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ABSTRACT 

In this paper, we introduce a hedge-algebras-based methodology in vibration control of 
structural systems to design fuzzy controllers, referred to as hedge-algebras-based controllers 
(HACs). In this methodology, vague linguistic terms are not expressed by fuzzy sets, but by 
inherent order relationships between vague terms existing in a term-domain. Semantically 
quantifying mappings (SQMs), which preserve semantics-based order relationships in term-
domains, are defined in a close relationship with the fuzziness measure and the fuzziness 
intervals of vague terms. Utilizing these SQMs, fuzzy reasoning methods can be transformed 
into numeric interpolation methods with respect to the points in a multi-dimensional Euclid 
space defined relying on the if-then rules of the given control knowledge. This provides sound 
mathematical fundamentals supporting the construction of the control algorithm. The proposed 
methodology is simple, transparent and effective. As a case study, HACs and optimal HACs 
have been designed based on this methodology to control high-rise civil structures. They are 
shown to be more successful in reducing maximum displacement responses of the structure than 
fuzzy counterparts under three different earthquake scenarios: El Centro, Northridge and Kobe. 
This demonstrates the effectiveness of the proposed methodology.  

Keywords: control theory, approximate reasoning, measure of fuzziness, earthquake engineering, 
hedge algebra  

1. INTRODUCTION 

Magnitude earthquakes result in massive movement of the ground and, therefore, cause 
serious damages to civil structures, in particular, to high-rise buildings. Such situation becomes 
more hazardous when in each decade, on the average, about 160 to 189 magnitude earthquakes 
have been recorded on continentals (www.iris.edu). Therefore, the protection of civil structure 
has been becoming one of the most imperative research tasks since long time ago. Many control 
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strategies and structural control systems have been examined and designed to protect the civil 
structural systems from the damage caused by earthquake ground motion.  

Structural vibration control systems, in general, are classified mainly into active control 
systems [1, 2, 28] and passive control systems [13, 30, 33]. Passive systems using tuned mass 
dampers or base-isolation techniques are designed to decrease the response to structural 
vibration induced by earthquake. They have simple mechanism, require no power to operate and 
hence are reliable. However, their control capacity and application is limited. Active control 
systems, including active tendons and active tuned mass dampers, can generate control forces to 
apply to structural systems through actuators equipped with a designed control algorithm. Given 
this, they are able to dissipate earthquake energy and reduce structural damage. It has been 
shown that the active devices are superior to the passive devices in capacity and suitability to 
high-rise civil structures. However, they do require external power supply and hence their 
operation may be interrupted during earthquake events, i.e., their reliability is critically 
decreased. By these reasons, hybrid devices have been developed for designing more effective 
vibration control systems, called semi-active controllers [6, 7, 12, 14, 17, 32]. They have been 
shown to be more energy-efficient than active control systems, since they require so little power 
for operation that they can be able to run on battery power, and become more effective in 
reducing seismic structural vibrations than passive control systems.  

Fuzzy control is an area in which fuzzy logic has been applied successfully since 
Mamdani’s work [16] published in 1974. By applying the theory of linguistic approach and 
fuzzy inference, one successfully uses ‘if–then’ rules in the automatic operating control of a 
steam generator. Since that time, it has been shown that fuzzy logic provides a flexible and 
effective methodology to solve many practical problems not only in control but also in other 
application fields, including the problems of protection of civil structures from earthquake. They 
arise there as a viable design alternative:  instead of differential equations to model the structural 
systems, it uses a control domain knowledge formulated in the form of fuzzy linguistic rules. It 
does not require an accurate mathematical model as well as precise data describing structural and 
earthquake-induced vibration characteristics of the complex systems. It can handle non-linear 
uncertainties and heuristic knowledge effectively considering their ability of convertting the 
selected linguistic control strategy based on control knowledge to automatic control, whose 
knowledge base represent the dependencies of the desired control action on the control inputs.  

In general, the main advantages of the fuzzy controllers are simplicity and intrinsic 
robustness, since they are not affected by the selection of the system’s models [1]. Subsequently 
in the last few decades, fuzzy control has attracted considerable attention of researchers in 
natural-hazard-induced vibration control of structural systems [2, 6-12, 14, 16, 17, 27-29, 32-
36].  

The key task in the design of fuzzy logic-based controllers is to construct an effective fuzzy 
reasoning method. In fuzzy control, control knowledge is expressed by the following set of 
fuzzy rules:  

If X1 is A11 and ... and Xm is A1m   then Y is B1 

                              . . . . . . . . . .                                                                                       
(1) 

If X1 is An1 and ... and Xm is Anm   then Y is Bn 

The rules describe dependencies between linguistic variables Xj, j = 1, ..., m, and Y, where 
Aij, j = 1, …, m, and Bi , i = 1, …, n, are fuzzy sets whose labels are vague terms of the linguistic 
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variables Xj and Y, respectively. The set of fuzzy rules (1) is called a fuzzy model or a fuzzy 

associative memory (FAM) [31].  

In order to determine the numeric output value b0 of this fuzzy model, for a given input 
fuzzy sets vector A0 = (A01, …, A0m),  the fuzzy rules have to be represented by the respective 
fuzzy relations Ri(x1, …, xm, y), i = 1, …, n, utilizing certain fuzzy sets operations and fuzzy 
implication. Then, b0 will be produced by exploiting certain composition operation, aggregation 
operation and defuzzification method. Thus, the constructed reasoning method depends on 
several factors which make the designer difficult to observe the actual behaviour of the 
constructed reasoning method and adjust them to enhance the performance of the desired fuzzy 
controller. Moreover, from our point of view, a fuzzy set regarded as an immediate generation of 
sets represents the meaning of a vague term in the manner that each value in the reference 
domain of the linguistic variable is compatible with it to a degree assuming values in the interval 
[0,1]. That is fuzzy sets associated with each vague terms in the term-domain of a linguistic 
variable express the meaning of the respective terms individually, but cannot express the relative 
semantics present between these vague terms. The reason of this fact is that one has not 
considered term-domains as mathematical structures and, therefore, has to borrow the analytic 
structure of the set of all fuzzy sets defined on a universe in question. These all lead to some 
critical disadvantages of fuzzy reasoning mechanisms that may limit the effectiveness of fuzzy 
controllers, as it will be discussed in this paper.  

In our study, we propose to apply the hedge-algebras-based methodology to design fuzzy 
controllers in fuzzy vibration control of structural systems that utilize the algebraic approach to 
the semantics of vague terms. In this approach, the meaning of every vague term is not 
represented by a fuzzy set, but by its inherent semantic-order-based relationships with the 
remaining ones in the corresponding hedge algebra, which represents much more fuzzy 
information than each individual fuzzy sets. Based on this approach, fuzzy-rules-based control 
knowledge is modelled by a numeric hyper-surface established from the fuzzy rules by the 
quantification of hedge algebras and fuzzy reasoning methods can be developed, utilizing 
ordinary interpolation methods on this surface. Such fuzzy reasoning methods depend only on 
two factors, the selected numeric interpolation method and the fuzziness parameters of each 
linguistic variable. Therefore, they are very simple, transparent and, as it will be shown below, 
they have many advantages. Especially, it allows not difficultly design optimal controllers based 
on optimization of their fuzziness parameters. It will be shown that the performance of the 
controllers designed based on the hedge-algebras-based methodology for the fuzzy vibration 
control of civil structural systems against earthquakes is better than those designed with 
traditional fuzzy reasoning methods. The experiments were completed by using the data on 
ground motion in turn of El Centro, Northridge and Kobe earthquakes. The simulation results for 
the three earthquakes show that the performance of the hedge-algebra-based controllers, 
especially the optimal ones, is better than that of the fuzzy controllers.  

The paper is organized as follows. In Section 2, the main components of the fuzzy 
controllers will be described for making some discussion about disadvantages of the fuzzy 
controllers. An overview of the algebraic qualitative semantics of vague terms is given in 
Section 3 while quantitative semantics of vague terms is discussed in Section 4. It is 
characterized by three features, namely fuzziness measure of vague terms, fuzziness intervals of 
vague terms, and semantically quantifying mappings (SQMs) of terms-domains. Hedge-
algebras-based reasoning methods are examined in Section 5. Section 6 is devoted to computer 
simulations study while conclusions are given in Section 7. 
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2. FUZZY CONTROLLERS 

This section aims to discuss some disadvantages of fuzzy controllers designed by the fuzzy-
set-based methodology for a comparison with those designed by the proposed hedge-algebras-
based one, called hedge-algebras-based controllers (HACs). At the same time, it aims to ensure 
that the fuzzy controllers examined in this study are similar to those examined in [6, 9 - 11, 27, 
32, 34].  

An overall schematic view of fuzzy controllers is shown in Figure 1 [6, 32]. Its main 
components comprise a fuzzifier, an inference engine and a defuzzifier.  

