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ABSTRACT

This paper presents a study on synchronization behaviors in phase oscillator networks
where the oscillators are interconnected through a general nonlinear function and their
interconnections are bidirectional. Consequently, we investigate two contexts namely symmetric
and asymmetric couplings among oscillators. In both cases, we show that if the coupling
strengths are greater than some specific levels then the frequencies of oscillators in the network
are synchronized. Furthermore, the synchronization rate is pointed out. Lastly, several numerical
examples are presented to illustrate the theoretical results.
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1. INTRODUCTION

Synchronization is a ubiquitous phenomenon that occurs in many real-world systems such
as circadian rhythms [1, 2], central pattern generator networks [3], a group of crickets, a swarm
of fire flights or arrays of lasers [4]. In many systems, especially in biology, synchronization is
not only phenomenon but also a mechanism. Therefore, understanding the synchronization
behaviors in oscillator networks is an important research topic for decades. Furthermore,
throughout the synchronization analysis, we may derive useful results for designing oscillator
networks in engineering applications.

Phase oscillator networks has been widely utilized to investigate the oscillations in many
systems in different fields, for examples biology and neuroscience (5], electrical and electronics
gi ing [6], chemical engi ing and physics [7). Under some assumptions, the ordinary
differential equations describing the processes can be reduced to obtain the phase oscillator
models S - 7] which only concern about the phases and frequencies of oscillations. Hitherto, the
phase oscillator models have been proved to be very useful in representing, explamning and
further exploring the oscillating phenomena in many distinct systems. Particularly, the collective
synchronization of a set of interconnected oscillators is intensively studied since it is found 1n
many real applications.

Kuramoto model is a typical phase oscillator network that has been extensively investigated
where the couplings among oscillators are represented by the sinusoidal function and each
oscillator is connected to every other. This type of phase oscillator networks has been applied to
explain and analyze a lot of oscillating networks [4, 7, 8, 9]. Nevertheless, there exist other
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classes of oscillator networks where the couplings among oscillators are not all-to-all. Moreover,
the coupling function would be other nonlinear functions rather than the sinusoid. Thus, it is
emergent to investigate the phase oscillator networks whose models are more general than
Kuramoto model. An application of these general phase oscillator networks model would be
found in the design of wireless sensor networks [10, 11].

Bearing those points in mind, we aim at studying the collective synchronization behaviors
in phase oscillator networks whose coupling functions are more general than sinusoidal function
and the interactions among oscillators are sparse. Accordingly, the contributions of this paper are
twofold. First, we propose a sufficient condition for the couplings among oscillators such that
their frequencies are synchronized as the interactions among oscillators are undirected. Second,
a sufficient condition is proposed for frequency synchronization when the couplings among
oscillators are bidirectional and asymmelric. In both cases, we figure out what are the
synchronized frequencies and speeds of synchronization.

2. PROBLEM FORMULATION

Consider a network of n helerogeneous phase oscillators, each oscillator is represcoted by
its phase §, and natural frequency w, . The heterogeneity of oscillators here 15 due to the

difference on their natural frequencies. Suppose that each oscillator in the network interacts with
some other oscillators then the network dynamics is described as follows,

é, =wk—zabf(al —0]),k=1,...,n, @n
=l

where @, ,k,7 =1,...,n 15 the coupling weight between the A-th and j-th oscillators; a, >0.f
the k-th and j-th oscillators are connected, otherwise a = 0; f is a nonlinear function which
represents how the oscillators are coupled.

Employing algebraic graph theory, we can describe our network of coupled phase oscillators
as follows. Denote Q(V,E) a graph where each node in G represents a phase oscillator and
each edge in G represents a coupling between two corresponding oscillators, V is the set of all
nodes, £ is the set of all edges in the graph. Furthermore, the weights on the edges of G are
equal to ah,k,j =1,...,n which arc the coupling weights among oscillators. Then denote

nxn H 5
nXn Lo
A e R™" the adjacency matrix whose elements are 4y, and De R™" the degree matrix in

. . . n
which the k th element on the diagonal is cqual to Ela"j,k =1,...,% and all off-diagonal

elements are 0. Accordingly,

G.

L =D~ A iscall the Laplacian matrix associated with the graph

The following assumptions are employed in our paper.
Al G is undirected and connected.

674



On lhe sy ization of heter is phase oscillator networks

A2. f is continuous, bounded, odd.

