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ABSTRACT

The fuzzy rule based classification system (FRBCS) design methods, whose fuzzy rules are
in the form of if-then sentences, have been being studied intensively during last years. One of
the eminent FRBCS design methods utilizing an enlarged hedge algebras as a formal mechanism
to design optimal linguistic terms integrated with their trapezoidal fuzzy sets has been proposed
by Ho N. C. et. al. As the other methods, an entanglement of this approach needed to be solved
is dealing with the high-dimensional and multi-instance datasets. This paper presents an
approach to tackle the high-dimensional dataset problem for the FRBCS design method based on
an enlarged hedge algebras by utilizing the feature selection algorithm proposed by Sun X. et. al.
The experimental results over 8 high-dimensional datasets have shown that the proposed method
allows saving much execution time than the original one, but retains the equivalent classification
performance as well as the equivalent FRBCS complexity.

Keywords: Hedge Algebras, fuzzy classification system, feature selection, high-dimensional
dataset.

1. INTRODUCTION

The fuzzy rule based classification system (FRBCS) design problem is one of the concerned
study trends in the data mining field and has achieved many successful results, The advantage of
this model is that the end-users can use the high interpretability fuzzy rule based knowledge
extracted automatically from numerical data as their knowledge.

In the fuzzy set theory approaches for designing FRBCS [1 - 4], the fuzzy sets used to
design the fuzzy partitions are pre-specified and the linguistic labels are intuitively assigned to
the fuzzy sets, so there is not any constraint between the linguistic terms and their fuzzy sets.
When necessary, a genetic fuzzy system is developed to adjust the fuzzy set parameters to
achieve the optimal fuzzy partitions. Due to the separation between the term-meaning and their




Pham Dinh Phaﬂg

fuzzy sets, the fuzzy sets are deformed after the learning processes. Therefore, it affects the
interpretability of the fuzzy rule based systems of the classifiers.

Hedge algebras (HAs) [5-9] take advantage of the algebraic approach that allows to model
and design the linguistic terms integrated with their fuzzy sets for FRBCSs. It exploits the
Inherent semantic order of the linguistic terms allows to generate the semantic constraints
between the terms and their integrated fuzzy sets. Based on this formalism, a method to design
genetically linguistic terms along with their integrated triangular fuzzy sets to construct an
effective fuzzy rule based classifier has been introduced in [10]. To answer the question if
trapezoidal fuzzy sets can be used instead of triangular fuzzy sets in the above design method,
the so-called enlarged hedge algebras (EnHAs) have been developed in [11], in which the
concept of the semantic core of words was introduced. As fuzzy sets, the core of the trapezoids
are interval-cores, which can present the core of the term semantics as the numeric values. The
computer simulations have shown that the use of trapezoids outperforms the use of triangles in
both the ordinary HAs based methodology and the fuzzy set approach.

The time consuming of most of the FRBCS design method is the fuzzy rule generation
processes. With the FRBCS design method based on HAs methodology, each feature space is
partitioned to k-similarity fuzzy intervals, thus, all similarity fuzzy intervals of all features define
the hypercubes. From each hypercube containing a data pattern, a fuzzy rule with the length # is
generated, where # 1s the number of features. The total of this type of rule is |D|, where |D) is the
number of data patterns. To generate all fuzzy rules with the length from 1 to L less than », a set

of fuzzy combinations must be generated. The number of fuzzy combinations is }.i_, €%, leading

to the maximum number of the generated candidate fuzzy rules is |D] X ¥%_, Ci. The candidate
fuzzy rules are obtained after removing the inconsistent rules having identical antecedents but
different consequence classes. The cardinality of the candidate fuzzy rule set depends on the data
distributions and it is still quite high after removing the inconsistent rules. Thereby, the number
of candidate fuzzy rules generated by the FRBCS design method based on HAs methodology
does not depend on the number of used linguistic terms but still depends on the number of
dataset features. Therefore, the main drawback of the FRBCS design method proposed in {11]
which limits its application to the high-dimensional datasets is that the number of fuzzy
combinations grows with the increase of the dataset features leading to the number of candidate
fuzzy rules extensively increases. Ex., the maximum number of the generated fuzzy
combinations is 36,050 and the maximum number of the generated candidate fuzzy rules is
7,498,400 for the Sonar dataset (see section 4) with n = 60, [D| = 208 and [ = 3. The number of
fuzzy combinations is quite high, thus leading to a slow-running of the fuzzy rule generation
process. Therefore, a quite good technique [12-15] needed to be applied to reduce a large
amount of fuzzy combinations, but also tries to retain a suitable classification performance. For
the example above, if the number of features is reduced to 9, by making all possible
combinations, the number of fuzzy combinations is only 129, the number of generated fuzzy
rules is 26,832 and after removing the inconsistent rules, the number of generated candidate

fuzzy rules i1s 15,482. From the analysis above, the application of an feature reduction method
for the high-dimensional datasets needs to be taken into account.