The performance of the designed fuzzy controller is affected by several design tasks related 
to the above components:  

(C1) Construction of membership functions for fuzzifier: The fuzzifier is affected by the 
design of the fuzzy-sets-based semantics of vague terms. The designed membership functions of 
vague terms may have different forms, say triangular, trapezoidal, Gaussian, etc. The designer 
has a great level of freedom to construct membership functions for vague terms, provided that 
they contribute to the enhancement of the performance of fuzzy controller.  

(C2) Inference engine: The construction of a computational model of the fuzzy model (1) 
and a reasoning method to determine the output of the controller require determining many 
factors and operators:  
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Figure 1. A schematic view of the fuzzy controller 

First of all the exploitation of the control knowledge requires interpreting the fuzzy model 
(1) as one of the two alternatives: (i) conjunctive model and (ii) disjunctive model [15].  

(i) In the case of conjunctive model, to compute a desired m-ary fuzzy relation R, which 
represents dependencies between the variables in (1), each fuzzy rule should be interpreted as a 

fuzzy implicator I : [0,1]2 → [0,1] by applying an aggregation operator to m premise fuzzy sets 
of the rule and, then, one applies another aggregation operator to the obtained implications to 
produce the relation R. The control action is then calculated by using a composition operation of 
the m-dimensional input vector and the obtained fuzzy relation R. Usually, we encounter here a 
max-min composition operation. In general, there are many composition operations, using t-
conorms and t-norms instead of max and min, respectively.  

(ii) The disjunctive model is usually used in fuzzy control. One uses each fuzzy rule to infer 
its conclusion from the given input data by a composition inference. As above, this composition 
is either in the form of the max-min composition or the one in which the max and min are 
replaced with t-conorm and t-norm, respectively. The derived consequences are then aggregated 
by using an aggregation operator to calculate the fuzzy control action.    
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 (C3) Defuzzifier: This task aims to transform the calculated fuzzy control action into a 
numeric one. In general, we have a high level of freedom for determining a transformation of the 
area limited by the membership function of the action into a single numeric value viewed as its 
representative. Thus, we have many such transformations. 

Thus, there are so many fuzzy reasoning methods in principle. Therefore, in order to make 
a comparative simulation study of the two design methodologies relying upon different 
mathematical bases, the fuzzy controllers in this paper designed by the fuzzy-set-based 
methodology will follow the following conditions that were applied in several researches (see, 
e.g. [6, 9-11, 18, 27, 32, 34, 35]): 

(fc1) Fuzzification: The fuzzy sets of the linguistic terms are assumed to be symmetric 
triangular fuzzy sets that are equally spread over each range (see Figures 7 – 9). So, once the 
ranges of the linguistic variable and its number of vague terms are given, these fuzzy sets are 
completely defined.  

(fc2) Reasoning method: It is assumed that the set of fuzzy rules in (1) are disjunctive 
model [15] and the reasoning method is constructed in accordance with (ii) mentioned above. 

(fc3) Defuzzification is realized as the center of gravity. 

Although fuzzy sets have successfully been applied to the fuzzy control, it is worth 
highlighting some disadvantages of the fuzzy set-based design methodology that may limit the 
effectiveness of the resulting fuzzy controllers.  

(i) The first one lies just in the first design task, the fuzzification procedure. In essence, this 
is an embedding mapping from a term-set into the set of all fuzzy sets defined on U a reference 
domain, denoted by F(U). This means that we had to borrow the mathematical structure of F(U) 
to develop various fuzzy reasoning methods. Since term-domains can be considered as at least 
an order-based structure induced by the inherent meaning of terms, on the mathematical 
viewpoint, this embedding mapping will only be accepted if it is a homomorphism, i.e. it 
preserves the order-based structure of terms-domains. However, the fuzzifiers in general do not 
preserve this structure of term-domains, as it is difficult to define a reasonable order relation on 
F(U). As the effectiveness of a fuzzy reasoning method depends strongly on the designed 
membership functions of vague terms, these embedding mappings which are not homomorphism 
may limit the performance of designed controllers.  

(ii) On the other hand, as discussed above, the performance of fuzzy controllers depends on 
several independent hard tasks, which have attracted many research efforts so far: a selection of 
membership functions, fuzzy implicators, t-norms and t-conorms, aggregation operators, 
composition operations, and defuzzifiers. This may make fuzzy control algorithms to become 
black boxes whose behaviour is then very difficult to observe by the designer.  

To alleviate these difficulties, in the next section we present a development of hedge-
algebras-based reasoning methods based on semantic-order-based structure of terms-domains. 

3.  HEDGE ALGEBRAS: SEMANTIC-ORDER-BASED STRUCTURE MODELLING 
THE SEMANTICS OF VAGUE TERMS 

In the so-called analytic approach, the meaning of vague terms of linguistic variables is 
represented by fuzzy sets. In a certain aspect, this means that vague terms were understood as 
being not mathematical objects and, hence, we had to use fuzzy sets to represent their meaning, 
whose memberships functions are analytical objects of F(U). The motivation behind the 
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algebraic approach to the semantics of terms comes from the observation that terms-domains of 
linguistic variables can be considered as partially ordered sets (posets), whose order relations are 
induced by the inherent meaning of vague terms. For instance, in virtue of vague terms of the 
linguistic variable VELOCITY in natural language, we have  

quick > medium > slow, Extremely_slow < Very_slow < slow, but that 

Little_slow > Rather_slow > slow, and so on. 

So, we have an algebraic approach to the semantics of vague terms. To show its 
advantages, we provide a brief overview of this approach. Its detailed formal presentation can be 
found in [20, 22, 24 or 26]. 

Let X be a linguistic variable, G = {g, g’}, g ≤ g’, be the set of its primary terms and H be 
the set of its hedges. Denote by Dom(X) the set of all terms generated from the primary terms by 
using hedges acting on them in concatenation, i.e. each term in Dom(X) can be written in a 
string hn ... h1c, where hi ∈ H and c ∈ G. For convenience in sequel, we assume also that 
Dom(X) contains the specific terms given in C = {0, W, 1}, which are called constants, where 0 
and 1 is the least and the greatest terms in the structure Dom(X) and W is the neutral concept in 
between the two primary terms. We assume that 0 ≤ g ≤ W ≤ g’ ≤ 1. As discussed above, there 
exists a semantic order relation ≤ on Dom(X) and (Dom(X), ≤) becomes a poset. Thus, the 
meaning of a term in Dom(X) is represented through its order relationships with the remaining 
terms in Dom(X); here we offer a certain view at the semantics of vague terms. 

1) Many properties of vague terms discovered and formulated in (Dom(X), ≤) 

In the structure (Dom(X), ≤) we may discover many essential properties of vague linguistic 
terms as follows: 

(p1) Every term has a semantic tendency expressed through hedges and an “algebraic” 

sign: The semantic function of the linguistic hedges is to intensify vague terms, i.e. they either 
increase or decrease the meaning of vague terms. This implies that the meaning of each term in 
the structure (Dom(X), ≤) has a definite semantic tendency, which, while is increased by the 
ones hedges, is decreased by the others. Based on this idea we can define the following notions, 
which contribute to describe the semantics of terms: 

  - The primary terms g and g’ have their semantic tendency defined in term of ≤. As g ≤ g’, 
the semantic tendency of g’ is called positive and we write g’ = c+ and sign(c+) = +1. Similarly, 
the semantic tendency of g is called negative and we write g = c– and sign(c–) = –1.  

 - By these tendencies, the set of hedges H can be classified into two sets H
– and H

+ 
defined as follows: H– = {h ∈ H: hc

– ≥ c
– or hc

+ ≤ c
+}, which consists of the hedges that 

decrease the semantic tendency of the both primary terms; while H+ = {h ∈ H: hc
– ≤ c– or hc

+ ≥ 
c

+}, i.e. its hedges increase the semantic tendency of the primary terms. The elements of H– are 
called negative hedges and their sign is defined by sign(h) = –1. Similarly, every h ∈ H

+ is 
called positive hedge and its sign is defined by sign(h) = +1.  

For example, for the variable VELOCITY, it can be checked that H– = {R, L} and H+ = {V, 
E}, where R, L, V and E stand for Rather, Little, Very and Extremely, respectively. Note that H– 
and H+ are also posets. For instance, we have here R ≤ L and V ≤ E. 

- For any two hedges h and k, k does either increase or decrease the effect of h. In the 
former case, we say that the relative sign of k with respect to h is positive and write sign(k, h) = 
+1. In the second case it is negative and we write sign(k, h) = –1. This relative sign can be 
recognized based on order relationships. For instance, if the effect of h acting on x is expressed 
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by x ≤ hx then x ≤ hx ≤ khx implies that k increases the effect of h. Given a set H of hedges, we 
can always establish a table of the relative sign of hedges. For example, it can be seen that the 
relative sign of the hedges of VELOCITY mentioned above are determined as in Table 1.  

