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ABSTRACT 

Recently, finite elements method (FEM) has been used most popular for analysis of stiess, 

vibration, heat flow and many other phenomena. With the increase in computing power, FEM is 

wider used for the static and dynamic analysis of rotor bearing system. In this paper, the lateral 

vibration of large turbo machinery is studied. The FEM model is created and the eigenvalues and 

eigenvectors are calculated and analyzed to find natural frequencies, critical speeds, mode 

shapes and unbalance responses. Then critical and mode shapes are determined. Finally, 

responses of unbalance force are analyzed and compared in case of isotiopie bearings and 

anisotiopic bearings. 

Keywords: finite element method (FEM), lateral vibration, turbo machinery, mode shape, critical 

speed. 

1. INTRODUCTION 

Lateral rotor vibration (LRV) is radial -plane orbital motion of the rotor spin axis. LRV is 

an important design consideration in many types of rotating machinery, particulariy turbo 

-electiical machines such as steam turbine generators sets, compressors, pumps, gas turbine jet 

engines, turbochargers and electric motors. 

In several decades, FEM has been successfrilly used in rotor dynamic analysis. Gash [1], 

Nelson and McVaugh [2], Hashish and Sankar [3] used FEM model axi-symmetrie rotor bearing 

systcn. Jie and Lee [4] model asymmetric rotor bearing system. Ruhl and Booker [5] used FEM 

-IT ds rotor only consider tianslational inertial and bending stifEhess. Michael et al. [6], 
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Giancarlo [7], Thanh et al. [8] proposed a model which included tiie effects of bending, rotary 

inertia, gyroscopic moments, transverse shear deformations and axial load in both axi 

-symmetric and asymmetric rotor bearing system. 

In mrbo and rotating machines, bearing constitute one of the most critical components. It 

directly influence on the rotordynamics performance, life, and reliability of the machine. Even 

after the machine is designed and placed in operation, changes or modifications to the bearings 

constitute one of the most effective, direct, and economical means to alter and improve the 

machine's dynamic performance [9]. Bearing-support stiflhess depend not only the design and 

manufacture a particular machmes, it also can depend strongly on the way in which that machine 

is mounted. Natural frequencies and modes are inherent properties of a stmcture they don't 

depend on the force or loads acting on the stmcture. It will change if the characteristic (mass, 

stifBiess, damping) or boundary condition (mounting) of the stmcture changes [10]. 
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Figure I. Modeling of a LP B rotor-bearing system. 

In tills work, the LP B rotor of a 1000 MW USC (ultia-supercritical) steam turbine is 

studied. Turbo-generator sets witii 1000 MW are widely used in generation of electiic power. It 

is a large and complex rotating machine. Figure 1 shows the stmcture of the LP B rotor-bearing 

system. The system is modeled 45 Timoshenko beams with 46 nodes, 184 degrees of freedom, 

ineludmg gyroscopic, shear modulus, and rotary inertia effects. Bearings locate at node 4 and 

node 37 and denote by BrgI and Brg2. Both bearings have stiffness k̂ ^̂ ^̂  kyy= 2.45xlO'N/m and 

damping ĉ x = Cyy = 3x 10̂  N.s/m. 

2. FINITE ELEMENT MODELING ROTOR 

A t3TJieal shaft element and its coordinate are illusfrated in Figure 2. Here, we consider only 

lateral or transverse vibration so each node has four generalize coordinates: transverse 

displacements u, v in the x-, y- direction and rotation, (i^^ about x- and y-axes. A 

vector {qf ={q"...ql] =KpV^i,6',i,(i^^i,M^2,v^2,^,2,(^,2)^ contains the coordinate of an 

element. 
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2.1. Shaft elements 

The element matrices are derived using energy methods. Because of the symmetric, the 

mass matrix and the stif&ess matrix in the xz plane and the yz plane are obtained in sunilar way. 

