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ABSTRACT

Recently, finite elements method (FEM) has been used most popular for analysis of stress,
vibration, heat flow and many other phenomena. With the increase in computing power, FEM is
wider used for the static and dynamic analysis of rotor bearing system. In this paper, the lateral
vibration of large turbo machinery is studied. The FEM model is created and the eigenvalues and
eigenvectors are calculated and analyzed to find natural frequencies, critical speeds, mode
shapes and unbalance responses. Then critical and mode shapes are determined. Finally,
responses of unbalance force arc analyzed and compared in case of isotropic bearings and
anisotropic bearings.

Keywords: finite element method (FEM), lateral vibration, turbo machinery, mode shape, critical
speed.

1. INTRODUCTION

Lateral rotor vibration (LRV) is radial —plane orbital motion of the rotor spin axis. LRV is
an important design consideration in many types of rotating machinery, particularly turbo
-electrical machines such as steam turbine generators sets, compressors, pumps, gas turbine jet
engines, turbochargers and electric motors.

In several decades, FEM has been successfully used in rotor dynamic analysis. Gash [1],
Nelson and McVaugh [2], Hashish and Sankar [3] used FEM mode] axi-symmetric rotor bearing
systen. Jie and Lee [4] model asymmetric rotor bearing system. Ruhl and Booker [5] used FEM
a sis rotor only consider translational inertial and bending stiffness. Michael et al. [6),
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Giancarlo [7], Thanh et al. [8] proposed a model which included the effects of bending, rotary
inertia, gyroscopic moments, trapsverse shear deformations and axial load in both axi
-symmetric and asymmetric rotor bearing system.

In turbo and rotating machines, bearing constitute one of the most critical components. It
directly influence on the rotordynamics performance, life, and reliability of the machine. Even
after the machine is designed and placed in operation, changes or modifications to the bearings
constitute one of the most effective, direct, and economical means to alter and improve the
machine’s dynamic performance [9]. Bearing-support stiffness depend not only the design and
manufacture a particular machines, it also can depend strongly on the way in which that machine
is d. Natural frequencies and modes are jnherent properties of a structure they don't

depend on the force or loads acting on the structure. It will change if the characteristic (mass,
stiffness, damping) or boundary condition (mounting) of the structure changes [10].

)’ﬁH it 1

L

Figure 1. Modeling of a LP B rotor-bearing system.

In this work, the LP B rotor of a 1000 MW USC (ultra-supercritical) steam turbine is
studied. Turbo-generator sets with 1000 MW are widely used in generation of electric power. It
is a large and complex rotating machine. Figure 1 shows the structure of the LP B rotor-bearing
system. The system is modeled 45 Timoshenko beams with 46 nodes, 184 degrees of freedom,
including gyroscopic, shear modulus, and rotary inertia effects. Bearings locate at node 4 and
node 37 and denote by Brgl and Brg2. Both bearings have stiffness k= kyy= 2.45%10° N/m and
damping ¢, = ¢y, = 3%10° N.s/m.

2. FINITE ELEMENT MODELING ROTOR

A typical shaft element and its coordinate are illustrated in Figure 2. Here, we consider only
lateral or transverse vibration so each node has four generalize coordinates: transverse
displacements «, v in the x-, y- direction and rotation,y;6 about x- and y-axes. A

vector (q)r={q:---Qa’}r=(”(1: Vets Oots Wt sV, V2,0, W,;}  contains the coordinate of an

clement.

638



Finite elerent modeling for analysis vibration of large turbo machinery

2.1. Shaft elements

The element matrices are derived using energy methods. Because of the symmetric, the
mass matrix and the stiffness matrix in the xz plane and the yz plane are obtained in similar way.
The deflection within the element in the xz plane (Figure 3) is approximated by [6]

ua(t)  w(g)

‘l‘ex(‘)/
Figure 2. Coordinate used in analysis of rotor. Figure 3. Coordinate in xz plane.
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Now assume that the cross section do not vary within the element. The strain energy within
the beam element is

Bu (&) Au (&),
IE. g )= —E,l, I( s )% @

where £.. /. are the Young’s modulus and the second moment of cross-section about the neutral
planc respectively. Making the substitution from Eqs. (1) and (2), the strain energy is given by

R ANTALS! ®
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K. is element stiffness matrix, given by

12 6, —12 6l
E,lI Az -6l 2

_EL . 2, 4
k. r symm 12 =6l, @
41

The mass matrix is computed in a similar way but using the kinetic energy. Neglecting the
rotational effect, the kinetic energy of the beam is

T %;;o,@: S Y UALS: ©)

P., A, are the density of the material and cross-section area of the beam respectively. M, in Eq.
(5) is element mass matrix and gives as below

156 221, 54 -13I,

_PAlL ar 13, =31 5
420 Symm 156 —221, (
Az

Based on the local coordinate vector for each element bending in the two planes, the
localcoordinate vector is

9= {0V, 00 Vst 2 Vs B WY

Assuming two bending planes do not couple, the element matrix for the two planes are
merely inserted correct location in the 8%8 shaft element matrices.