Table 1. The relative sign of the hedges in the first column  w.r.t. the hedges in the first row 

 E V R L 

E + + − + 

V + + − + 

R − − + − 

L − − + − 

- The “algebraic” sign of the vague terms: It was shown that each term x ∈ Dom(X) has a 
unique canonical (string) representation x = hm …h1c having the property that for all i = 1, …, 
m–1,  hi+1hi …h1c ≠ hi …h1c. The length of x can then be defined to be the length of the string of 
the canonical representation of x, denoted by |x|. Now, the sign of the term x can be defined as:  

Sgn(x) = sign(hm, hm-1) × …× sign(h2, h1) × sign(h1) × sign(c)                   (2) 

It could be shown that  

(Sgn(hx) = +1) ⇒ (hx ≥ x)   and   (Sgn(hx) = –1) ⇒  (hx ≤ x)                    (3) 

For instance, the sign of x = V_L_slow of the variable VELOCITY is calculated by 
Sgn(V_L_slow) = sign(V, L) × sign(L) × sign(slow) = (+1)(–1)(–1) = +1, which implies that 
V_L_slow ≥ L_slow.  

(p2) Semantic heredity of hedges: An essential property of hedges is the so-called semantic 

heredity, which states that the terms generated by using hedges from a given term x must inherit 
the (genetic) core meaning of x. This means that the set H(x) comprises the terms that still 
contain a core meaning of x. Therefore its hedges cannot change the essential meaning of terms 
expressed through the semantic order relation (SOR). The semantic heredity of hedges can then 
be formulated formally in terms of SOR ≤ as follows:   

- For any term x, any hedges h, k, h’ and k’, where h ≠ k, if the meaning of hx and kx is 
expressed by the order relationship hx ≤ kx, then we have 

hx ≤ kx   ⇒  h’hx ≤ k’kx. 

-  If the meaning of x and hx is expressed by either x ≤ hx or hx ≤ x, then we have 

x ≤ hx    ⇒  x ≤ h’hx    or   hx ≤ x   ⇒   h’hx ≤ x. 

It can be seen that these properties viewed as axioms describe the fact that the hedges h’ 
and k’ cannot change the semantic relationships of the terms x, hx and kx expressed by the above 
inequalities in the structure (Dom(X), ≤), when they apply to these terms.  

2) Terms-domains of linguistic variables viewed as hedge algebras 

Let X be a linguistic variable and X ⊆ Dom(X). From the above discussion, the set X can 
be viewed as an algebraic structure AX = (X, G, C, H, ≤), where the sets G, C  and H are defined 
as previously, except that H is assumed for a technical reason that it includes the identity I which 
is treated as an artificial hedge and defined by Ix = x, ∀x ∈ X, and ≤ is a semantic order relation 
on X. The elements in H are regarded as unary operations of AX. By its semantic effect, I is 
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called “neutral” hedge, since it is neither positive nor negative. Hence, it may be considered as 
the least element of the both posets H− and H+. Suppose that X \ C = H(G), where H(G) is the 
set of all elements generated from the generators in G using operations in H, and that 0 ≤ c− ≤ W 
≤ c+ ≤ 1.  Since I ∈ H, we have x ∈ H(x).  

It is proved that the algebraic structure AX = (X, G, C, H, ≤) can be axiomatized, called 
hedge algebra, which is named by the role of hedges. The hedge algebras have been developed 
(see e.g. [19-24, 26]) and applied to solve some problems effectively [3, 4, 24, 25]. Here, for 
reference we recall some facts about hedge algebras. For convenience, for any two subsets U and 
V of X, the notation U ≤ V means that u ≤ v, for ∀u ∈ U and ∀v ∈ V.  

Assume that H−
 = {h0, h-1, ..., h-q} and H+

 = {h0, h1,..., hp}, where h0 = I and h0 < h-1<h-2< 

...<h-q and h0 < h1< ...<hp. The sets H(x), x ∈ H(G), have the following properties:  

• H(x) is partitioned into subsets H(hjx), j ∈ [-q, p], where [-q, p] = {j | −q ≤ j ≤ p} and, by 
a convention, H(h0x) = H(Ix) = {x}, i.e. the subsets H(hjx) are disjoint and  

H(x) = ( )
h H

H hx
∈U                                                             (4) 

• For Sgn(hpx) = –1, H(hpx) ≤ … ≤ H(h1x) ≤ {x} ≤ H(h-1x) ≤ … ≤ H(h-qx)                    (5) 

• For Sgn(hpx) = +1, H(h-qx) ≤ … ≤ H(h-1x) ≤ {x} ≤ H(h1x) ≤ … ≤ H(hpx)                   (6) 

4. QUANTITATIVE SEMANTICS OF THE VAGUE TERMS 

Since in this approach the meaning of terms is not expressed by fuzzy sets, the 
quantification of hedge algebras has to be overviewed systematically. This quantification is 
characterized by three concepts: semantically quantifying mapping (SQM), fuzziness measure 
and fuzziness intervals of vague terms. These concepts have a very close relationship each other 
and it ensures that the SQMs depend on the fuzziness of terms and can be determined 
appropriately in fuzzy environments by selecting fuzziness measure values of a few special 
terms, called fuzziness parameters. As previously, in this section we will give a short overview 
of necessary knowledge. For more details the reader can refer to [19, 21 or 23-25]. 

4.1. Semantically quantifying mappings of hedge algebras  

Generally, as defuzzifiers in fuzzy control which convert fuzzy sets of terms into numeric 
values, the quantification of hedge algebra is a mapping from a term-domain into the reference 
domain of X. Since these mappings in the algebraic approach will be defined in a closed 
connection with fuzziness measure and fuzziness intervals of terms, which are fundamental 
characteristics of the semantics of vague terms, they are called semantically quantifying 

mappings (SQMs).  

Let us consider a free linear hedge algebra AX = (X, G, C, H, ≤) of a linguistic variable X, 
where “free” means that for every hedge h and every term x ∈ H(G), we always have hx ≠ x, and 
≤ is a linear order relation on X. This implies that all string representations of the vague terms 
are canonical and every vague term has a unique string representation.  

Definition 4.1 An SQM of AX is a mapping f : X → [0,1], which satisfies  

(i) It is one-to-one mapping and f(X) is dense in [0,1], where [0,1] is the normalization of 
the reference domain of X;  
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(ii) It preserves the order of X.                 �  

The definition of SQMs is general, but should include their two essential characteristics. 
The first one is regarded as a consequence the fact that the quantitative meaning of the terms of 
X should approximate the values of its reference domain. The second is natural: SQMs should 
preserve the mathematical structure of term-domains.  

4.2. Fuzziness model, fuzziness measure and fuzziness interval of vague terms  

Since, by the heredity of the hedges, H(x) comprises all the terms that still inherit a core 
(genetic) meaning of x, it can be taken as a model of the fuzziness of x. It implies that the larger 
the set H(x) the more fuzziness of the term x. Since for x = hu we have H(x) ⊆ H(u), it follows 
that the more occurrences of hedges in x, the lower the fuzziness of x. This demonstrates that the 
use of H(x) as a fuzziness model of x is compatible with our intuition.  

Let f : X → [0,1] be an SQM of AX. Since f preserves the order relation on X, for every x ∈ 
X, the image f(H(x)) under f is isomorphic onto H(x) in the category of linearly ordered sets. 
Thus, since the terms in H(x) are similar with each other and occur consecutively, the size of the 
set f(H(x)) ⊆ [0,1], i.e. the diameter of f(H(x)), can be interpreted as the fuzziness measure of x, 
denoted by fm(x): 

fm(x) = d(f(H(x))) ∈ [0,1]                                                      (7) 

This suggests us to introduce a notion of fuzziness interval of the term x, denoted by ℑ(x), 
which is the smallest subinterval of [0,1] including f(H(x)). Clearly, |ℑ(x)| = fm(x), where |ℑ(x)| 
denotes the length of ℑ(x). Since f preserves the semantic order of X and, by (i) of Definition 
4.1, f(H(x)) is dense in ℑ(x), from the semantics of H(x) it follows that ℑ(x) comprises the values 
of [0,1] that are compatible with the meaning of x to a degree indicated by k = |x|.  

From (4) – (6) and the density of f(X) in [0,1], it follows that (see Figure 2) 

For Sgn(hpx) = –1, ℑ(hpx) ≤ ℑ(hp-1x) ≤ … ≤ ℑ(h1x) ≤ ℑ(h-1x) ≤ … ≤ ℑ(h-qx)                 (8) 

For Sgn(hpx) = +1, ℑ(h-qx) ≤ ℑ(h-q+1x) ≤ … ≤ ℑ(h-1x) ≤ ℑ(h1x) ≤ … ≤ ℑ(hpx)               (9) 

 |ℑ(x)| = ∑{|ℑ(hjx)| | j ∈ [-q^p]}                                                          (10) 

 

Figure 2. Fuzziness intervals of vague terms of the VELOCITY 

Thus, the fuzziness measure fm of vague terms satisfies the following properties:  

(fm1)  fm(c−) + fm(c+) = 1 and, as a consequence, fm(0) = fm(W) = fm(1) = 0. 