To reduce the running time of the fuzzy rule generation processes, a steady-state genetic
algorithm for extracting fuzzy classification rules from data (SGERD) proposed in [12] is
applied to the FRBCS design method based on HAs methodology in [13]. The SGERD
algorithm shows the efficiency of reducing the rule generation time and has a good scalability
when applied to deal with the high-dimensional problem:s. Howerver, as shown in [14], this
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method 1s not good in comparison with the other methods in Friedman’s test with the results
obtained in the test data.

This paper presents an approach to reduce a large amount of dataset features to tackle the
high-dimensional dataset problem for the method proposed in [11] by utilizing the feature

selection technique using dynamic weights proposed in [15]. Feature selection is a technique to
select a small subset of relevant features having the most discriminating information from the set
of original features because the data contain many redundant features. The advantage of this
feature selection technique is that it does not only eliminate redundant features and select the
most relevant ones, but also tries to retain useful intrinsic feature groups. By using two
fundamental information theory concepts, mutual information (MI) and conditional mutual
information (CMI), a new scheme for feature relevance, interdependence and redundancy
analysis has been introduced [15).

For the proposed method in this paper, the continuous valued features are partitioned into a

particular number of clusters by applying the fuzzy ¢-means clustering technique together with
the PBMF cluster validity index function [15, 16] instead of discretizing them into multiple
intervals using MDL supervised discretization method [17] used in [15].

The rest of this paper 1s organized as follows: Section 2 is a short brief description of the
FRBCS design based on the EnHAs. Section 3 presents the application of a feature selection
technique for the FRBCS design based on the EnHAs. Section 4 represents our experimental
results and discussion. Concluding remarks are included in Section 6.

2. FUZZY RULE BASED CLASSIFIER DESIGN BASED ON THE ENLARED HEDGE
ALGEBRAS

The fuzzy rule based knowledge of FRBCS used in this paper is the weighted fuzzy rules in
the following form [4, 10, 11]:

Rule R, IF X is 45; AND ... AND X, is 4,, THEN C, with CF,, forg=1, ..., N (1)
where £ = {X, j = 1, .., n} 15 a set of » linguistic vartables corresponding to n features of the

dataset D, A, is the linguistic terms of the /" feature F,, C, is a class label, each dataset includes
M class labels, and CF} is the weight of rule R,. The rule R, can be written as the following short
form:

A, = C, with CF,, forg=1, ..., N (2)

where A4, 1s the antecedent part of the g"-rule.

A FRBCS design problem 9 is defined as: aset P= {(d,, C;) | d, e D, Co,e C,p=1, ...,
m;} of m patterns, where d, = [d,, 1, d,. ..., d,,) is the row p” of n data patterns, C = {C, | s = 1,
., M} 1s the set of M class labels.

Solving the problem & 1s to extract from P a set .§ of fuzzy rules in the form (1) such as to

achieve a FRBCS based on § comes with high performance, interpretability and
comprehensibility. The FRBCS design method based on the enlarged hedge algebras comprises
two following phases [[1]:

(1) Design automatically the optimal linguistic terms along with their fuzzy-set-based
semantics (trapezoidal fuzzy sets) for each dataset feature by applying an evolutionary
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multi-objective optimization algorithm in such a way that its outputs are the consequences
of the interacting between the semantics of the linguistic terms and the data.

