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ABSTRACT 

This paper presents a study on synchronization behaviors in phase oscillator networks 
where the oscillators are intercoimected through a general nonlinear fimction and their 
intercormections are bidirectional. Consequently, we investigate two contexts namely symmetric 
and asymmetric couplings among oscillators. In both cases, we show that if the coupling 
strengths are greater than some specific levels then the fi"equencies of oscillators in the network 
are synchronized. Furthermore, the synchronization rate is pointed out. Lastly, several numerical 
examples are presented to illustrate the theoretical results. 
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1. INTRODUCTION 

Synchronization is a ubiquitous phenomenon that occurs in many real-world systems such 
as circadian rhythms [1, 2], central pattem generator networks [3], a group of crickets, a swarm 
of fire flights or arrays of lasers [4]. In many systems, especially in biology, synchronization is 
not only phenomenon but also a mechanism. Therefore, imderstanding the synchronization 
behaviors in oscillator networks is an important research topic for decades. Furthermore, 
throughout the synchronization analysis, we may derive useful results for designing oscillator 
networks in engineering applications. 

Phase oscillator networks has been widely utilized to investigate the oscillations in many 
systems in different fields, for examples biology and neuroscience [5], electrical and electronics 
engineering [6], chemical engineering and physics [7]. Under some assumptions, the ordinary 
differential equations describing the processes can be reduced to obtain the phase oscillator 
models [5 - 7] which only concern about the phases and fi-equencles of oscillations. Hitherto, the 
phase oscillator models have been proved to be very usefiil in representing, explaining and 
further exploring the oscillating phenomena in many distinct systems. Particularly, the collective 
synchronization of a set of interconnected oscillators is intensively studied since it is found in 
many real applications. 

Kuramoto model is a typical phase oscillator network that has been extensively investigated 
where the couplings among oscillators are represented by the sinusoidal function and each 
oscillator is connected to every other. This type of phase oscillator networks has been applied to 
explain and analyze a lot of oscillating networks [4, 7, 8, 9]. Nevertheless, there exist other 
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classes of oscillator networks where the couplings among oscillators are not all-to-all. Moreover, 
the coupling function would be other nonlinear fiinctions rather than the sinusoid. Thus, it is 
emergent to investigate the phase oscillator networks whose models are more general than 
Kiuamoto model. An application of these general phase oscillator networks model would be 
found in the design of wireless sensor networks [10,11]. 

Bearing those points in mind, we aim at studying the collective synchronization behaviors 
in phase oscillator networks whose coupling functions are more general than sinusoidal function 
and the interactions among oscillators are sparse. Accordingly, the contributions of this paper are 
twofold. First, we propose a sufficient condition for the couplings among oscillators such that 
their frequencies are synchronized as the interactions among oscillators are undirected. Second, 
a sufficient condition is proposed for frequency synchronization when the couplings among 
oscillators are bidirectional and asymmetric. In both cases, we figure out what are the 
synchronized frequencies and speeds of synchronization. 

2. PROBLEM FORMULATION 

Consider a network of n heterogeneous phase oscillators, each oscillator is represented by 
its phase 6^ and natural frequency uj^. The heterogeneity of oscillators here is due to the 
difference on then natural frequencies. Suppose that each oscillator in the network interacts with 
some other oscillators then the network dynamics is described as follows, 

i='^.~J2%f(0.-'>,\l= = K..,n, (2.1) 
j = i 

where â ,̂ fc, j = 1,..., ji is the coupling weight between the fc-th and j-th oscillators; a > 0 if 

the t-th andy-th oscillators are connected, otherwise â ^ = 0; / is a nonlinear fimction which 

represents how the oscillators are coupled. 

Employing algebraic graph theory, we can describe our network of coupled phase oscillators 

as follows. Denote S ( V , f ) a graph where each node in G represents a phase oscillator and 

each edge in G represents a coupling between two corresponding oscillators, V is the set of all 

nodes, £ is the set of all edges in the graph. Furthermore, the weights on the edges of Q are 

equal to a^,k,j = l,...,n which are the coupling weights among oscillators. Then denote 

A E K""" the adjacency mattix whose elements are a^^, and D e R""" the degree mattix in 

which the fc th element on the diagonal is equal to £ a.,k = 1, . . . , , . and all off-diagonal 
J=l 

elements are 0. Accordingly, L = D - A is call the Laplacian matrk associated with the graph 

The following assumptions are employed in our paper. 

Al. G is unduected and connected. 
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A2. f is continuous, boimded, odd. 