2.2. Disk elements

The disk elements are assumed to be rigid as four degrees of freedom. The kinetic energy
of a disk is [6]

1 3. 1 1
T,=5m,[uz+v’)+514(w? w’]+21,w (W)
where my, is the mass of the disk, #,V are the velocities in the x and y directions, ,, J, are the
polar moment and diametral moment of inertial, @; ,, 0, @, are the instantaneous angular

velocities about ¥—, y—, Z — axes, which are fixed in the disk and rotate with it.
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In Eq. (7), the first term is the kinetic energy due to the translation of the disk. The second
and the third term are kinetic energy due to the rotational motion of the disk. The detail

definition of the ;, 0, @; [6]1s
(@, Bcos@+yrsin peosf

w, r=1-Bsin+yrcos gsin 6 ®)
, Q—yrsing

in here, H,V/ are angular velocities about the x-, y- axes respectively, ¢ is the angular of

rotation about the shaft. Assuming the rotations @and y are small, we can neglect terms higher
than second order and their derivatives. Take Eq. (8) into Eq. (7) into to obtain

T,=%m,(.z’+oi)+%1,(é*+w‘)+%1,(nz-mw) ©)

The element matrices are obtained by applying Lagrange’s equation to Eq. (9). Thus we
have the mass matrix M, and the gyroscopic matnx G, of the disk as

m, 0 0 0 00 0 0
0 0 0 0 0 0 O
M= G,= (10)
0 0 1,0 00 0 I
0 0 0 I, 0 0-1,0

2.3. Bearings

In general, bearing force on the rotor are normally modeled by stiffness and damping
matrices as shown in the following the equation [6-8).

/, ke kyllv] lex o ]lY
where, f, f; are the dynamic force in the x and y direction, , v are the dynamic displacements of
the shafi journal relative to the bearing housing in the x and y directions. Figure 4 illustrates the

stiffness and damping of the journal bearing model. In this paper, kg, Ky Co €y are assumed

equal zero.

3. EQUATION OF MOTION

Generally, the equation of motion for vibration of a multiple degree of frecdom (dof) rotor
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— bearing system may be written as

Mj+(QG+C)g+Kq=F(f), (12)

where: ¢ is a vector containing the generalized

[

coordinate; M is mass matrix; G is gyroscopic matrix;
C is damping matrix; X is stiffness matrix; Q is rotor
spin speed; F(?) is generalized force.

3.1. Free vibration

Free vibration is fundamental to the dynamical

of characteristic of rotor system. For free vibration
(F(r) = 0) and the Eq. (12) rewrite in state-space Figure 4. Journal Bearing model

form [6,7]
c+QG M)d[q] [K 0 ][q]_[0 "
M 0,1:(;} 0o -M]lg] o (3)

Solving Eq (13) in state space form give the eigenvalues s, it occur as a complex conjugate pairs

5.5 =0, (-6t i1-¢7 )=, £ o, (14
where @, @, {, are the natural frequencies, damped natural frequencies and damping ratio

respectively, for the i* mode, and j = J=1.

3.2. Unbalance response

The vector of generalize force acting at node k due to a disk offset by a displacement £and
an angle S usually represent in form (6], (R denotes the real part of the complex number).

mee’

—m,e” o
J(Ta=1)pem ¢
(1a-1,) 8"

F ()=’ = R(Qb,, ™) s

where dand yare the angle (when t = 0) of the out-of-balance force and moment vectors relative
to Oxy axes, my, I, Ip, are the mass, polar moment and diametral moment of inertia of the disk
at node & . Taking Eq. (15) into Eq. (12), gives
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Mg+ QG +Cq+ Kg =R(Qbe’™) (16)
Solving Eq. (16) determinc the steady-state response to the unbalance forces. Letting

a(t) = R(qpe™) (qo is complex) gives the unbalance response as
0 =[(K - QM)+ jUQG+C)T'Q%, (17

3.3. Critical Speed

Campbell diagram: The Campbell diagram is the most general method to determine
critical speeds. Suppose that for any one frequency component of forcing, the frequency 6 can
be written in terms of rotational speed

w, = f(Q) (18)

A force whose frequency is identical to rotor speed is said to be a synchronous force (n =
1).The critical speeds of the system is given by the intersections of the synchronous line

o, =Q (o is forcing frequency) and natural frequency curves @, = f () [6, 7).