(fm2)  
[ ^ ]

( ) ( )
jj q p

fm h x fm x
∈ −

=∑ , x ∈ X, and ( ) 1
kx X

fm x
∈

=∑ . 
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It seems natural to assume that the relative effect of hedges acting on the terms remains 
unchanged. This can be expressed by the following expression: 

( ) ( )

( ) ( )

fm hx fm hy

fm x fm y
=  = µ(h), for all x, y ∈ X                                         (11) 

The quantity µ(h) is called the fuzziness measure of h. Then we have  

(fm3)  fm(hx) = µ(h)fm(x), for hx ≠ x, x ∈ X, and, hence, fm(y) = µ(hm) ... µ(h1)fm(c), where 
y = hm …h1c is the canonical representation of y.  

(fm4) 
1

( )
i

q i

hµ α
− ≤ ≤−

=∑  and 
1

( )
i

i p

hµ β
≤ ≤

=∑ , where α, β > 0 and α + β = 1.  

From these it follows that in order to determine a fuzziness measure of a linguistic variable 
it merely requires to provide the fuzziness measure values of one primary term and (p + q – 1) 
hedges, which depend only on the linguistic variable, but not on individual terms. For 
convenience, we call them fuzziness parameters in common. In practice, it is sufficient to 
assume that p, q ≤ 2. Hence, the number of fuzziness measures of hedges does not exceed 3 and 
the total number of fuzziness parameters does not exceed 4. On the other hand, since human 
being uses vague terms in their daily lives, they will have their practical knowledge to define 
more easily the numeric values of these parameters than to define individual fuzzy sets of vague 
terms. We note that these fuzziness parameters fully determine the quantitative semantics, which 
comprise the fuzziness measure, fuzziness intervals and semantically quantifying mappings of 
the linguistic variable in question.  

4.3. SQMs induced by a given fuzziness measure of vague terms 

It has been seen previously that there is a strict relationship between the notion of SQMs 
and the notions of fuzziness measure and fuzziness intervals of terms. This relationship is 
reinforced by the fact that a given fuzziness measure fm will induce an SQM, denoted by υ, so 
that fm(x) = d(υ(H(x))), the diameter of the image υ(H(x)), for ∀x ∈ X. The inequalities in (5), 
(6), (8) and (9) (refer to Figure 2) suggest that υ(x) should be defined to assume the value lying 
in-between the fuzziness intervals ℑ(h-1x) and ℑ(h1x). Consequently, the mapping υ can be 
expressed recursively as follows: 

 (SQM1) υ(W) = θ  = fm(c−), υ(c−) = θ − αfm(c−) = βfm(c−), υ(c+) = θ +αfm(c+); 

(SQM2) υ(hjx) =  υ(x) + { }( )
( ) ( ) ( ) ( )

j

j i j ji sign j
Sgn h x fm h x h x fm h xω

=
  −
 ∑  

where  ω(hjx) 
1

[1 ( ) ( )( )] { , }
2 j p jSgn h x Sgn h h x β α α β= + − ∈ , for all j ∈ [-q^p]. 

All three quantitative aspects of the terms, the fuzziness measure fm, the fuzziness intervals 
and the fm-induced SQM υ are completely determined by providing the values of the fuzziness 
parameters fm(c−), fm(c+) and µ(h), h ∈ H, of X. Using the constraints given in (fm1) and (fm4), 
the number of the required fuzziness parameters is |H| + |G| – 2 = |H|.  

Example 4.1 Consider the linguistic variable VELOCITY, e.g. of motor-bikes, with the hedges 
examined previously. Suppose that its reference domain is [0, 120] and its fuzziness parameters 
are provided as follows: fm(slow) = 0.4, µ(L) = 0.25, µ(R) = 0.20, µ(V) = 0.3. Hence, we have 
fm(quick) = 0.6 and µ(E) = 0.25 and, hence, α = 0.45 and β = 0.55. Assume that it is required to 
calculate the quantification values of “quick” and “L_quick”. Then 
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By (SMQ1), υ(quick) = 0.4 + (0.25 + 0.20)0.6 = 0.67. 

By (SMQ2), υ(L_quick) = 0.67 + (–1){[(0.20+0.25)×0.6] – 0.55×(0.25×0.6)} = 0.4825 

since R = h-1, L = h-2 and we have 

          fm(h-1c
+) + fm(h-2c

+) = [µ(h-1) + µ( h-2)]×fm(c+) 

and         ω(h-2c
+) = ½[1 + sign(Lc

+)sign(E, L)sign(L)sign(c+)(0.55 – 0.45)] = 0.55  

Thus, the actual quantification values of quick and L_quick are 0.67×120 km = 80.4 km and 
0.4825×120km = 57.9 km, respectively. � 

It is obvious that when we change the fuzziness parameters, the induced SQM will be 
changed as well. In order to show how SQMs depend on the structure of hedge algebras, we 
consider the following example 

Example 4.2 Consider again the linguistic variable VELOCITY, but it has only two hedges R 
and V, i.e. p = q = 1, and in the same time we assume that fm(slow) = 0.4, α = 0.45 and β = 0.55 
that are the same as in Example 4.1. This implies that µ(L) = 0.45 and µ(V) = 0.55. Here, we use 
the hedge L but not R, since R is usually used in the context of the existence of another negative 
hedges and, moreover, intuitively its performance is weak. Then the quantification values of 
“quick” and “L_quick” will be changed as follows: 

By (SMQ1), υ(quick) = 0.4 + 0.45×0.6 = 0.67, which is the same as above. But (SMQ2), 
υ(L_quick) = 0.67 + (–1){[0.45×0.6] – 0.55×(0.45×0.6)} = 0.5485 

since L = h-1 we have fm(h-1c
+) = 0.45×0.6 and 

          ω(h-1c
+) = ½[1 + sign(Lc

+)sign(V, L)sign(L)sign(c+)(0.55 – 0.45)] = 0.55  

Hence the actual quantification value of quick is 80.4 km, the same as above, and of 
L_quick is 0.5485×120km = 65.82 km, which is greater than the value 57.9 km above.         � 

5. HA-INTERPOLATIVE-REASONING METHODS AND HA-CONTROLLERS 

Let us consider a fuzzy model in the form of (1), in which Aij,  Bi, j = 1, .., m and i = 1, …, 
n, are, however, not fuzzy sets but vague linguistic terms. Therefore, in the algebraic approach, 
the set of fuzzy rules in (1) will be called a linguistic model of control knowledge. 

An essence of the fuzzy controllers is the fuzzy multiple conditional reasoning (FMCR) 
problem [15, 16, 31]. The reasoning method for the given inputs Xj = A0j, j = 1, …, m, of the 
linguistic model (1), helps us find an output Y = B0.  

In this section, we will present how a fuzzy reasoning method can be constructed to solve a 
given FMCR problem, utilizing hedge-algebras-based semantics of terms.  

5.1 HA-based interpolative reasoning method  

We show that based on hedge-algebras-based approach to the semantics of vague terms, we 
can easily develop HA-based interpolative reasoning methods.  

5.1.1. General descriptions of hedge-algebras-based interpolative reasoning method 

Although the linguistic model (1) describes a dependency of Y on Xj’s, that is it expresses 
certain domain knowledge of the designer, it does not provide any formal basis for computation. 
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At first, an exact mathematical model of the domain knowledge represented by (1) has to be 
constructed. Since a terms-domain of each linguistic variable can be viewed as a subset of a 
hedge algebra, we may suppose that the linguistic variables Xj and Y appearing in (1) will be 
associated with certain hedge algebras denoted respectively by AXj = (Xj, Gj, Cj, Hj, ≤j) and AY = 
(Y, G, C, H, ≤) such that Gj and Hj as well as G and C contain all the primary terms and the 
hedges appearing in (1), j = 1, 2, …, m.  

Now, if we regard the ith-if-then statement in (1) as a linguistic point Ai = (Ai1, …, Aim, Bi), 
then the given linguistic model defines n points in the Cartesian space X1×…×Xm×Y, which 
describe a linguistic surface SL in this space. The surface SL can be considered as a mathematical 
model that simulates approximately the linguistic model given by (1). Since hedge algebras 
preserve the semantic order relations on the respective term-sets, we have a basis to believe that 
the surface SL describes the domain knowledge given by (1) faithfully. Thus, a natural 
requirement now is to construct a transformation to convert the linguistic surface SL into a 
numeric surface SR in a multiple-dimensional Euclidean space, utilizing SQMs of the hedge 
algebras in question.  

The FMCR problem is now transformed into a classical surface interpolation problem, 
which will be solved by an interpolation method. A reasoning method described here is called 
HA-based interpolative reasoning method (HA-IRMd, for short).  

5.1.2. Construction of HA-based interpolative reasoning methods 

Let be given a linguistic model (1). The methodology for the construction of HA-IRMds 
comprises the following tasks: 

(i) Determination of hedge algebras associated with linguistic variables  

The expressions of terms of hedge algebras coincide with those in natural languages. 
Therefore, assume that the linguistic terms used to formulate the fuzzy rules in (1) are terms of 
certain hedge algebras. Thus, the hedge algebras associated with linguistic variables present in 
(1) are constructed by the determination of the sets Gj, Hj, G and C, which include respectively 
the primary terms and the hedges appearing in (1), j = 1, 2, …, m. Once Gj, Hj, G and C are 
determined, the terms-set Xj is automatically generated. However, as it will be seen, it is 
necessary to focus attention on only the terms appearing in (1), but not all terms in Xj. Notice 
that since the structure of hedge algebras determines the semantics of their terms (refer also to 
Example 4.2), it may happen that although some hedges do not appear in (1), they must be 
included in the respective associated hedge algebra. For example, the absence of the hedge 
“rather” in the context of the presence of “little” in a set of fuzzy rules does not mean certainly 
that the respective hedge algebra does not contain the hedge “rather”. The presence of the hedge 
“rather” in the algebra is decided by just the semantics of the vague terms, which the application 
designer wishes to assign to these terms.  