A3. There exists a real constant >0 such that f(]:)>0\7’$€(0,'y]

6f( )>0\7’ze’——'y'y]

The meaning of assumption A3 is to ensure that the petwork of heterogeneous phase oscillators
51(s)
oz

Denote A, (L) the algebraic connectivity of the Laplacian matrix L which is the smallest

can be synchronized since the synchronization does not occur if <0Vze [—7, 'y] .

non-zero cigenvaluc of L. Let the undirected graph G be assigned with an arbitrary direction,
then denote B e R"’M the associated oriented incidence matrix in which B‘7 =1 ifthe node k
th is the sink node of the edge 7 th, BL7 = —1if the node k th is the source node of the edge j th,

and 1!-7‘k7 =0 if otherwise; |£| denotes the number of elements in £ Consequently, BT is a
vector including all the phase differences among connected oscillators and

L = Bdiag (alq)k,)=l,..,‘n B". In the following, we introduce some properties of the matrices
L,B.

(i). L hasasingle eigenvalue O with the associated eigenvector 1.

@i). BT1 =0.

). ||BT|]_ =2

1 . . . . . .
(v). DL =1 —=1_ inwhich L' is the pseudo-inverse matrix of L, 1 is the n by n
n g e axn
matrix whose elements are all equal to 1.

Our problem is to study the collective synchronization behaviors in the oscillator network
(2.1). When the nonlinear function f is sinusoidal, i.e., f(z) = sin(z) and each oscillator is
connected to all other ones, (2.1) becomes the celebrated Kuramoto model and there is a rich
collection of results for it. However, when f is a general nonlinear function, very few results
are available. Thus, in the next sections, we will contribute sufficient conditions for frequency
synchronization of oscillators in two scenarios, one is symmetric couplings and the other is
asymmetric couplings among osculamrs for a class of the nonlinear function f in the
assumptions A2-A3.

3. SYNCHRONIZATION IN SYMMETRICALLY COUPLED OSCILLATOR
NETWORK
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Let us denote A (1) = {2 eR” :“I"p < 'y} where "a:"P 1s the p-norm of a vector T ;

T
u=|wl w"] Suppose that the frequencies of the oscillator network (2.1) are

synchronized at W then

wm=wk—iabf((?k—aj),k=1,...,n, G
=1

By summing up both sides of (3.1) with k = 1,..., 7, we obtain
nw, = ‘Zuk >, f(6,-6) 6.2
=1 k=1 =l

Since the couplings among oscillators are symmetric, ie., a, = a, Vkiji=1..,n,and f is

]

an odd function, iiahf(% - 0}) = 0. As a result,
=1 =1

1
W == W, (33)

Lt
This means 1f the synchronization occurs in the network (2.1) when the couplings are symmetric,
the synchronized frequency will be the average of ail natural frequencies of oscillators. Denote

w,, = L Z w, , then subtracting both sides of (2.1) by w,_ _, we have
L=t

6, - W, =W W~ iabf(ak - 0}),k =1..,m (3.4)
=

Before showing a sufficient condition for synchronization, we introduce the following
lemma. '

Lemma 1. Consider the oscillator network (2.1) where the couplings among oscillators are
symmetric and the graph rep ing the i fon structure in the network is connected.
The following statements hold.

(1)  The Jacobian matrix J (0} of the oscillator network (2.1} is given by

J(6) = —Bdiag| o, 6;(;“) B”

=0,-0
=00 Ity n

3.5)

(2)  If there exists an equilibrium point 8" such that B'8" € A7 (BT0) then
o —J (9) is a Laplacian matrix.

(ii)  The equilibrium point is unique and Jocally exponentially stable.
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Proof:
This lemma can be considered as a generalization of Lemma 3.2 in [8] and its pmof is
similar to the proof in (8], so we ignore it here for brevity. ]

Now, we present one of the main contributions of this paper in the following theorem.

Theorem 1. Consider the oscillator network (2.1) as in Lemma 1. If the algebraic connectivity
satisfies

1

2||w -, L,
A (L[BTG)) > — (3.6)

where p is defined as follows,

£le)|

—sup 7mm1 .

- z¢(o,

3.7

‘then the following statements hold.
(1) The set A] (BT9) is positively invariant, i.e., if initial phases of oscillators belongs to
A (B’O) then they will remain inside it.

(2) The frequencies of oscillators exponentially synchronize to the average frequency w

_ 8f (=)
Furthermore, the sync rate is lower bounded by A, ( )mf min .
: : ldsr Oz

ave *

Proof:
The equilibrium poml of (3.4) is determined by the following equation.