The deflection within the element in the xz plane (Figure 3) is approximated by [6] 

Vei(t) 
Uel(t) Ue(C,t) 

¥e2(tX 
«c2(t) 

Figure 2. Coordinate used in analysis of rotor. Figure 3. Coordinate in xz plane. 

".(f.') = [^,.(f) W.2(f) W.,(f) JV..©] 
«.2(l) 

(1) 

where the shape ftinctions, A''̂ ,. ( ^ ) , are 

'e 'e % ll ll 

a a a a 

Now assume that the cross section do not vary within the element. The stiain energy within 

the beam element is 

^4%m^^m^\.;:p^m (2) 

where E^, U are the Young's modulus and the second moment of cross-section about the neutral 

plane respectively. Making the substitution from Eqs. (1) and (2), the strain energy is given by 

V.=-{q^\K\{q^ (3) 
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Ke is element stiffness matrix, given by 

12 6/, -12 61, 

47; -61, 21] 

symm 12 -61, 

4/,' 

(4) 

The mass matrix is computed in a similar way but using the kinetic energy. Neglecting the 

rotational effect, the kinetic energy of the beam is 

T, =^ '\pA«KMd?=^{9.)''[Km.} (5) 

Pe, ŷ e ate the density of the material and cross-section area of the beam respectively. M, in Eq. 

(5) is element mass matrix and gives as below 

p,AJ, 

156 22;, 54 -13/ , 

41] 13/, - 3 / , ' 

Symm 156 -22 / , 

4/ ' 

(«) 

Based on ttie local coordinate vector for each element bending in the two planes, the 

localcoordinate vector is 

Assuming two bending planes do not couple, the element matrix for the two planes are 

merely inserted correct location in the 8^8 shaft element matrices. 

2.2. Disk elements 

The disk elements are assumed to be rigid as foiu degrees of freedom. The kinetic energy 

of a disk is [6] 

T,=\m,(u'W) + ^I,(wi+,4)+\l„a,] 0) 

where m^ is the mass of the disk, H, V are the velocities in the x and y directions, lp. I^ are the 

polar moment and diamefral moment of inertial, («f,(y^_(yj are the instantaneous angular 

velocities about x-, y-, z - axes, which are fixed in the disk and rotate witii it. 
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In Eq. (7), the first term is the kinetic energy due to the tianslation of the disk. The second 

and the third term are kinetic energy due to the rotational motion of the disk. The detail 

definition of the a^,Q}-a^ [6] is 

?cos(3+|^smpcose 

-^sin^-H&'cos^sin^ 

Q-y/sm$ 
(8) 

in here, 0,i/r are angular velocities about the x-. y- axes respectively, ^ is the angular of 

rotation about the shaft. Assuming the rotations ^and ^are small, we can neglect terms higher 

than second order and their derivatives. Take Eq. (8) into Eq. (7) into to obtain 

4u'+i'')+^i,(e'^-v'')+^i,{a'-2nr0) (9) 

The element matrices are obtained by applying Lagrange's equation to Eq. (9). Thus we 

have the mass matrix M, and the gyroscopic matnx Cj, of the disk as 

(10) 

"J 

0 

0 

0 

0 

' " r f 

0 

0 

0 

0 

Ij 

0 

ol 
0 

0 

IJ 

0 

0 

0 

0 

0 0 0" 

0 0 0 

0 0 7, 

0 - /^ 0 

2.3. Bearings 

In general, bearing force on the rotor are normally modeled by stifftiess and damping 

matrices as shown in the following the equation [6-8]. 

^h-[t t]|:l-[:: ilCl (11) 

where, f„fy are the dynamic force in the x and>< direction, u, vare the dynamic displacements of 

the shaft journal relative to the bearing housing in the x and y directions. Figure 4 illustrates the 

stiffness and damping of the joumal bearing model. In this paper, k^, ky^, c^, Cy^ are assumed 

equal zero. 