A3. There exists a real constant 7 > 0 such that / ( x ) > 0 V x G (0,7] and 

df(x) . , 
^--^> O V x G - 7 , 7 . 

dx •• J 
The meaning of assumption A3 is to ensure that the network of heterogeneous phase oscillators 

df(x) , . 
can be synchronized since the synchronization does not occur if < 0 V a: G —7,7 . 

ox ^ ' 

Denote \ [ i j the algebraic connectivity of the Laplacian matrix L which is the smallest 

non-zero eigenvalue of L. Let the undirected graph Q be assigned with an arbitrary direction, 

then denote B e IR"''' the associated oriented incidence matrix in which -Ŝ , = 1 if the node k 

th is the sink node of the edge jth, B =—lifthenode fc this the source node ofthe edge j th , 

and B =0 if otherwise; £ denotes the number of elements in £. Consequently, B^9 is a 

vector including all the phase differences among coimected oscillators and 

L = Sdiagfa. ] B^. In the following, we introduce some properties ofthe matrices 

L,B. 

(i). L has a single eigenvalue 0 with the associated eigenvector 1^. 

(ii). B^\ = 0. 

(iii). ||S^|L=2. 

(iv). I/L = I 1 in which l) is the pseudo-inverse matrix of L, 1 is the n by n 
" n " '̂' "''" 

matrix whose elements are all equal to 1. 
Our problem is to study the collective synchronization behaviors in the oscillator network 

(2.1). When the nonlinear fimction / is sinusoidal, i.e., fix) = sinfa;] and each oscillator is 

connected to all other ones, (2.1) becomes the celebrated Kuramoto model and there is a rich 
collection of results for it. However, when f is a general nonlinear fimction, very few results 
are available. Thus, in the next sections, we will contribute sufficient conditions for frequency 
synchronization of oscillators in two scenarios, one is symmetric couplings and the other is 
asymmetric couplings among oscillators, for a class of the nonlinear fimction / in the 
assumptions A2-A3. 

3. SYNCHRONIZATION IN SYMMETRICALLY COUPLED OSCILLATOR 
NETWORK 
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Let us denote AJ (re) = j x £ R"" : lyi < 71 where y l is the ;7-norm of a vector x ; 

CJ = LJ ... ij\ Suppose that the frequencies of the oscillator network (2.1) are 

synchronized at w then 

j = i 

By summingupboth sides of (3.1) with k = l , . . . , n , we obtain 

"".̂  = E'^»-EE%/K-«)- (3.2) 
Since the couplings among oscillators are symmetric, i.e., a. = a ^ k,j = l,...,n, and / is 

1 odd fimction, 2 J Z_^ %fy : 0 . As a result. 

= -E-. (3.3) 

This means if the synchronization occurs in the network (2.1) when the couplings are symmetric, 
the synchronized frequency will be the average of all natural frequencies of oscillators. Denote 

-V^LJ , then subtracting both sides of (2.1) by CJ , we have 

0-Lu =uj,-uj -Yaj(0-d\k^l,...,n. 
k ive k ave r J k}^ \ k 2) 

(3.4) 

Before showing a sufficient condition for synchronization, we introduce the following 
lemma. 

Lemma 1. Consider the oscillator network (2.1) where the couplings among oscillators are 
symmetric and the graph representing the interconnection structure in the network is connected. 
The following statements hold. 

(1) The Jacobian matrix J\B\ of the oscillator network (2.1) is given by 

J(fi) = - B d i a g a , - U a ^^W 
" dx 

' - ' , - ' . ] 

(3.5) 

(2) If there exists an equilibrium point 0' such that B^9' S A'^' (B^O] then 

(i) — J I ^ J is a Laplacian matrix, 

(ii) The equilibrium point is unique and locally exponentially stable. 
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Proof 
This lemma can be considered as a generalization of Lemma 3.2 in [8] and its proof is 

similar to the proof m [8], so we ignore it here for brevity. • 

Now, we present one ofthe main contributions of this paper in the following theorem. 

Theorem 1. Consider the oscillator network (2.1) as in Lemma 1. If the algebraic connectivity 
satisfies 

, , ,. 2L-a; 1 II 
\[L[B'd)]>^ ^ I J l k , (3.6) 

where p is defined as follows, 

7 i m i i -
- ie(0,7] X 

(3.7) 

then the following statements hold. 

(1) The set A^ (^^^J is positively invariant, i.e., if initial phases of oscillators belongs to 

A^ [B^9] then they will remain inside it. 

(2) The frequencies of oscillators exponentially synchronize to the average frequency w . 

I \ ^/W 
Furthermore, the sync rate is lower bounded by A, U^ inf min ^— .̂ 

^ ' 1 \i\<i dx 

Proof 
The equilibrium point of (3.4) is determined by the following equation. 