(2) Extract the optimal fuzzy rule set for FRBCS from the dataset in such a way as to achieve
their suitable interpretability—accuracy tradeoff based on the optimal linguistic terms

provided by the first phase.
In order to realize two phases mentioned above, each fh feature of a specific dataset is
associated with an enlarged hedge algebras AX/™. With the pre-specified values of J,

comprising the fuzziness measure fm,(c7} of the primary term ¢”, the fuzziness measure LA} of
the hedges and a positive integer &, for limiting the designed term lengths of 7™ feature, the
fuzziness intervals 73 (xj’f),xj‘li € X for all k <k and the interval quantifying mapping values
SAx,,} are computed. By utilizing the generated values 3 (x;;) and Ax, )}, the trapezoidal-fuzzy-
set-based semantics of the terms X] 4, are computationally constructed. The set of terms X, 4, is
the union of the subsets X;;, &k = | to %, and the k-intervals SRI(X ;i) of the terms in each X,

constitute a binary partition of the feature reference space. For example, the trapezoidal fuzzy
sets of terms with &, = 2 is denoted in Figure 1.

k=2 WX W
5 Ve Lc Lc’ V'

0

12

K=1 W ><—X
1 C-_ W E+ 11

0

Figure 1. The trapezoidal fuzzy sets of terms in case of &, = 2.

After the binary partitions of all dataset features are constructed, the next step is to generate
fuzzy rules from the dataset P. With a specific binary partition at &, level, there is a unique

fuzziness interval 3y (X; () compatible with the term x;,;, containing j"-component d;; of 4,

pattern. All A-intervals which contain 4,; component defines a hyper-cube ', and fuzzy rules

are only induced from this type of hyper-cube. So a basic fuzzy rule for the class C; of p; is
generated from H, in the following form:

IF X} is x; 4y AND ... AND X, is x4y THEN C; (Rs)

Each data pattern generates only one basic fuzzy rule with the length »n. To generate the fuzzy
rule with the length L. < n, so-called the secondary rules, some techniques should be used for
generating fuzzy combinations, ex., generate all possible combinations or use search tree [14].

IF Xh 1S le"iUl) AND ... AND XJE IS xj{:igt) THEN Cq (Rsnd)
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X where 1 < j, < ... <, < n. The consequence class C, of the rule R, is determined by the
confidence measure (A, = ;) of R;:
i Cq = argmax{c(A, = C)|lh =1,.., M} (3)
The confidence measure is computed as:
? C(Aq = (p) = deer:h Ha, (dp)/ ZS‘=1 Ka, (dp) (4)
| where 114 (dp) is the burning of pattern d, for R, and commonly computed as:
P‘Aq(dp) = [1}=1 #4,i(dp.;)- ©)
: The maximum of number fuzzy combinations is };; C}, so the maximum of the secondary

L rulesism X Y.r CL.

There may be inconsistent rules which have the identical antecedents, but different
consequence classes generated from P, They are eliminated by confident measure and the rest of
rules are called the candidate fuzzy rules. To eliminate the less important rules, a screening
criterion 1s used to select a subset Sy with ¥R, fuzzy rules from the candidate rule set, called an
initial fuzzy rule set. This process is done by a so-called initial fuzzy rule set generation

procedure IFRG(J, P, NR;, L) [4, 10], where JT is a set of the semantic parameter values and L is
the maximum of rule length.

L

The different given values of the semantic parameters will generate the different binary

partition of the feature reference space leading to the different classification performance of a
specific dataset. Therefore, in order to get the best ones for a specific dataset, an evolutionary
algorithm 1s used to find the optimal semantic parameter values for generating Sy. The number of
the initial fuzzy rules NR; is quite large, so an evolutionary algorithm is implemented to find the
expected optimal solution. For more details, see [10, 18].

3. AN APPLICATION OF A FEATURE SELECTION TECHNIQUE FOR THE
FRBCS DESIGN BASED ON THE ENALRGED HEDGE ALGEBRAS

5 3.1. Some Concepts of Information Theory

This subsection presents a short brief description of some basic concepts of information
theory [15]): entropy and mutual information used to measure the uncertainty of random
variables and the information shared by them. Suppose X is a discrete random variable, the
entropy H(X) of X is defined as:

H(X) = — Xxex (1) log(p(x)). (6)
where p(x) = Pr{(X = x) is the probability distribution function of X.
X and Y is a pair of discrete random variables, the joint entropy (X, Y) 1s defined as:

.,5 H(X,Y) = = Zeex Syer P(x, ¥)log(p(x, ) (7)

where p(x, y) is a joint probability distribution which models the relationships between the
variables.