3. EQUATION OF MOTION 

Generally, the equation of motion for vibration of a multiple degree of freedom (dof) rotor 
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- bearing system may be written as 

Mq-\-(nG-\-Qq+Kq=F(t), (12) 

where: 9 is a vector containing the generalized 

coordinate; Mis mass matrix; G is gyroscopic matrix; 

C is damping matiix; K is stiffness matiix; Q. is rotor 

spin speed; F(t) is generalized force. 

3.1. Free vibration 

Free vibration is fundamental to the dynamical 

of characteristic of rotor system. For fi-ee vibration 

(F(t) = 0) and tiie Eq. (12) rewrite in state-space 

form [6,7] 
Figure 4. Journal Bearing model 

rc+ne Ml£fq-\\K 0 ir?l fol 
L M 0\clt\q] [0 -M\\q] \(i] (13) 

Solving Eq (13) in state space form give the eigenvalues s, it occur as a complex conjugate pairs 

where 0)^^0}^.^. are the natural frequencies, damped natural frequencies and damping ratio 

respectively, for the i"" mode, and J - V-4 . 

3.2. Unbalance response 

The vector of generalize force acting at node k due to a disk offset by a displacement £ and 

an angle ySusually represent in form [6], (91 denotes the real part of the complex number). 

F^(t)=d\ 

m^ee'" 
~m,e^' 

= ?^(Q.\,e^''-) (15) 

where ^and /are the angle (when t = 0) of the out-of-balance force and moment vectors relative 

to Oxy axes, m^ Ipk_ I^ are the mass, polar moment and diametial moment of inertia of the disk 

at node k. Taking Eq. (15) into Eq. (12), gives 
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Mg + nCg + Cq + Kq = ^(O^b^e^^ ) (16) 

Solving Eq. (16) determine the steady-state response to the unbalance forces. Letting 

q(t) = 3 l ( q o e ' ^ (qo is complex) gives the unbalance response as 

q, ={(K-Q'M) + jCl(^G + C)\-'^\ (17) 

3.3. Critical Speed 

Campbell diagram: The Campbell diagram is the most general method to determine 
critical speeds. Suppose that for any one frequency component of forcing, the frequency cOfcan 
be written in terms of rotational speed 

<^..=f(^) (18) 

A force whose frequency is identical to rotor speed is said to be a synchronous force (n = 

l).The critical speeds of the system is given by the intersections of the synchronous line 

OĴ  = Q (cOf is forcing frequency) and natural frequency curves 0)̂ , — f(Q.) [6, 7]. 

4. CALCULATION RESULTS 

4.1, Vibration frequency of the rotor 

The first eight eigenvalues, natural frequencies COn, for the rotor at 0 rev/mii' and 3000 

rev/min are given in table 1. At zero speed, the natural frequencies occur in pair because in the 

X- and y- direction, the rotor- bearing system is uncoupled and the inertia and stiffness of the 

rotor identical. When the shaft is spinning at 3000 rev/min, each pairs of natural frequencies 

separates due to gyroscopic effect. Because both the shaft and disk of the rotor have large 

diameters, the influence of gyroscopic is large. The separation of natural frequencies is more 

clearly illustiated by the Campbell diagram shown in Figure 5. As the shaft speed increase, each 

natural frequency diverges, one frequency increase and one decrease. The real part of roots is 

very small, damping ratio approximately equals zero so that damped natural frequencies are very 

close to natural frequencies. 

4.2. Unbalance response 

It's assumed that an out-of-balance of 0.001 m acts on the two sides of the rotor (disk 11 

and disk 31) in the same angular position (Figure 1). Unbalance responses of the rotor are 

analyzed in two eases: (1) the rotor supported by isotropic bearings and (2) anisotropic bearings. 
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Table 1. The first eight eigenvalues and natural frequencies. 