In fuzzy control, a FAM-table contains usually vague terms like positive big and negative 

big ..., which are compatible with the reference domain [−1,1] while the terms of hedge algebras 
are compatible with the reference domain [0,1]. In the sequel, it is required that the vague terms 
in a FAM-table must be transformed into linguistic terms in the respective hedge algebras so that 
the term-transformation should preserve essential order-based semantic properties of terms, 
including: (i) The semantic order relation between the vague terms and (ii) The symmetric 
property of the vague terms under consideration, which states that each vague term has its own 
symmetric term, which is the antinomy or has an opposite meaning of the former one (see 
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Section 6). For instance, the pair of the terms positive and negative or of the terms positive big 
and negative big is symmetric. The term zero in a FAM-table corresponds to the neutral element 
W in hedge algebras. 

(ii) Determination of SQMs υXj and υY and normalized surface Snorm: Since the image 
domains of an SQM is [0,1], first of all the reference domains of linguistic variables must be 
normalized. Given a reference domain in the form of an interval [a, b] of a linguistic variable X, 
the normalization of this interval domain is realized by the following linear transformation, 
which is determined uniquely by the given interval [a, b]: 

gX :    [a,b]  →    [0,1]                                                       (12) 

The converse mapping gX
-1 of gX is called the denormalization mapping of X.  

As discussed above, the linguistic model (1) interpreted as n linguistic points simulates a 
linguistic surface SL. Let υXj and υY be SQMs of the constructed hedges algebras AXj = (Xj, Gj, 
Cj, Hj, ≤j) and AY = (Y, G, C, H, ≤) of the variables Xj and Y, respectively, where j = 1, 2, … m. 
These SQMs transform n points (Ai1, …, Aim, Bi) in the linguistic space X1×…×Xm×Y into n 
points in the Euclidean space [0,1]m+1, which simulate a surface in [0,1]m+1, called the normalized 
surface of the linguistic model (1), denoted by Snorm.  Thus, we can say that the vector (υX1, …, 
υXm, υY) of the SQMs υXj, j = 1, …, m, and υY transforms SL into Snorm:  

(υX1, …, υXm, υY) :  SL  → Snorm 

The surface Snorm can also be considered as being defined by an m-argument function, 

v = fSnorm(u1, ..., um), v, uj ∈ [0, 1], j = 1, …, m                              (13) 

which satisfies the conditions that υY(Bi) = fSnorm(υX1(Ai1), ..., υXm(Aim)), i = 1, …, n. The function 
fSnorm or Snorm can be considered as a normalized numeric model of (1). 

Similarly, the vector (gX1
-1, gX2

-1, ..., gXm
-1, gY

-1) of the denormalization mappings of the 
respective linguistic variables transforms Snorm into a hypersurface Sr in the Euclidean space [aX1, 
bX1] × [aX2, bX2]× ... × [aXm, bXm] × [aY, bY], where [aXj, bXj] and [aY, bY] are the reference 
domains of Xj and Y, respectively, where j = 1, …, m. SR is called a denormalized model of the 
linguistic model (1).  

Next, for convenience, we apply however a selected interpolative reasoning method on the 
surface Snorm instead of SR.  

Since the SQMs preserve the essential semantic properties of linguistic terms, we can state 
that Snorm is similar to SL, or Snorm is a “faithful” computational model of (1). SL is determined 
immediately by the given linguistic model (1) or by the fuzzy associative memory (FAM) called 
in the fuzzy control FAM-table, whose rows are formed by the linguistic terms of the 
corresponding if-then sentences in (1). Thus, Snorm is determined by the quantification of the 
terms in the FAM-table, which results in a numeric table, called in this study quantified FAM-

table (qFAM-table, for short).  

In order to construct the mathematical model Snorm of (1) it is required to determine the 
vector of SQMs, (υX1, …, υXm, υY). However, these SQMs will be determined simply by 
assigning the values to the fuzziness parameters of the respective linguistic variables Xj and Y. In 
applications, the determination of these parameter values can be provided either by the designer 
based on his intuitive domain knowledge or by solving an appropriate optimization problem 
utilizing an evolutionary algorithm. The set of all these parameters consists of the following 
categories:  
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- m+1 parameters of the fuzziness measure of primary terms: θj = fm(cj
−), j = 1, 2, … m, and 

θ = fm(c−). 

- pj + qj – 1 fuzziness parameters of the hedges in Hj of the algebra AXj, µ(hj,−qj), ..., µ(hj,−1), 
µ(hj,1), ..., µ(hj,pj), j = 1, 2, … m.  

- p + q – 1 fuzziness parameters of the hedges in H of the algebra AY, µ(h−q), ..., µ(h−1), 
µ(h1), ..., µ(hp).  

It is worth emphasizing that, for each j
th
-dimension, the number of these fuzziness 

parameters does not depend on the cardinality of the term-set Xj, but depends only on the 
semantics of the linguistic variable Xj. For instance, assume that pj = 2 and qj = 2, the required 
number of fuzziness parameters for determining the SQM υXj is always (1 + 2 + 2 – 1) = 4, for 
any possible term-set Xj. That is it depends on the linguistic variables of interest, but not on a 
particular set of terms Xj. 

(iii) Determination of an interpolation method on Snorm: Suppose in general that input of the 
linguistic model (1) is a vector A0 = (A0,1, …, A0,m) of m linguistic terms whose meaning is now 
defined by the structure of their respective hedge algebras AXj = (Xj, Gj, Cj, Hj, ≤j) and AY = (Y, 
G, C, H, ≤), where j = 1, 2, … m. An FMCR problem requires finding an output B0 
corresponding to the given input A0.  

In the fuzzy control, the input of (1) is a crisp vector, A0 = (a0,1, …, a0,m), a0,j ∈ [aXj, bXj] for 
j = 1, 2, … m, and the output is required to be a numeric value in [aY, bY], as well.  

Since in the algebraic approach, we will take advantage of the surface Snorm and a classical 
interpolation method on this surface, the vector A0 should be normalized to become A0,norm = 
(gX1(a0,1), …, gXm(a0,m)) ∈ [0,1]m, and the calculated input is a numeric value. We can find many 
interpolation methods and computation tools to solve this problem in the literature. Thus, hedge 
algebras approach provides another methodology to solve FMCR problems.  

Such a constructed HA-IRMd produces a numeric value b0,norm ∈ [0,1], which is 
approximately equal to fSnorm(gX1(a0,1), …, gXm(a0,m)), the function described in (13), for a given 
A0. The actual output value b0 is calculated from b0,norm as follows:  

 b0 = gX
-1(b0,norm) ∈ [aY, bY]                                                  (14) 

Another way to define HA-IRMd for an application is to transform the surface Snorm to a 
curve Cnorm in a 2-dimensional Euclidean space and apply a linear interpolation method on Cnorm. 
This transformation can be realized by an m-ary aggregation Agg of the quantitative values of 
the vague terms in each fuzzy rule in (1). Thus, the curve Cnorm is expressed by the following n 
calculated points:  

(Agg(υX1(Ai,1), …, υXm(Ai,m)), υU(Bi)), i = 1, ..., n. 

In this study, the aggregation operator Agg is chosen to be the weighted averaging 
operation. In this case, the weights are also parameters of the HA-IRMd to be designed or 
optimized and called also fuzziness parameters of HA-IRMd in common, for convenience. 

5.2 Hedge-algebra-based controllers  

Based on the HA-IRMds examined above, we introduce a general fuzzy control model 
based on the theory of hedge algebras, called hedge algebra-based controller (HAC). Figure 3 
shows a general schematic view of the HA-control algorithm for HAC. In accordance with the 
construction of the HA-IRMds described above, there are three components of the HAC 
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modules that are different from the corresponding components of fuzzy control algorithm 
described in Figure 1. Component (I) has the tasks to normalize the reference domains of the 
linguistic variables and to compute the values of the determined SQMs. Component (II) realizes 
the inference task based on the rules base and the constructed HA-IRMds. The task of 
Component (III) is to calculate the actual numeric value of the control action.  

(I) (II) (III) 
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Figure 3. An overview of the HA-control algorithm for HAC 

It is obvious that, except its fuzzy rules base, there are only two factors that affect the 
performance of HACs: (i) The fuzziness parameters of the linguistic variables to calculate SQMs 
values and (ii) The selected interpolation method on Snorm. In the case the designer prefers to use 
a numeric interpolation method on the curve Cnorm, an additional factor that the designer must 
require to pay attention to is the aggregation operation. In comparison with the design of fuzzy 
controller, there are here only a few factors and it is important that they are much simpler than 
the factors affecting the effective construction of fuzzy controllers examined in Section 2. Based 
on the simulation study in Section 6, the designer can adjust these factors to construct a high 
performance controller.  