^ u - w_,^l_ = BdKg{aj[el - »* ) / (< - 6',))B''e', (3.8) 

where 6' —W* 0' ... 6\ . Denote LlB^d'j the Laplacian mattix corresponding to 

BdiagLjlal - 6])l[6l - S','f\B^ ^ d L{ffe'^ the pseudo-inverse of i ( B ' ' 9 ' ) . Next, 

multiplying to the left ofboth sides of (3.7) with B^L(lf6'\ gives us 

B^L{BV]^ {U, - io^jj = B^L[B'-e')' L(BV)e', 

= B^\i - - 1 ]e' 

-- B'9 , (3.9) 
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Note that (3.9) is a contmuous and convex equation of B^O'. Employing Brouwer's fixed point 
theorem [12], there exits an equilibrium point 

B^e' e A'^ [B^'e) = ^B%0 G R" : \\B^e\[ < 7 } 

if and only if -B^Lff iVV ( w - w ^ ^ l j < 7 for all B^0* 6 A^ (s^t*). Denote 

0' = B^9* then there exists an equilibrium point 9 € A'^lB 9) if and only if 

max IB''L{B'^9']UUJ-U;^I]1 < 7- (3-10) 

Since 

r)'( 
inequality (3.10) is satisfied if 

2 max l (B ' ' e 'V(w-w l l < 7. (3.11) 
r6A;(u'»)l \ I '• "" '% 

Moreover, l ( B ' ' 9 ' f ( w - w l l < l ( B ' ' 9 ' y | | L - w 1 | ,hence (3.11) isttne if 
II V / \ ^^^ "'II2 II V / II2 ll\ *""' "'II2 

2 | | ( w - w 1 I max l l f B ^ e ' V < 7 . (3.12) 

On the other hand, it can be shown that fLlB --y\[LiB'e since all 

eigenvalues of L I B 9 j except 0 are the inverse of eigenvalues of LI i?^6^ ] . Furtheimore, 

AJ (B'"e) 6 A ; ^ (B ' '6 I ) , hence (3.12) is satisfied if 

2||("--...0ll,-'J?,)^(^^r (3.13) 

fir) 
Since / is an odd fimction, I . ' > 0 is an even fimction. Moreover, 

fle') . , , 
\ ' > 0 V ^ £ —7i7l due to assumption A3, therefore 
9 

LIB''9'\> min - i ^ B d i a g ( a ) B ' ' = min - ^ L . „ , , ^ 

Accordingly, (3.13) is satisfied if 
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2\\(uj-co 1 )|| 
|1\ ave n/|J2 

X^IL) min ^ 
^^ '^KA;(.) X 

< 7 , 

« 2 | | ( < . - < . „ . 1 , . | 7 nun —̂—̂  <^W. (3.15) 

Let us denote p as in (3.7) then it can be seen that (3.15) is satisfied if (3.6) is satisfied. Thus, 

by employing Lemma 1, the equilibrium point 8 such that B 9 €. A.^lB 9\ is locally stable 

if the condition (3.6) is satisfied. Fmthermore, the sync rate is lower bounded by 

dflx) 
A , - J « > A , B d i a g a ^ B^ m m 

' /i€Aj^(i) dx 

df{x) 
dx 

> A ( L j i n f m i n — ^ 

> K [L] min 
- ^ ^ ' ' .EA;(.) dx 

(3.16) 

Theorem 1 shows that the algebraic connectivity of the graph representing the 
interconnection structure in the network should be greater than a value specified by the natural 
frequencies of oscillators and the nonlinear fiinction / such that the frequency synchronization 
can occur. Since the algebraic connectivity is related to the coupling strengths among oscillators, 
this means the oscillators should be sfrongly intercormected enough to achieve the frequency 
synchronization. 

Example 1. Consider a network of 50 phase oscillators representing the circadian oscillators 
whose autonomous frequencies of oscillators are assumed to be slightly different and around the 
frequency of daily light-dark cycle, i.e., 27r/24. In particular, 

2lT 
UJ, = h£,,fc-l,...,50, (3.17) 

;. 24 * 
where e^ is a random variable described by the standard normal distribution. The coupling 

function / is hyperbolic tangent function t anh . Then, we can easily find that p — 1. 

Therefore, the sufficient condition (3.6) becomes 

A2(L)>2| |a;-cj^^^l„| | ; . (3.18) 

where L is the Laplacian matrix of the graph representing the symmetric intercormections 

among oscillators. We first randomly generate cĵ  as in (3.17) then compute 2 a; — UĴ ^̂ 1_̂  . 
Next, we randomly generate the Laplacian matrix L and verify the condition (3.18). The 
simulation results are displayed in Figure 1 where the upper and lower plots show the phase and 
frequency responses of oscillators, respectively. We can observe that the frequencies of 
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oscillators are synchronized. Moreover, the synchronized frequency is approximately 27r|24. In 

this simulation, 2 | | ^ ' - w^„^l„[ =1 .2134 and A 2 ( L ) = 1.8162 , so we can see that the 

condition (3.18) is satisfied. 