0 rev/min 

Root s (rad/s) 

- 3.92xl0-'± 141.50J 

-3.92xl0-=±141.S0j 

-2.06x10-' +281.95J 

-2.06xl0-' + 28I.95j 

-4.86xl0-'+368.67j 

-4.86xl0'±368.67j 

-2.43xI0-'±4S4.47j 

-2.43x10"'+454.47J 

o)n(Hz) 

22.52 

22.52 

44.87 

44.87 

58.67 

58.67 

72.31 

72,31 

3000 rev/min 

Root s (rad/s) 

- 3 .6x lO '+139 .47 j 

-424xl0 ' '±I43.46j 

-I .96xl0- '± 144.86J 

-2.15xl0-'±289.82j 

-4.55x10'+354.96J 

•5.16xl0-'+382.31j 

•2.46x10"'+436.27J 

-2,38.x0-'+473.10j 

0).(Hz) 

22.19 

22.83 

43.63 

46.12 

56.50 

60.85 

69.44 

75.23 

A() 

£•50 

|.40 

^20 

10 

0 

• ^ i j i FW i 1 ^ ' ' " 

; ; ; > > B W • ^ ^ i 

1 1 (D=S1 1 ^ - ' ' ' ' ' 

' ' ''J^ 1 1 ^ 1 1 

..'-^"^ • '< 1 BW [ I 

Figure 5. Campbell diagram, FW (forward whirl), BW (backward whiri). 

4.2.1. Rotor Supported by Isotropic bearings 

In this case, the bearings stiffness matiices are symmetric witii the original stiffness k^= kyy 

= 2.45 X lO^N/m and damping c^^= Cyy= 3xl0^N.s/m. 

Figure 6 shows unbalance responses and phase changes of these nodes to x direction. 

Because of the symmefric system, the responses in tiie x direction and in tiie y direction are 

coincided. The responses to the out-of-balance force at the equivalent critical speeds of 1360 
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2750, and 3680 rev/min get maximum values. Comparing with the rotor speeds, these speeds 

coincide with natural frequencies of the system in the Campbell diagram (figure 5) and only 

forward whirl modes are exited. When the rotor spins at sub-critical speed range, these nodes 

whirl in-phase. Due to critical speeds, the phases change by approximately 180" (because of 

damping, the phase change do not exactly by 180"). The phase changes occur at both resonances 

and anti resonances of the system. The phase of the node II reverses two times in regions 2250 

rev/min and 2890 rev/min, respectively. The node 31 also reverse phase in region 3050 rev/min. 

UJ 1 "i " ' 1 Nodel l .xr -n W 

\ 
1 

Rotor spin speed (rev/nun) 

Figure 6. Unbalance response of the rotor at node 11, 31 in the >< direction. 

4.2.2. Rotor Supported by anisotropic bearing 

This system is the same with previous system, except that the isotropic bearings are 

replaced by anisofropic bearings. Original stiffriess of each bearing is assumed to be k̂ ^ - 2.45 x 

lO'N/m and will be changed, by kyy= 2.40xlO^N/m. 

The responses of the system at node II andnode31 to out-of-balance 0.001m on both disks 

(at node II and node 31) are shown in Figure 7. The responses have a maximum when rotor 

speeds is 1340, 1360, 2620, 2760, 3360 and 3670 rev/min. Comparing these speed with the 

critical speed of the rotor in the Campbell diagram, we can see that both forward and backward 

modes are excited. The stiffness of the system is difference m x and y directions; hence, the 

amplitude of whirl in these directions are difference, this illustrated in Figure 8. 

It can be seen that, the peaks response occur at the same rotor speed in the x and y 

directions. At these speeds, responses of phases are changed. The zero values of the response in 

x and y direction occur at different rotor speeds; thus the phase of response in the x direction 

changes at a different rotor speed from that the ;' direction. If the phase of response in either x or 

y direction changes substantially, the direction of whirl reverse. In Figure 8, regions of backward 

whirl are indicated by shaded regions. At some rotor speeds, one part of the rotor is in backward 
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whirl whereas other is in forward whiri (mix mode). It is more clearly by plot orbits at these 

nodes as shown in Figure 9. The orbits are elliptical and can be forward or backward. 