In addition, as a consequence, the fuzziness parameter optimization problem can easily be 
solved to enhance its performance. A HAC designed with optimized fuzziness parameters is 
called optimized HAC or opHAC, for short. 

The new methodology to construct HA-IRMds and HACs has many significant advantages:   

1) The ability to establish a “faithful” mathematical model of (1): Since SQMs are 
homomorphic in the category of ordered sets, transforming the set of fuzzy rules in (1) into a 
crisp surface Snorm or, equivalently, a function fSnorm in (13), they preserve the essential semantic-
order-based structure or essential knowledge information of the linguistic model given by (1). 
We regard it as an essential factor to enhance the performance of fuzzy reasoning methods.  

2) The surface Snorm or the function fSnorm is a simple, transparent mathematical model that is 
easily constructed. At the same time, its construction based on the calculation of SQMs values is 
very simple. By providing fuzziness parameters of linguistic variables, the SQMs values of 
vague terms in the linguistic model (1) can be automatically computed.  

3) The numerical output of (1) corresponding to the given input vector is calculated 
utilizing a classical (numeric) interpolation method on the surface Snorm or the curve Cnorm.  It is a 
well-known task and there are many interpolation methods that can be found in the literature. 
Defuzzification methods are not required here.  

4) In the case the designer prefers to realize an interpolation method on the surface Snorm, 
there are only two factors which affect the performance of the designed HACs. Since the factor 
of the numeric interpolation is well-known, once it is fixed, the fuzziness parameters are the total 
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parameters that affect the effective construction of HACs, he may concentrate his effort to 
determine the fuzziness parameters to enhance the performance of the desired controller. This 
implies also that the fuzziness parameters optimization problem has a significant positive impact 
on the controller performance.   

6. APPLICATIONS 

To show the advantages of the proposed methodology, it will be applied to design HACs 
and opHACs for vibration control of high-rise structural systems with active tuned mass damper 
(ATMD) against earthquakes. The designed controllers will be simulated with the recorded 
seismic data of three typical earthquakes, El Centro, Northridge and Kobe to demonstrate their 
performance and, through this, to explain the advantages of the proposed methodology. In the 
simulation study, the recorded seismic data of El Centro will be used in the design of the 
controllers, while the remaining ones will be used for testing their performance. 

6.1. Determining the control problem and its discrete control model   

For a comparison study between the effectiveness of fuzzy-logic-based controller and 
HAC, a structural system model similar to those examined in [11] will be considered here. A 
high-rise building modelled as a structural system with ATMD, which is described in Figure 4, 
is assumed to have fifteen degrees of freedom all in a horizontal direction. The system is 
modelled with two active actuators of different types to suppress structural vibrations against 
earthquakes. Accordingly, one is installed on the first storey and the other on the fifteenth storey, 
since the maximum inter-storey shear force occurs on the first storey and the maximum 
displacements and accelerations are expected from the top storey of the structure during an 
earthquake, assuming equivalent storey stiffness and ultimate capacities. In Figure 4, m1 is 
movable mass of the ground storey and m2, m3, …, m15 are the mass of the remaining storeys, 
where the mass of all storeys include both the ones of storeys and their walls. The mass m16 is of 
the ATMD installed on the fifteenth storey. The variables x1, x2, x3,…, x14 and x15 indicate the 
horizontal displacements and x16 indicates the displacement of ATMD. The variable x0 is the 
earthquake-induced ground motion disturbance to the considered structural system. All springs 
and dampers are acting in the horizontal direction. The system and ATMD parameters examined 
in [11] are given in Table 2.  

 

Figure 4. The structure 
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Table 2. The system parameters with ATMD 

Storey i 
Mass mi (103 

kg) 
Damping ci 
(102 Ns/m) 

Stiffness ki 
(105 N/m) 

1 450 261.7 180.5 

2-15 345.6 2937 3404 

16 (ATMD) 104.918 5970 280 

The discrete control model is established based on the dynamic model of fifteen-degrees-
of-freedom structural system equipped with ATMD. The equations of motion of the system 
subjected to the ground acceleration 0x&&  for each earthquake described in Figure 5, with control 

force vector {F}, can be described in (15) (see [11]): 

0[ ]{ } [ ]{ } [ ]{ } { } [ ]{ }M x C x K x F M r x+ + = −&& & &&                                         (15) 

where {x} = [x1  x2  x3 …  x14  x15  x16]
T, {F} = [-u2 u2 0 0 0 0 0 0 0 0 0 0 0 0 u15 -u15]

T and the 
16×1 vector {r} is the influence vector representing the displacement of each degree of freedom 
resulting from static application of a unit ground displacement. u2 and u15 are the control forces 
produced by linear motors; the 16×16 matrices [M], [C] and [K] represent the structural mass, 
damping and stiffness matrices, respectively.  

 

Figure 5. The ground acceleration 0x&& (m/s2) 

The mass matrix [M] for the high-rise building structure with the assumption of masses 
lumped at floor levels is a diagonal matrix given in (16), in which the mass of each storey and 
the ATMD are ordered on its diagonal: 
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                                                     (16) 

The structural stiffness matrix [K] is formed based on the individual stiffness ki of each 
storey is defined by (17): 

1

16

1

16

16

1

1

0 otherwise

i i

ij i

i

k k i j

k i j

K k i j

k j i

+

+
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 = =

= − − =
 − − =



                                                         (17) 

The structural damping matrix [C] is defined as follows: 
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16

1

16
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1

1

0 otherwise

i i

ij i

i

c c i j

c i j

C c i j

c j i

+

+

+ = ≠
 = =

= − − =
 − − =



                                                    (18) 

Assume that the reference domains of the four state variables of the discrete control model 
are given by 2 2 2a x a− ≤ ≤ ; 2 2 2b x b− ≤ ≤& ; 15 15 15a x a− ≤ ≤  and 15 15 15b x b− ≤ ≤&  and those of the 
control forces are given by –c2 ≤ u2 ≤ c2 (N) and  –c15 ≤ u15 ≤ c15 (N), where ai, bi, for i = 1, ..., 
15, indicate respectively the absolute peak displacement and velocity vectors of the uncontrolled 
state of the structure excited by earthquake ground shaking and c2 and c15 are the maximal values 
of the control forces of the corresponding storeys.  

The goal function g of the control is defined as follows: 
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where n is the number of control cycles, and the ai’s are specified above. 

6.2. Constructing fuzzy controller for the considered structural system 

For comparative purposes, based on the discussion in Section 2 and the closed-loop fuzzy 
control algorithm given in Figure 6, the construction of the fuzzy controllers is realized by the 
design of the following factors which are the same as examined in [11]: 
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Figure 6. Schematic of fuzzy control algorithm of the structural system, (a) The actuator on the first 
storey, (b) The actuator on the fifteenth storey (ATMD) 

(i) Fuzzifier: The linguistic variables of the variables x2 and x15 are denoted by X2 and X15, of 

2x&  and 15x&  by V2 and V15, respectively, and of u by U. The vague terms of the both X2 and X15 are 

NB, NS, Z, PS and PB, of the both V2 and V15 are N, Z and P and of U are NB, NM, NS, Z, PS, 
PM and PB. The memberships of these terms are designed as depicted in Figure 7 – 9, which are 
the same as examined in [11].  
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Figure 7. Membership functions for X2 and X15 
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Figure 8. Membership functions for V2 and V15 
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Figure 9. Membership functions for U2 and U15 

Since the recorded seismic data of El Centro earthquake will be used to design controllers, 
the universes of discourse of four state variables of the discrete control model of the from −a2 ≤ 
x2 ≤ a2, −b2 ≤ 2x&  ≤ b2, −a15 ≤ x15 ≤ a15 and −b15 ≤ 15x&  ≤ b15 will be determined by, respectively, 
the absolute peak displacement and velocity vectors of the uncontrolled state of the structure 
excited by El Centro earthquake ground motion. The control forces u2 and u15 are assumed to 
subject to the constraints −3.83×106 ≤ u2 ≤ 3.83×106 (N) and −6.9×106 ≤ u15 ≤ 6.9×106 (N). 

(ii) Inference engine: The construction of the inference engine is also the same as examined 
in [11].  It comprises two main components, first of which is its fuzzy rules base given in Tables 
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3 and 4. The remaining one is the fuzzy reasoning method which is selected to be the one of 
Mamdani.  

(iii) Defuzzifier is usually the centre gravity method, which was chosen also in [11]. 

3) Constructing control algorithm for the desired HAC  

The design of HAC in this subsection is based on the HAC scheme depicted in Figure 3.  