When the entropy of the variable X conditioned on the variable ¥, we have the conditional
entropy H(X}Y) defined as:
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H(X|Y) = = Xxex Lyey p(x, Y)log(p(x|y)) (8)

Mutual information (MI) of two random variables X and Y 1s 2 measure of their mutual
dependence and is defined as:
[(X;Y) = Teex Eyer P, 1)I0BGEZ) ©
' r(x)p(y)
The above expression can be re-expressed in terms of joint and conditional entropies, so i
1s equivalent to as the following:

KX, ¥y = HX) - HX|Y) = H(Y) - H(YX) (10)
Thus, the MI between X and Y can be interpreted as the reduction in uncertainty about X
after observing Y.

Conditional mutual information (CMI) is defined as the amount of information shared by
variables X and Y, when Z is known. It is formally defined by:
. _ p(2)p{x.y.z)
I(Xl le) - ZEEE E}’ET Exexp(x! Y Z)lng(p(x,z}p(y,z}) (l 1)
CMI can aiso be interpreted as the reduction in the uncertainty of X due to ¥ when Z is
known.

3.2, Feature Selection Technigue Using Dynamic Weights

Feature selection is a way helps to reduce a large amount of dataset features by selecting a
small subset of relevant features from the set of the original ones in order to improve the
performance of the learning algorithms. This subsection presents the feature technique using
dynamic weight proposed in [15]. This technique does not only eliminate redundant features
which are highly correlated with the selected ones as other techniques, but also consider
interdependent features which are weak as individuals, but have strong discriminatory power as

a group by introducing a new scheme for feature relevance, interdependence and redundancy
analyses.

Relevance analysis is used to overcome the drawback of mutual information which tends to
favor features with more values by using the symmetrical measure and it is defined as:

. 1(X:Y)
UXY) =2x s (0S UK, Y) < 1) (12)

The redundancy and the interdependence of the candidate features are evaluated by
combining MI and CMI. A feature which has one or more other features correlated with is
considered to be redundant and the relevance of it to the target class can be reduced by the

knowledge of any one of the correlated features. Thus, a feature Ji 15 considered to be redundant
with the feature /] if the hereafter in-equation is satisfied:

1{fi; class|f;) < I(f;; class) (13)

The relative Redundancy Ratio between two features RR(i, J) represents the reduction ratio
of relevance between the feature £ and the target class due to the feature J; and is defined as:

—— N uclass|f;)-I{f;class) .
RR(Lj) =2x H{f)+H(class) (1= RR(l’j) < 0) (14)

Two features j; and f are interdependent on each other if the hereafter in-equation i3
satisfied:

I{f: class|f;) 2 I(f; class) (15)
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The interdependent ratio JR(i, j} between £ and £ which denotes the increase’s ratio of
relevance between f, and the target class by new feature joining is defined as:

— I(fictass|f;)~1{fi;class) .
IR(i,j) =2 X )+ Hiclass) (O<IR(,j)=<1) (16)

Both RR(i, j) and IR(i, j) are unified as correlation ratioc CR(i, f):
CREL ) = {fﬁ(i,j)J(ﬁ;cIass]}j) > I(f;; class)
RR(i, ), I(fi; c!assm) < I{f;; class)
It is obviously that —1 < CR(i,j) < 1.

Based on the above information metrics, a dynamic weighting-based feature selection
algorithm for ranking features, abbreviated as DWFS, has been proposed in [15]. Hereafter is the
pseudo code of the algorithm described in details:

(17)

Algorithm 1. DWFS: the adapted algorithm proposed in [15].
Input: A training sample D with feature space F and the target C.
Output: The subset S selected from ¢ features
Initialize parameters: k=1, 5 = §;
Initialize the weight w(f) for each feature fin F to 1 equally;
Calculate the value of U{(f, class) for each feature fin F,
While k < § do
For each candidate feature f € F do
Calculate J{f) = R(f,class) X w(f);
End;
Choose the candidate feature £, with the largest J(f);
Add finto the selected subset S = S U {f;};
F=F\{/};
For each candidate feature { € F do
Calculate the Correlation ratio CR(/, );
Update w(i) by w(i) = w(i) X (1 + CR{, )});
End;
k=k+ i,
End.

