determine the appropriate fuzziness parameters
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for a practical application problem, the data of El Centro earthquake is chosen randomly among
three mentioned earthquakes as the training data to determine the near optimal fuzziness
parameters for the earthquake protective structural system under consideration. Then, the
obtained optimal fuzziness parameters will be used to design the HACs applied to the protective
structure in question against other earthquakes in the future. The Northridge and Kobe
earthquakes will be used as the testing data for the designed HAC to validate its performance.

Thus, the hedge algebras, the reference domains of the linguistic variables and their
normalization transformations and SQMs will be determined utilizing the seismic data of El
Centro earthquake. Then, the universes of discourse of four state variables x;, )'cz, x5 and )'cls
and of two control force variables u, and u,s are the same as for the above designed fuzzy
controllers.

The goal function is defined by (19), for which the number n of cycles of the whole control
process is defined by dividing the total time 50 s of simulation by the time step 0.01 s. So, n =
5000. The fuzziness parameter optimization problem will be solved by utilizing a genetic
algorithm (GA) based on the encoding examined in [5] with the following requirements:

- The constraints on fuzziness parameters: 0.3 <fm(c)<0.7 and 0.3 <u(h") <0.7.

- Since the main aim of the study is to show the advantages of the proposed methodology,
in this simulation only the fuzziness parameters of the algebras AU, and AU s are optimized for
simplicity.

For the remaining hedge algebras they are assigned with the same values as follows:
Jm(small) = yu(Little) = 0.5

In despite of this, the simulation experiments and the comparison study below still show the
better performance of the designed opHAC’s than their counterparts in protecting the civil
structural system from earthquakes.

Then, the near-optimal fuzziness parameters of AU, and AU,5 shown in Table 7 have been
produced by a GA, using the seismic data provided from El Centro earthquake.

Table 7. The optimal parameters of 4T, and 4U;s for the opHAC

For the actuator on the 1™-storey, u, For the actuator on the 15"-storey, u;5
SJm(c?) M) Jm(c?) M)
0.383 0.628 0.620 0.689

6.4. Simulation results and a comparative analysis

¢ The simulation experiments have been designed in order to show the effectiveness of the
hedge-algebra-based methodology applied to this field. The structural system under
consideration equipped in turn with the designed fuzzy controller (FC), the designed HAC and
the designed opHAC has been simulated against the earthquake ground vibrations obtained from
the seismic data of the three specific earthquakes - El Centro, Northridge and Kobe. It can be
observed from Figures 10, 12 and 14 that all horizontal displacement responses of the fifteen-
degree-of-freedom structural system have been taken into account in the simulation experiments.
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e All the controllers of three types have been designed based on the recorded seismic data
of the El Centro earthquake, including the design of the optimal fuzziness parameters of
opHACs. This means that the El Centro earthquake data have been used in the training phase
and the seismic data of Northridge and Kobe earthquakes have been used in the testing phase to
evaluate the effect of the proposed methodology. To offer some comparison, the calculated
control forces of the control algorithms of all three controllers should be bounded by the same
maximal control forces 1700 kN for the first storey and 3000 kN for the fifteenth storey. The
simulation results of all fifteen storeys exhibited in Figures 10, 12 and 14 show that the
performance of the designed opHACs are always the best and that of the designed fuzzy
controllers are always the worst for all the three examined earthquakes, although its optimal
parameters are determined by utilizing only the seismic data obtained from the El Centro
earthquake. Since in practical applications it is difficult to determine the parameters of the
membership functions, in the design of fuzzy controllers, and the fuzziness parameters, in the
design of HAC’s, these results point out a useful advantage stating that in designing an opHAC
for a structural system one may determine its optimal fuzziness parameters by an evolutionary
technique using the seismic data of a particular earthquake.
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Figure 10. The maximum storey drift of El Centro earthquake
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Figures 11, 13 and 15 exhibit comparisons of controlled displacement of the fifteenth
storey of the examined structural system calculated by the designed fuzzy controller, HAC, and
opHAC with the uncontrolled ones for all three earthquakes under consideration.
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Figure 15. Displacements x,; versus time - Kobe earthquake

Table 8. Simulation results

El Centro earthquake Northridge earthquake Kobe earthquake

> = ==
s BE = %3
& B Controlled to g€ Controlled to =3 Controlled to uncontrolled
o0 £ § uncontrolled displacement| § g uncontrolled displacement] g - displacement ratio
B S E ratio (reduction ratio) % g ratio (reduction ratio) o ] (reduction ratio)
EREN- 3 ~ 8
SR 2 23