W, —w, Za,qf( J =1,.

sw-wl —Bdlag(a e -0)/(& —9;))570', (38)

ave n

where 0 :[0; 6, .. 9n‘ . Denote L( e’ ) the Laplacian matrix corresponding to

Bdiag(abf(ﬁk' - 9})/(9A — 9;))37 and L(Bre )v the pseudo-inverse of L(BTG'). Next,
multiplying to the lef of both sides of (3.7) with BTL[BTG']' gives us
"L(B70') (w-w,1,) = BTL(B0") L(BT6)#,
I,
n
=B"¢", (3.9)
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Note that (3.9) 15 a continuous and convex equation of B76" Employing Brouwer's fixed point
theorem [12], there exits an equilibrium point

B'6" € A](B"0) = {Bfo,e er 5o < A,}

if and only if BTL(BT(?‘)'(w—wmln)
2

S'vy for all BT0" ¢ A7 (BTB). Denote
" = B0’ then there exists an equilibrium point §° € A7 [Bré) if and only if

LB ) (w-w,1,)

max ||B
'en3(8s)

<7 (3.10)
2
Since

(5 (o-0,,)

BTL[B’é']' (w-w,1, )Hz <|#l,

- ZHL (B7") (w- wml_‘)E
inequality (3.10) is satisfied if ’

25-?@%@) L(BTé')' (w-w,1) 2 <. @1
Moreover, L(BTé‘)' (u) w1, )” L(B’fg'. )'\L "(w — wml")|L , hence (3.11) is true if
2w - w1, B9 L Br,;.)"L <7 3.12)

On the other hand, it can be shown that

1(570") H —1/5[ L(B78")) since

RN |
eigenvalues of L(BT9 ) except 0 are the inverse of eigenvalues of L(BTO ) Furthermore,

a1(BT0)ear, (B76), hence (3.12) is satsfied if

2||(w - wmln‘\| _max —1.— <. (3.13)
J ”EAJ("T”))\Z(L(BIB')) .
. _ 3 N _
ince f is an odd function, & 20.1is an even function. Moreover,

[ )N

ovée | ¥, 7] due to assumption A3, therefore

L(B)> gl?)L)Bdlag( o) BT = ,G"A‘i?,)@b
Accordingly, (3.13) is satisfied if

(3.14)



f(z)_l <7

SISV NAPIEL
. 2"(w —w, 1, )"2 ‘yé};i[(l’)%z) < (L), (3.15)

Let us denote p as in (3.7) then it can be seen that (3.15) is satisfied if (3.6) is satisfied. Thus,
by employing Lemma 1, the equilibrium point " such that B8 € A (BTG) is locally stable
if the condition (3.6) is satisfied. Furthermore, the sync rate is lower bounded by

. A ry . Of
A(-7(0)2 5 (Bioge,), , 5] min a(:) B
. Of(z
1) g,
> )\_‘(L)ir}frlli’rl] a;iz) (3.16)

]

Theorem 1 shows that the algebraic connectivity of the graph representing the
interconnection structure in the network should be greater than a value specified by the natural
frequencies of oscillators and the nonlinear function f such that the frequency synchronization
can occur. Since the algebraic connectivity is related to the coupling strengths among oscillators,
this means the oscillators should be strongly intercc d enough to achi the frequency
synchronization.

Example 1. Consider a network of 50 phase oscillators representing the circadian oscillators
whose autonomous frequencies of oscillators are assumed to be slightly different and around the

frequency of daily light-dark cycle, i.e., 27r/24 . In particular,
2w
w, =—+¢,k=1..,50, (3.17)
24
where ¢, is a random variable described by the standard normal distribution. The coupling
function f is hyperbolic tangent function tanh . Then, we can easily find that p =1.
Therefore, the sufficient condition (3.6) becomes
ML)z 2w -w, 1] 3.13)
where L is the Laplacian matrix of the graph representing the symmetric interconnections
among oscillators. We first randomly generate w, as in (3.17) then compute 2||u —w, 1 L
Next, we randomly generate the Laplacian matrix L and verify the condition (3.18). The

simulation results are displayed in Figure 1 where the upper and lower plots show the phase and
frequency responses of oscillators, respectively. We can observe that the frequencies of

3
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oscillators are synchronized. Moreover, the synchronized frequency is approximately 27r/24 -In

this simulation, 2[w - w,, 1

ave n

, = 1.2134 and /\Z(L)=1,8162 , so we can sec that the
condition (3.18) is satisfied.