4. CALCULATION RESULTS
4.1. Vibration frequency of the rotor

The first eight eigenvalues, natural frequencies w,, for the rotor at 0 rev/mir and 3000
rev/min are given in table 1. At zero speed, the natural frequencies occur in pair because in the
x- and y- direction, the rotor- bearing system is uncoupled and the inertia and stiffness of the
rotor identical. When the shaft is spinning at 3000 rev/min, each pairs of natural frequencies
separates due to gyroscopic effect. Because both the shaft and disk of the rotor have large
diameters, the influence of gyroscopic is large. The separation of natural frequencies is more
clearly illustrated by the Campbell diagram shown in Figure 5. As the shaft speed increase, cach
natural frequency diverges, one frequency increase and one decrease. The real part of roots is
very small, damping ratio approximately equals zero so that damped natural frequencies are very
close to natural frequencies.

4.2. Unbalance response

It’s assumed that an out-of-balance of 0.001 m acts on the two sides of the rotor (disk 11
and disk 31) in the same angular position (Figure 1). Unbalance responses of the rotor are
analyzed in two cases: (1) the rotor supported by isotropic bearings and (2) anisotropic bearings.
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Table 1. The first eight eigenvalues and natural frequencies.

0 rev/min 3000 rev/min

Root s (rad/s) w, (Hz) Root s (rad/s) ay, (Hz)
-3.92x107t 141.50j 2252 -3.6% 107+ 139.47) 22.19
-3.92x10%¢ 141.50) 22.52 -4,24x10°£143 46j 22.83
2.06x107 + 281.95) 44.87 -1.96x10°%+ 144 86] 43.63
-2.06x107 +281.95j 44.87 -2.15x107£ 289.82§ 46.12
-4.86x107+ 368.67j 58.67 -4.55%10”+ 354.96] 56.50
-4.86x107+ 368.67j 58.67 -5.16x102£382.3]j 60.85
2.43x10%+ 454.47) 72.31 -2.46x107£ 436.27j 69.44
2.43x107+ 454.47] 72.31 -2.38.x0"%£ 473.10j 75.23

2

g
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| L
() 300 1000 1500 2000 2560 3600 3300 000
Rotor spin speed (rev/mn)

Figure 5. Campbell diagram, FW (forward whirl), BW (backward whirl).
4.2.1. Rotor Supported by Isotropic bearings
In this case, the bearings stiffness matrices are symmetric with the original stiffness k= Kyy
=2.45 10°N/m and damping ¢, = ¢,,= 3x10° N.s/m.

Figure 6 shows unbalance responses and phase changes of these nodes to x direction.
Because of the symmetric system, the responses in the x dircction and in the y direction are
coincided. The responses to the out-of-balance force at the equivalent critical speeds of 1360,
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2750, and 3680 rev/min get maximum values. Comparing with the rotor speeds, these speeds
coincide with natural frequencies of the system in the Campbell diagram (figure 5) and only
forward whirl modes are exited. When the rotor spins at sub-critical speed range, these nodes
whirl in-phase. Due to critical speeds, the phases change by approximately 180° (because of
damping, the phase change do not exactly by 180°). The phase changes occur at both resonances
and anti resonances of the system. The phase of the node 11 reverses two times in regions 2250
rev/min and 2890 rev/min, respectively. The node 31 also reverse phase in region 3050 rev/min.

g

Response mugnitude (m)

Phase (degrees)

=]

0 500 1000 1500 2000 2500
Rolor spin speed (rev/mun)

Figure 6. Unbalance response of the rotor at node 11, 31 in the x direction.
4.2.2. Rotor Supported by anisotropic bearing

This system is the same with previous system, except that the isotropic bearings are
replaced by anisotropic bearings. Original stiffuess of each bearing is assumed to be b, =245 x
10° N/m and will be changed, by k,, = 2.40x10° N/m.