The following tasks should be implemented: 

•  To determine hedge algebras of the considered linguistic variables for representing 

control knowledge: The hedge algebras need be determined only for the following variables: 2x , 

2x& , 15x , 15x& , u2 and u15. The numerical values of the variables corresponding to the remaining 

storeys are computed by the established discrete control model. As previously, although the 
linguistic variables under consideration are different, their hedge algebras may be defined with a 
similar structure as follows: G = {small, large}, C = {0, W, 1} and H = {h

−, h+} = {L, V}, where 
L and V stand for Little and Very, respectively, as previously. However, in order to indicate their 
different quantitative semantics, we denote these hedge algebras by the same notations with 
different indexes. For instance, the hedge algebra of the variable 2x&  is denoted by AX2* with G 

= {small2*, large2*}, C = {02*, W2*, 12*} and H = {L2*, V2*}. Similarly, in accordance with this 
convention, the hedge algebra of 15x is denoted by AX15 with G = {small15, large15}, C = {015, 

W15, 115} and H = {L15, V15}, but for u15 it is denoted by AU15 with G = {smallu15, largeu15}, C = 
{0u15, Wu15, 1u15} and H = {L15, Vu15}, and so on.  

The FAM tables for the fuzzy control of the first and fifteenth storeys examined in [11] are 
given in Tables 3 and 4, the vague terms in which are only the labels of the designed fuzzy sets 
defined on symmetric intervals of the form [−a, a]. In the algebraic approach, they are however 
elements of the respective constructed hedge algebras with the qualitative and quantitative 
semantics with the normalized reference domain [0,1] examined in Sections 3 – 5.  Thus, the 
vague terms in these tables must be transformed into terms of the respective hedge algebras by a 
term-transformation, which preserves essential order-based semantic properties of vague terms 
appearing in FAM-tables. Usually, the potential vague terms used in fuzzy control like these 
FAM tables can be linearly ordered and grouped into pair of terms with opposite meanings, i.e., 
they are symmetrical with respect to the term ‘zero” - the neutral. For instance, the pair of terms 
positive and negative or of positive big and negative big is symmetric. The desired term-
transformations should preserve their order and symmetry. In this experiment, they are defined 
by Tables 5 and 6.  

Table 3. FAM table for the actuator on the first storey 

2x&  

x2 

N Z P 

NB NB NM NS 

NS NM NS Z 

Z NS Z PS 

PS Z PS PM 

PB PS PM PB 
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Table 4. FAM table for the actuator on the fifteenth storey 

15x&  

x15 

N Z P 

NB NB NM NS 

NS NM NS Z 

Z NS Z PS 

PS Z PS PM 

PB PS PM PB 

Table 5. Linguistic transformation for 2x , 2x& , 15x  and 15x&  

NB N Z P PB 

small Little small W Little large large 

Table 6. Linguistic transformation for u2 and u15 

NVB NB N Z P PB PVB 

Very small small Little small W Little large large Very large 

• To construct HA-IRMds for the application under consideration: For each application, 
once reference domains of the considered linguistic variables are determined, the normalization 
transformation for every variable can be automatically produced. The SQMs of the linguistic 
variables will also easily be determined by providing their fuzziness parameter values, which are 
either designed by the designer or produced by an evolutionary procedure to solve the fuzziness 
parameter optimization problem, as discussed previously. Then the required q-FAM tables are 
constructed.  

In this subsection, the HA-IRMds are defined by the linear interpolation with respect to the 
established hyper-surfaces Snor modelled approximately by the available data given in the q-

FAM tables of the first and fifteenth storeys.  

6.3. Optimization of fuzziness parameters 

In this subsection, we deal with the El Centro, Northridge and Kobe earthquakes, where the 
seismic data of El Centro earthquake in USA were recorded at the El Centro Terminal 
Substation Building on May 18th, 1940 with Peak Ground Acceleration (PGA) 0.35g, which can 
be found at http://www.vibrationdata.com/elcentro.htm, and the seismic data of Northridge 
earthquake in USA were recorded at the Castaic - Old Ridge Route Station on January 17th, 
1994 with PGA 0.57g and the ones of Kobe earthquake in Japan were recorded at the KJMA 
Station in Kobe on January 16th, 1995 with PGA 0.60g, see 
http://peer.berkeley.edu/smcat/search.html.  

The idea of solving the fuzziness parameter optimization problem here is described as 
follows: since it is difficult for the designer to determine the appropriate fuzziness parameters 
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for a practical application problem, the data of El Centro earthquake is chosen randomly among 
three mentioned earthquakes as the training data to determine the near optimal fuzziness 
parameters for the earthquake protective structural system under consideration. Then, the 
obtained optimal fuzziness parameters will be used to design the HACs applied to the protective 
structure in question against other earthquakes in the future. The Northridge and Kobe 
earthquakes will be used as the testing data for the designed HAC to validate its performance.  

Thus, the hedge algebras, the reference domains of the linguistic variables and their 
normalization transformations and SQMs will be determined utilizing the seismic data of El 
Centro earthquake. Then, the universes of discourse of four state variables x2, 2x& , x15 and 15x&  

and of two control force variables u2 and u15 are the same as for the above designed fuzzy 
controllers.  

The goal function is defined by (19), for which the number n of cycles of the whole control 
process is defined by dividing the total time 50 s of simulation by the time step 0.01 s. So, n = 
5000. The fuzziness parameter optimization problem will be solved by utilizing a genetic 
algorithm (GA) based on the encoding examined in [5] with the following requirements:  

-  The constraints on fuzziness parameters:  0.3 ≤ fm(c−) ≤ 0.7 and 0.3 ≤ µ(h−) ≤ 0.7. 

-  Since the main aim of the study is to show the advantages of the proposed methodology, 
in this simulation only the fuzziness parameters of the algebras AU2 and AU15 are optimized for 
simplicity. 

For the remaining hedge algebras they are assigned with the same values as follows: 

 fm(small) = µ(Little) = 0.5 

In despite of this, the simulation experiments and the comparison study below still show the 
better performance of the designed opHAC’s than their counterparts in protecting the civil 
structural system from earthquakes.  

Then, the near-optimal fuzziness parameters of AU2 and AU15 shown in Table 7 have been 
produced by a GA, using the seismic data provided from El Centro earthquake.  

Table 7. The optimal parameters of   AU2 and AU15 for the opHAC 

For the actuator on the 1th-storey, u2 For the actuator on the 15th-storey, u15 

fm(c−) µ(h−) fm(c−) µ(h−) 

0.383 0.628 0.620 0.689 

6.4. Simulation results and a comparative analysis  

• The simulation experiments have been designed in order to show the effectiveness of the 
hedge-algebra-based methodology applied to this field. The structural system under 
consideration equipped in turn with the designed fuzzy controller (FC), the designed HAC and 
the designed opHAC has been simulated against the earthquake ground vibrations obtained from 
the seismic data of the three specific earthquakes - El Centro, Northridge and Kobe. It can be 
observed from Figures 10, 12 and 14 that all horizontal displacement responses of the fifteen-
degree-of-freedom structural system have been taken into account in the simulation experiments.  



 
 
Active control of earthquake-excited structures with the use of hedge-algebras-based controllers  

 727

• All the controllers of three types have been designed based on the recorded seismic data 
of the El Centro earthquake, including the design of the optimal fuzziness parameters of 
opHACs. This means that the El Centro earthquake data have been used in the training phase 
and the seismic data of Northridge and Kobe earthquakes have been used in the testing phase to 
evaluate the effect of the proposed methodology. To offer some comparison, the calculated 
control forces of the control algorithms of all three controllers should be bounded by the same 
maximal control forces 1700 kN for the first storey and 3000 kN for the fifteenth storey. The 
simulation results of all fifteen storeys exhibited in Figures 10, 12 and 14 show that the 
performance of the designed opHACs are always the best and that of the designed fuzzy 
controllers are always the worst for all the three examined earthquakes, although its optimal 
parameters are determined by utilizing only the seismic data obtained from the El Centro 
earthquake. Since in practical applications it is difficult to determine the parameters of the 
membership functions, in the design of fuzzy controllers, and the fuzziness parameters, in the 
design of HAC’s, these results point out a useful advantage stating that in designing an opHAC 
for a structural system one may determine its optimal fuzziness parameters by an evolutionary 
technique using the seismic data of a particular earthquake.  

 

Figure 10. The maximum storey drift of El Centro earthquake 

 

Figure 11. Displacements 15x (m) versus time (s) of El Centro earthquake 
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Figure 12. The maximum storey drift – Northridge earthquake 

Figures 11, 13 and 15 exhibit comparisons of controlled displacement of the fifteenth 
storey of the examined structural system calculated by the designed fuzzy controller, HAC, and 
opHAC with the uncontrolled ones for all three earthquakes under consideration. 