Figure I. Time plot of a symmetrically coupled oscillator network. 

4. OSCILLATOR NETWORKS WITH ASYMMETRIC COUPLINGS 

In the previous section, we have studied the synchronization in the oscillator network (2.1) 
with bidirectional, symmetric couplings among oscillators. Nonetheless, the interactions among 
oscillators may be asymmetric due to the uncertainties, disturbances, or noises in the 
communication links. Therefore, we investigate in this section the scenario of asymmetrically 
coupled oscillator networks and accordingly propose a sufficient condition for synchronization 
as well as the value of synchronized frequency and the sync rate. 

Suppose that the coupling weight from every other oscillator to the A-th oscillator is 

perturbed by a same quantity 6^,k = l,...,n . Consequently, the oscillator network model is 

^.-E%v(' -9\k = l,...,n. 

Denote S = diagiSA _ , we can rewrite (4.1) as follows, 

Ti-'e = ^-'u-E-'LiBj'0]9, 

(4.1) 

(4.2) 

where ^ ~ ^i ••• ^„ Ms the vector of oscillators' phases; B is the incidence matrix ofthe 

graph representing the intercormectlon matrix in the network; and 
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Let UJ be the synchronized frequency in the oscillator network (4.1) with asymmetric 

couplings. Subsequently, we obtain the following equations from (4.2) 

UJ E-'i =J:-'UJ-I:-'L{BJ9]9, 

^ w^^ l̂̂ E-'l,_ = l^E-'w - i^E-'£(Bfe)e, 

^'^„,n,=(lIS"'l»r'i:S-'w- (4-3) 
Equation (4.3) shows how we can compute the synchronized frequency as the synchronization 
occurs m the oscillator network (4.1). Then, utilizing the same approach as in the previous 
section, we obtain the following result on a sufficient condition for synchronization in 
asymmetrically coupled oscillator networks. 

Theorem 2. Consider the oscillator network (4.1) where the graph representing the 
mtercoimections in the network is coimected. The frequencies of all oscillators synchronize to 
uj^ if the algebraic connectivity ofthe Laplacian matrix associated with the graph satisfies 

, , ,, 2||S"^cj-w E"'l II 
A,(E-Z(B;^^))>J ^ — i . (4.4) 

Example 2. Consider the same oscillator network as in Example 1, but the couplings among 
oscillators are perturbed to be asymmetric. Then, if the algebraic coimectivity ofthe imdirected 

graph associated with the Laplacian matrix E~^L J9 ^J is sufficiently large as shown in (4.4), 

the frequencies of oscillators are sjTichronized as illusfrated in Figure 2. 

Figure 2. Time plot of an asymmetrically coupled oscillator network. 
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5. CONCLUSIONS 

We have presented m this paper some new results on the synchronization of nonlineariy coupled 
phase oscillator networks which reveal that the coupling strengths among oscillators should be 
stronger than some determined values such that the frequency synchrony occurs. Several 
numerical examples were introduced to demonstrate the theoretical results. The next works 
would consider more complex situations where time delays exists in the couplings, or the models 
of phase oscillators are of higher orders. 
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NGHIEN c t r u SV DONG BQ CUA MANG CAC PHAN TLT DAO BONG PHA CO TAN SO 
RIENG K H A C NHAU 
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Bai bao nay trinh bay mot nghiSn cuu ve cac dac tinh dong bo hoa frong mang dao dpng 
gom cdc phin tii dao dgng pha duac ket noi qua mot ham phi tuyen t6ng quat va su k6t noi giiJa 
cac phSn tu dao dpng la hai chi6u. Ti8p do, tac gia nghiSn curu hai tnrdng hgp bao gom cac ket 
noi d6i xung va phi d6i xung giira cac phan tii dao dong. Trong ca hai truang hgp, tac gia chi ra 
riing n6u do lon ciia cac kSt ndi la lan han mpt gia tri nhSt dinh thi tin s6 ciia cac phan tu dao 
dpng se dugc dong bp. Han nira, toe dp dong bp hoa cung duac chi ra. Cuoi cung, mot so vi du 
dugc gioi thieu de minh hpa cac ket qua li thuyet. 

Tie khoa: m^ng dao dpng pha, su d6ng bp h6a, cac phan tir dao d6ng phi tuy^n dupe ket ndi. 
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