The responses of the system at node 11 and node 31 to out-of-balance 0.001m on both disks
(at node 11 and node 31) are shown in Figure 7. The responses have a maximum when rotor
speeds is 1340, 1360, 2620, 2760, 3360 and 3670 rev/min. Comparing these speed with the
critical speed of the rotor in the Campbell diagram, we can see that both forward and backward
modes are excited. The stiffness of the system is difference in x and y directions; hence, the
amplitude of whirl in these directions are difference, this illustrated in Figure 8.

It can be seen that, the peaks response occur at the same rotor speed in the x and y
directions. At these speeds, responses of phases are changed. The zero values of the response in
x and y direction occur at different rotor speeds; thus the phase of response in the x direction
changes at a different rotor speed from that the y direction. If the phase of response in either x or
y dircction changes substantially, the direction of whirl reverse. In Figure 8, regions of backward
whirl are indicated by shaded regions. At some rotor speeds, one part of the rotor is in backward
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whirl whereas other is in forward whirl (mix mode). It is more clearly by plot orbits at these
nodes as shown in Figure 9. The orbits are clliptical and can be forward or backward.

- T
5‘ ]
.
ke
| ‘
I R R
e . e

=
Rotor 1pm specd (revime)

Phase (derec)

Figure 7. Response of the rotor at node 11 and node 31 in x direction due to out-of-balance force
atnode 11 and node 31 (the length of the semimajor axis of the orbit).

Response magoitude (m)

Fiureg 8 Response in x and y direction at node 11, the red shaded region indicates backward whirl.

1600 revima

3480 revmen.

Figure 9. Whirl orbits at node 11 (dashed) and node 31 (solid) for the rotor on anisotropic bearings.
The cross denotes the start of the orbit and the diamond denotes the end

4.2.3. Map of critical speed and mode shapes
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Map of critical speed and mode shapes enable an engineer to obtain rapidly an impression
of how the uncertainly in one of the parameters affect behavior of the machine. Figure 10 shows
how the first two mode shapes of the rotor vary with the bearing stiffness. It can be secn that, at
low stiffness (10° +10° N/m), the rotor is hardly constrained and the mode shape are more
various. At high stiffness, the bearing presents an almost pinned copstraint and the mode shapes
of the rotor do not change. That means, the bearing can be considercd as a rigid body
approximately.

Furst mode shape

Second mode shape

Figure 10. The variation of the first two mode shape with bearing stiffness.
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5. CONCLUSTIONS

In this study, the dynamic vibration behavior of the LB B rotor of a 1000 MW

turbo-generator under unbalance forces is investigated. The finite element method (FEM) is
applied to model the system. The results can be summarized as follows:

The responses of the rotor in two case isotropic and anisotropic bearing systems are

analyzed. In case the rotor supported by isotropic bearing, only forward modes are excited.

Whereas in case of the rotor supported by anisotropic bearings, both forward and backward

modes are excited

The influence of the bearing support stiffness on critical speed and mode shape is one of

the most basic principles. This map is generated through a parametric variation of the bearing

support stiffness. It provides an overview of how the critical speeds and mode shapes will

change with variation of the bearing support stiffness.
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TOM TAT

PHAN T{CH MO HINH DAO PONG CUA TURBINE BANG PHUONG PHAP PHAN TU
HOU HAN

Ngé Van Thanh'"", Danmei Xie?, L& Hoai Dirc'

'Tnlé'ng Dai hoc Giao théng vdn tai, Viét Nam
2Vign Co khi dong luc, Dai hoc Vi Han, Trung Qmi'c

“Email: ngovanthanhdc@gmail.com

Phuong phip phf\n tir hitu han dugc éng dung réng rai trong tinh toan sicc bén, dao déng,
nhiét dng ciing nbu rét nhidu linh vyre khac trong tinh toan thiét ké co khi. Trong nhimng nim
g4n day, v6i viéc phit trién manh mé ciia may tinh, phuong phap phan tir hitu han d2 dugc sir
dung chi yéu 48 tinh to4n tTnh va ddng luc hoc cua hé rotor va & truc. Bai bao nghién ciru dao
déng ngang cla turbine m4y phat dién c& 16n bing phuong phép phin tir hiru han. Tir m hinh
phin tir hiru han, tac gi tién hanh phan tich cic dic tnmg ciia hé dao dong bao gbm tin sé dao
déng ty do, tc d6 161 han, trang thai dao djng ri¢og. Trang thai mét can béng dugc phan tich va
50 sanh khi turbine lép trén & truc ding huéng va & truc bt ding hudng,

Tir khéa: phuong phap phén ur hiru han (FEM), dao d¢ng ngang, turbine, trang thai dao déng,
téc d¢ t6i han.
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