=S FC | HAC |opHAC § —% FC | HAC |opHAC E FC | HAC |opHAC
1 0178 0.595 0530 0523 0201 0.728 0.681 0.598 0376 0.618 0.606 0.592
2 0186 0.573 0496 0490 0.211 0.705 0.657 0.576 0392 0.599 0591 0.568
3 0193 0573 0485 0478 0220 0.705 0.657 0578 0.406 0.590 0.578 0.552
4 0199 0571 0473 0469 0230 0.702 0.657 0.581 0418 0.578 0.561 0.534
5 0204 0566 0.469 0461 0241 0.697 0.653 0.585 0428 0.562 0541 0518
6 0207 0559 0466 0453 0251 0.687 0.645 0.592 0438 0.544 0523 0.503
7 0210 0560 0.486 0.445 0.261 0.671 0.633 0.594 0450 0.531 0.508 0.483
8 0213 0569 0499 0437 0271 0.650 0.619 0591 0465 0520 0499 0471
9 0216 0575 0509 0432 0280 0.629 0605 0.583 0.481 0.520 0.500 0.471
10 0219 0578 0.518 0447 0288 0.612 0592 0577 0496 0527 0507 0477
11 0221 0580 0.525 0461 0.295 0598 0.580 0.570 0.509 0.538 0.519 0.488
120223 0582 0.533 0474 0301 0584 0569 0561 0519 0548 0.532 0.502
13 0224 0585 0.542 0486 0305 0571 0.557 0547 0.528 0.556 0.541 0.515
14 0225 0587 0.548 0496 0308 0560 0.546 0.533 0.535 0.561 0.546 0.523
15 0226 0590 0.551 0502 0310 0555 0540 0527 0539 0564 0550 0.526

Table 8 presents a summary of simulation results in view of reducing the displacement
response of the examined structural system. For example, for the 1% storey, the response
reduction ratio, i.e. the ratio of the controlled to uncontrolled response for maximum
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displacement is about 59.5%, 53.0% and 52.3% for the designed FC, HAC and opHAC,
respectively, for El Centro earthquake. That is in view of the reducing the displacement
response, the performance of the designed HAC and opHAC is better than the performance of
the designed FC about 10.92% and 12.1%. The corresponding performance percentages are
15.1% and 17.86%, for Northridge earthquakes, and 1.94% and 4.21%, for Kobe earthquake.

For the 15" storey, the corresponding performance percentages are 6.61% and 14,92%, for
El Centro earthquake, 2.7% and 5.06%, for Northridge earthquake, and 2.48% and 6.74%, for
Kobe earthquake.

Table 9. CPU computation time of the controllers: a comparative analysis

Earthquake El Centro Northridge Kobe
FC 172.6250 135.3125 165.9357
HAC 17.6250 14.0781 16.4844

In view of the maximum displacement, which is an essential evaluation criterion of the
structural control algorithm, it is observed that for El Centro earthquake, the maximum reduction
ratio produced by the designed FC is 0.595, by the designed HAC is 0.551 and by the designed
opHAC is 0.523. The corresponding figures are 0.728, 0.681 and 0.598, for Northridge
earthquake, and 0.618, 0.606 and 0.592, for Kobe earthquake. One should emphasize the fact
that the maximum displacements of all storeys calculated by the designed controllers for all
three examined earthquakes are all decreased in turn from the designed controllers FC to HAC
and then to opHAC. Notice that although the size of the population is only 80 and the number of
generations is only 300, which are still small, the performance of the designed opHAC’s is
already the best in comparison with the remaining controllers.

The comparison above underlines the advantages of the proposed methodology. However,
its main benefit is in the simplicity and effectiveness of the control algorithm based on HA-
IRMds. This is guaranteed by the advantages discussed in the end of Subsection 4.1 and, hence,
it improves the performance of the desired controllers. Table 9 shows that the total CPU
computation times of the designed HACs (given in) for the simulation of the structural system
against the examined earthquake disturbances are about ten times smaller than those of the
designed fuzzy counterpart.

7. CONCLUSIONS

In this paper, the methodology to design fuzzy controllers based on hedge-algebras-based
semantics of vague terms has been presented. Its novelty originates from the fact that hedge
algebras model directly the qualitative meaning of the vague linguistic terms in term-domains of
linguistic variables. The meaning of vague terms is not expressed by fuzzy sets, but by their
order relationships with the remaining terms in a terms-domain, called order-based meaning.
Thus, we have an algebraic approach to the semantics of vague terms, which provides another
mechanism to process fuzzy information.