 

Figure 13. Displacements 15x  versus time of Northridge. earthquake 

 

Figure 14. The maximum storey drift – Kobe earthquake 
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Figure 15. Displacements 15x  versus time - Kobe earthquake 

Table 8. Simulation results 
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Controlled to uncontrolled 
displacement ratio 
(reduction ratio) 

FC HAC opHAC FC HAC opHAC FC HAC opHAC 

1 0.178 0.595 0.530 0.523 0.201 0.728 0.681 0.598 0.376 0.618 0.606 0.592 

2 0.186 0.573 0.496 0.490 0.211 0.705 0.657 0.576 0.392 0.599 0.591 0.568 

3 0.193 0.573 0.485 0.478 0.220 0.705 0.657 0.578 0.406 0.590 0.578 0.552 

4 0.199 0.571 0.473 0.469 0.230 0.702 0.657 0.581 0.418 0.578 0.561 0.534 

5 0.204 0.566 0.469 0.461 0.241 0.697 0.653 0.585 0.428 0.562 0.541 0.518 

6 0.207 0.559 0.466 0.453 0.251 0.687 0.645 0.592 0.438 0.544 0.523 0.503 

7 0.210 0.560 0.486 0.445 0.261 0.671 0.633 0.594 0.450 0.531 0.508 0.483 

8 0.213 0.569 0.499 0.437 0.271 0.650 0.619 0.591 0.465 0.520 0.499 0.471 

9 0.216 0.575 0.509 0.432 0.280 0.629 0.605 0.583 0.481 0.520 0.500 0.471 

10 0.219 0.578 0.518 0.447 0.288 0.612 0.592 0.577 0.496 0.527 0.507 0.477 

11 0.221 0.580 0.525 0.461 0.295 0.598 0.580 0.570 0.509 0.538 0.519 0.488 

12 0.223 0.582 0.533 0.474 0.301 0.584 0.569 0.561 0.519 0.548 0.532 0.502 

13 0.224 0.585 0.542 0.486 0.305 0.571 0.557 0.547 0.528 0.556 0.541 0.515 

14 0.225 0.587 0.548 0.496 0.308 0.560 0.546 0.533 0.535 0.561 0.546 0.523 

15 0.226 0.590 0.551 0.502 0.310 0.555 0.540 0.527 0.539 0.564 0.550 0.526 

Table 8 presents a summary of simulation results in view of reducing the displacement 
response of the examined structural system. For example, for the 1st storey, the response 
reduction ratio, i.e. the ratio of the controlled to uncontrolled response for maximum 
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displacement is about 59.5%, 53.0% and 52.3% for the designed FC, HAC and opHAC, 
respectively, for El Centro earthquake. That is in view of the reducing the displacement 
response, the performance of the designed HAC and opHAC is better than the performance of 
the designed FC about 10.92% and 12.1%. The corresponding performance percentages are 
15.1% and 17.86%, for Northridge earthquakes, and 1.94% and 4.21%, for Kobe earthquake. 

For the 15th storey, the corresponding performance percentages are 6.61% and 14,92%, for 
El Centro earthquake, 2.7% and 5.06%, for Northridge earthquake, and 2.48% and 6.74%, for 
Kobe earthquake.  

Table 9. CPU computation time of the controllers: a comparative analysis 

Earthquake El Centro Northridge Kobe 

FC 172.6250 135.3125 165.9357 

HAC 17.6250 14.0781 16.4844 

In view of the maximum displacement, which is an essential evaluation criterion of the 
structural control algorithm, it is observed that for El Centro earthquake, the maximum reduction 
ratio produced by the designed FC is 0.595, by the designed HAC is 0.551 and by the designed 
opHAC is 0.523. The corresponding figures are 0.728, 0.681 and 0.598, for Northridge 
earthquake, and 0.618, 0.606 and 0.592, for Kobe earthquake. One should emphasize the fact 
that the maximum displacements of all storeys calculated by the designed controllers for all 
three examined earthquakes are all decreased in turn from the designed controllers FC to HAC 
and then to opHAC. Notice that although the size of the population is only 80 and the number of 
generations is only 300, which are still small, the performance of the designed opHAC’s is 
already the best in comparison with the remaining controllers. 

The comparison above underlines the advantages of the proposed methodology. However, 
its main benefit is in the simplicity and effectiveness of the control algorithm based on HA-
IRMds. This is guaranteed by the advantages discussed in the end of Subsection 4.1 and, hence, 
it improves the performance of the desired controllers. Table 9 shows that the total CPU 
computation times of the designed HACs (given in) for the simulation of the structural system 
against the examined earthquake disturbances are about ten times smaller than those of the 
designed fuzzy counterpart.  

7.  CONCLUSIONS 

In this paper, the methodology to design fuzzy controllers based on hedge-algebras-based 
semantics of vague terms has been presented. Its novelty originates from the fact that hedge 
algebras model directly the qualitative meaning of the vague linguistic terms in term-domains of 
linguistic variables. The meaning of vague terms is not expressed by fuzzy sets, but by their 
order relationships with the remaining terms in a terms-domain, called order-based meaning. 
Thus, we have an algebraic approach to the semantics of vague terms, which provides another 
mechanism to process fuzzy information. 

The proposed methodology exhibits the following main advantages: 

(i) Hedge algebras, as a mathematical foundation of the methodology, model the inherent 
order-based structure of terms-domains of linguistic variables. It may be important to guarantee 
the effectiveness on the methodology. It has been demonstrated that the fuzziness of vague 
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terms, which is an essential characteristic of fuzzy information, can be modelled in this algebraic 
approach and based on it fuzziness measure of terms can be defined in an axiomatic way. 
Moreover, fuzziness intervals of terms, which exhibit a characteristic of the quantitative 
semantics of terms, can be constructed relying upon properties of fuzziness measure. 
Semantically quantifying mappings (SQMs), a significant component for developing hedge-
algebra-based interpolation reasoning methods (HA-IRMds), can be defined in a close 
relationship with the fuzziness measure and fuzziness intervals of terms. They are completely 
determined by providing the fuzziness measure of the primary terms and hedges. These shows 
that SQMs have been defined in close relation with the semantics of vague terms and hence they 
can bring useful information conveyed by vague linguistic terms. 

(ii) Reasoning methods in this approach, HA-IRMds, are simple and transparent, since they 
depend only on two factors, the set of fuzziness parameters of SQMs and classical interpolation 
methods on Euclidean hypersurfaces. We should stress the fact that SQMs are homomorphisms 
in the category of linearly ordered sets. This ensures that the hypersurface, which is obtained by 
transforming the given set of fuzzy rules into multiple-dimensional Euclidean space using 
properly constructed SQMs, can be regarded as a suitable model of available control knowledge.  

In fuzzy control, the fuzzy reasoning method, a significant component of the fuzzy engine, 
depends on many significant factors, one of which concerns the membership functions, as 
discussed in Section 2. Accordingly, tuning membership functions based on evolutionary 
techniques has a limited affect on the performance of the desired fuzzy controllers. Instead, in 
the algebraic approach, tuning of the fuzziness parameters has a significant affect on their 
performance, since except classical interpolation method to be selected, their performance 
depends merely on the fuzziness parameters. 

The methodology has been applied to the design of HACs and opHACs for a problem of 
active control of earthquake excited high-rise civil structures. The computer simulation 
completed for the seismic data recorded from El Centro, Northridge and Kobe earthquakes 
demonstrate the advantages of the proposed methodology and underline the relevance of the 
algebraic approach. 
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Trong bài báo này, chúng tôi đưa ra phương pháp luận dựa trên đại số gia tử để thiết kế bộ 

điều khiển mờ được gọi là bộ điều khiển dựa trên đại số gia tử (HACs ) nhằm kiểm soát rung 
động các hệ kết cấu. Trong phương pháp này, các nhãn ngôn ngữ không thể hiện bằng các tập 
mờ mà bằng quan hệ thứ tự vốn có giữa các giá trị ngôn ngữ tồn tại trong miền xác định của tập 
nền. Ánh xạ ngữ nghĩa định lượng (SQMs), bảo toàn mối quan hệ thứ tự dựa trên ngữ nghĩa 
trong miền xác định, được định nghĩa trong một mối quan hệ chặt chẽ với độ đo mờ và khoảng 
mờ của các nhãn ngôn ngữ. Qua cách sử dụng SQMs, phương pháp suy luận mờ có thể được 
chuyển thành các phương pháp nội suy số đối với các điểm trong không gian Euclid đa chiều 
được xác định dựa trên các luật if-then của các tri thức điều khiển. Điều này cung cấp một cơ sở 
toán học tốt hỗ trợ cho quá trình xây dựng các thuật toán điều khiển. Phương pháp luận được đề 
xuất khá đơn giản, minh bạch và hiệu quả. Trong một nghiên cứu cụ thể, các bộ điều khiển 
HACs và HACs tối ưu đã được thiết kế dựa trên phương pháp luận mới  để kiểm soát các kết cấu 
cao tầng dân sự. Các bộ điều khiển HACs và HACs tối ưu đã thành công hơn các bộ điều khiển 
mờ trong việc làm giảm các phản ứng dịch chuyển tối đa của kết cấu theo ba kịch bản trận động 
đất khác nhau: El Centro, Northridge và Kobe. Điều này cho thấy hiệu quả của phương pháp đề 
xuất. 

 
Từ khóa: lí thuyết điều khiển, suy luận xấp xỉ, độ đo mờ, tính toán kỹ thuật chịu tải động đất, đại 
số gia tử. 

 

 

 

 