Figure 1. Time plot of a symmetrically coupled oscillator network.

4. OSCILLATOR NETWORKS WITH ASYMMETRIC COUPLINGS

In the previous section, we have studied the synchronization in the oscillator network (2.1)
with bidirectional, symmetric couplings among oscillators, Nonetheless, the interactions among
oscillators may be asymmelric due to the uncertainties, disturbances, or noises in the
communication links. Therefore, we investigate in this section the scenario of asymmetrically
coupled oscillator networks and accordingly propose a sufficient condition for synchronization
as well as the value of synchronized frequency and the syne rate.

Suppose that the coupling weight from every other oscillator to the A-th oscillator is
perturbed by a same quantity §,,k = 1,...,7. Consequently, the oscillator network model is

éL- =Y _Ea’lq&kf(gk_9,]‘k=1|"')”- @.1)

=1
Denote ¥ = diag(ék)k;l v we can rewrite (4.1) as follows,
£0=%"w-5"L(B a)e, “2)

T
where 6 = [0] 6"| is the vector of oscillators’ phases; B, is the incidence matrix of the
graph representing the interconnection matrix in the network; and

L(B'6)= Bldiag(a,‘f(ek ~6)/(6.-9))8]
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Let W be the synchronized frequency in the oscillator network (4.1) with asymmetric

couplings. Subsequently, we obtain the following equations from (4.2)
w I =% - E*‘Z(B’fe)o,
sym ” \
=S w, 1T =17 w15 L(B]6)6,

seym Ln
=1"%"y,
n

sw, =7Z'L) Vs @.3)
Equation (4.3) shows how we can compute the synchronized frequency as the synchronizalion
occurs in the oscillator network (4.1). Then, utilizing the same approach as in the previous
section, we obtain the following result on a sufficient condition for synchronization in
asymmetrically coupled oscillator networks.

Theorem 2. Consider the oscillator network (4.1) where the graph representing the
nterconnections in the network is connected. The frequencies of all oscillators synchronize to

w___ if the algebraic connectivity of the Laplacian matrix associated with the graph satisfies
2y

2frw-w,, |

A ():"L"(B,Ta:\) > (4.4)

P
Example 2. Consider the same oscillator network as in Example 1, but the couplings among
oscillators are perturbed to be asymmetric. Then, if the algebraic connectivity of the undirected
graph associated with the Laplacian matrix E’II:(B)TH) is sufficiently Jarge as shown in (4.4),

the frequencies of oscillators are synchronized as illustrated in Figure 2.

Phase

Frequency

Figure 2. Time plot of an asymmetrically coupled oscillator network.
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5. CONCLUSIONS

We have presented in this paper some new results on the synchronization of nonlincarly coupled
phase oscillator networks which reveal that the coupling strengths among oscillators should be
stronger than some determined values such that the frequency synchrony occurs. Several
numerical examples were introduced to demonstrate the theoretical results. The next works
would consider more complex situations where time delays exists in the couplings, or the models
of phase oscillators are of higher orders.
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TOM TAT
NGHIEN CUU SU PONG BO CUA MANG CAC PHAN TU DAO PONG PHA CO TAN SO
RIENG KHAC NHAU
Nguyén Dinh Hoa
BB mén Diéu khién tw déng, Pai hoc Bdch khoa Ha Ngi, 1 Pai Cé Vigt, Ha Ngi

Email: hoa.nguyendinh@hust.edu.vn

Bai bo nay trinh bay mot nghién ciu vé cac dac tinh déng b héa trong mang dao déng
gom cée phin tr dao déng pha dugc két 0di qua mot bam phi tuyén tdng quét va sy ket nbi gilra
cac phan tir dao d6ng Ia hat chiéu. Tidp d6, tic gia nghién ctu hai truéng bop bao gom cac két
non dm ximg va phi déi ximg glua cdc phan tir dao déng. Trong ca hai trudmg hc,vp, tac gia chi ra
ring néu d§ 1on cua cac két noi 1 16n han mot gia tri nhét dinh thi tan sé cua cic phan nr dao
ddng sé dugc dong bd. Hon nira, téc d6 déng bo héa ciing dugc chi ra. Cubi cing, mdt sé vi du
duge gidi thigu 4 minh hoa cac két qua li thuyét.

Tir khéa: mang dao déng pha, sy ddng bd héa, cac phan tir dao déng phi tuyén duge két néi.
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