The proposed methodology exhibits the following main advantages:

(i) Hedge algebras, as a mathematical foundation of the methodology, model the inherent
order-based structure of terms-domains of linguistic variables. It may be important to guarantee
the effectiveness on the methodology. It has been demonstrated that the fuzziness of vague
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terms, which is an essential characteristic of fuzzy information, can be modelled in this algebraic
approach and based on it fuzziness measure of terms can be defined in an axiomatic way.
Moreover, fuzziness intervals of terms, which exhibit a characteristic of the quantitative
semantics of terms, can be constructed relying upon properties of fuzziness measure.
Semantically quantifying mappings (SQMs), a significant component for developing hedge-
algebra-based interpolation reasoning methods (HA-IRMds), can be defined in a close
relationship with the fuzziness measure and fuzziness intervals of terms. They are completely
determined by providing the fuzziness measure of the primary terms and hedges. These shows
that SQMs have been defined in close relation with the semantics of vague terms and hence they
can bring useful information conveyed by vague linguistic terms.

(ii) Reasoning methods in this approach, HA-IRMds, are simple and transparent, since they
depend only on two factors, the set of fuzziness parameters of SQMs and classical interpolation
methods on Euclidean hypersurfaces. We should stress the fact that SQMs are homomorphisms
in the category of linearly ordered sets. This ensures that the hypersurface, which is obtained by
transforming the given set of fuzzy rules into multiple-dimensional Euclidean space using
properly constructed SQMs, can be regarded as a suitable model of available control knowledge.

In fuzzy control, the fuzzy reasoning method, a significant component of the fuzzy engine,
depends on many significant factors, one of which concerns the membership functions, as
discussed in Section 2. Accordingly, tuning membership functions based on evolutionary
techniques has a limited affect on the performance of the desired fuzzy controllers. Instead, in
the algebraic approach, tuning of the fuzziness parameters has a significant affect on their
performance, since except classical interpolation method to be selected, their performance
depends merely on the fuzziness parameters.

The methodology has been applied to the design of HACs and opHACs for a problem of
active control of earthquake excited high-rise civil structures. The computer simulation
completed for the seismic data recorded from El Centro, Northridge and Kobe earthquakes
demonstrate the advantages of the proposed methodology and underline the relevance of the
algebraic approach.
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PIEU KHIEN DUA TREN DPAI SO GIA TU
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"Truong Pai hoc Bdch khoa Ha Ngi
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Trong bai bdo nay, ching tdi dua ra phuong phap luan dya trén dai sé gia tir dé thiét ké bo
diéu khién mo duge goi la bo diéu khién dua trén dai s gia tr (HACs ) nham kiém soat rung
dong cac hé két cau. Trong phuong phdp nay, cac nhan ngoén ngtr khong the hién bang céc tap
mo ma bang quan hé th tw von c6 giita cdc gid tri ngdn ngir ton tai trong mién xdc dinh cia tap
nén. Anh xa nglt nghia dinh luong (SQMs), bao toan moi quan h¢ thir tw dya trén nglr nghia
trong mién xdc dinh, dugc dinh nghia trong mot mbi quan hé chit ché véi do6 do md va khoang
mo cua cac nhan ngdn ngl. Qua cach st dung SQMs, phuong phép suy luan mo c6 thé duoc
chuyen thanh cdc phuong phdp ndi suy so dbi voi cic diém trong khong gian Euchd da chiéu
dugc xédc dinh dya trén céc ludt if-then cua cdc tri thirc diéu khién. Diéu nay cung cip mot co s&
todn hoc t6t hd trg cho qua trinh xdy dung cdc thuét toan diéu khién. Phuong phép luan duoc dé
xudt kha don glan minh bach va hi€u qua. Trong mdt nghién ctru cu thé, céc bo didu kh1en
HACs va HACs t6i uu da dugc thiét ké duya trén phuong phap luédn méi dé kiém sodt cdc két cAu
cao tang dan su. Céc bo diéu khién HACs va HACs t6i uu da thanh cong hon cdc b diéu khién
mo trong viéc 1am giam cdc phan tmg dich chuyén tdi da ctia két cau theo ba kich ban tran dong
dét’ khac nhau: El Centro, Northridge va Kobe. Diéu nay cho thiy hiéu qua ctia phuong phap dé
Xuat.

Tir khoa: 1 thuyét diéu khién, suy luén xép xi, d0 do mo, tinh toan k¥ thudt chiu tai dong dat, dai
sO gia ta.
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