I,« 

% 

1 I 
I : 

•-H 

î ~:;i: 

III 11 1 
1 1 

1 

XJ 

Figure 7. Response of the rotor at node 11 and node 31 in x direction due to out-of-balance force 
at node 11 and node 31 (the length of the semimajor axis of the orbit). 
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r : 1 

1 1 1 ! 1 1 1 
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3500 400D 
Rotor spiti s[i«iJ{rcrfmin) 

Fi.ureg 8. Response in x and y direction at node 11, the red shaded region indicates backward whirl. 
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J.- (-1 - r--

Figure 9. Whir! orbits at node 11 (dashed) and node 31 (solid) for the rotor on anisotropic bearings. 
The cross denotes the start of the orbit and the diamond denotes the end 

4.2.3. Map of critical speed and mode shapes 
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Map of critical speed and mode shapes enable an engineer to obtain rapidly an impression 

of how the uncertainly in one of the parameters affect behavior of the machine. Figure 10 shows 

how the first two mode shapes of the rotor vary with the bearing stiffness. It can be seen that, at 

low stiffness (10*+10'N/m), the rotor is hardly constrained and the mode shape are more 

various. At high stiffness, the bearing presents an almost pinned constraint and the mode shapes 

of the rotor do not change. That means, the bearing can be considered as a rigid body 

approximately. 

1 " 

.̂ '* 

Figure 10. The variation of the first two mode shape with bearing stif&iess. 
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5. CONCLUSTIONS 

In this study, the dynamic vibration behavior of the LB B rotor of a 1000 MW 

turbo-generator under unbalance forces is investigated. The finite element method (FEM) is 

applied to model the system. The results can be summarized as follows: 

The responses of the rotor in two case isotropic and anisotropic bearing systems are 

analyzed. In case the rotor supported by isotropic bearing, only forward modes are excited. 

Whereas in case of the rotor supported by anisotropic bearings, both forward and backward 

modes are excited 

The influence of the bearing support stiffness on critical speed and mode shape is one of 

the most basic principles. This map is generated through a parametric variation of the bearing 

support stiffness. It provides an overview of how the critical speeds and mode shapes will 

change with variation of the bearing support stiffness. 
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PHAN TICH MO HINH DAO D O N G CUA TURBINE BANG PHUONG PHAP PHAN TU' 
HUU HAN 

Ngo Van Thanh''*, Danmei Xie^, Le Hoai Due' 

Trudng Dgi hoc Giao thdng van tdi, Viet Nam 

^ Vien Ca khi dong luc, Dgi hoc VU Hdn, Trung Qudc 

Email: ngovanthanhdc@gmail.com 

Phuang phap phan tu hun han duqrc ung dung rong rai trong tinh toan sire bfin, dao dpng, 

nhi$t d^ng cung nhu rSt nhieu ITnh vuc khac trong tmh toan thiet ke ca khi. Trong nhirng nam 

g^n day, vdi vi?c phat fri6n mgnh me ciia may tinh, phuang phap phSn tu: him han da dugc su 

dyng chii yeu de tinh toan tTnh va dong luc hpc cua he rotor va 6 tiuc. Bai bao nghien cihi dao 

dpng ngang ciia turbine may phat dien ca Ion b ^ g phuong phap phan tir hiiu han. Tu m6 hinh 

phan Xix hiiu h^n, tac gia tien hanh phan tich cac dac tnmg cua he dao dgng bao gom tan s6 dao 

dpng t\r do, toe dp toi han, trang thai dao dpng rieng. Trang thai mdt can biing dup'c phSn tich va 

so sanh khi turbine lap tren 6 true dang huang va 6 true bat dang huang. 

Tir khoa: phuong phap phSn tur hiru han (FEM), dao dpng ngang, turbine, trgng thai dao dpng, 

t6c do t6i h^n. 
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