The complexity of DWFES algorithm is O(n X §) as already proofed in [15], where, » is the
number of original features and § is the number of selected features,

3.3. The Application of the DWFS for the FRBCS Design Based on the EnHAs

The FRBCS design based on the enlarged hedge algebras methodology proposed in [11] is
an efficient way to extract the fuzzy rule based systems from a given numerical dataset for the
fuzzy rule based classifier. However, as described in the first section, dealing with the high-
dimensional datasets is still a critical issue needed to be considered. This subsection presents an
approach to tackle the high-dimensional dataset issue for the FRBCS design based on the
enlarged hedge algebras by utilizing the DWFS algorithm described in the previous subsection.

389




Pham Dinh Phong

Hence, the extended method proposed in this paper comprises three phases by inserting the
feature selection preprocessing mechanism into the original method as the first phase:

(1) For a given dataset, the continuous valued features are partitioned mnto a particular number
of clusters by applying the fuzzy c-means clustering technique together with the PBMF
cluster validity index function [16, 19] and then apply the DWFS algorithm to select a
subset of the most discriminating features,

(2) Design automatically the optimal linguistic terms along with their fuzzy-set-based
semantics (trapezoidal fuzzy sets) for each feature of the subset of the dataset having only
the features selected by the first phase, so-called the selected training set.

(3) Extract the optimal fuzzy rule set for the FRBCS from the selected training set.

In the first phase, the continuous valued features are clustered by the fuzzy c-means
clustering technique. After the clustering process, the real-valued data 1s partitioned into v > ()
clusters produced by the process and each cluster is assigned a sequence number in order to
achieve the discrete values of the processed feature.

( Begin )

¥

‘ Imitialize the number of ¢clusters v = 2

h J

Do the fuzzy c-means for the designated -
feature by optimizing J, objective |

¥
Compute the PBMF index v=v+1

—rm—

he index is
maximized
or v > 307

No

Yes

( End )

Figure 2. The flow chart of the fuzzy ¢-means clustering technique together with the PBMF index
validation.

Let ¥ = {y;, ..., ym} be the dataset of j"-feature. Fuzzy c-means clustering technique
optimizes the following objective function:

2

Je = 2 X ufillyi —vi|T 1 < 2 < oo, (18)
where v is the number of clusters, y; ; is the membership degree of y; in the cluster j, VJ is the
centroid of the cluster, @ > 1 is the fuzzifier exponent which make the partitions more or less
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fuzzy. The membership degree y; ; and the cluster centroid v; updated by the optimization
process:

1

Hij = 2 (19)
v (“3’1'_"11")1-1
R=17 llyg-vxl
im (4 4
_ Lz B AT
Vi = m .« (20)
=1 Iui.j
The optimization process stops when the number of iterations reaches the maximum
k+1 : s
number or Uf: ) _ 5] < &, where 0 < & < 1 and & is the current number of iterations.

The PBMF 1ndex method [16, 19] is used for optimizing the number of clusters and it is
defined as: '

1 B, 2
Veamr = (‘ X=X Zu) (21)
v Ja
where E; = E?Lluyj — e|| with e is the dataset’s centroid and Z,, = max}fjﬂuvi - |-

The flow chart of the fuzzy c-means clustering technique together with the PBMF index
validation is denoted in Figure 2.

After the clustering processes, all real-valued features are discretized for the input of the
feature selection process using the DWFS algorithm described above.

The two last phases are the two phases of the FRBCS design based on the enlarged hedge
algebras proposed in [11], except the training set is the selected set instead of the original one.

4. EXPERIMENTAL RESULTS AND DISCUSSION

This section presents the experimental results of applying the feature selection technique
described in the above sections as a preprocessing method to the FRBCS design based on the
enlarged hedge algebras methodology proposed in [11] in comparison with the eriginal method
over some real world high-dimensional datasets that can be found on the KEEL-Dataset
repository: http://sci2s.ugr.es/keel/datasets.php. All the implementations for validating have
been implemented using C#, and all the experiments have been performed using an Intel Core
i3-550, 3.2GHz CPU with 2 GB of memory and running Microsoft Windows XP 32-bit. The 8
high dimensional datasets used to validate in this study are listed in the Table 1.

Table 1. The high dimensional datasets used in this study.

No. | Dataset name | Number of attributes | Number of classes | Number of patterns

1 | Bands 19 2 365

2 | Dermatology 34 6 358
3 | Hepatitis 19 2 80

4 | lonosphere 34 2 351

5 | Sonar 60 2 208
6 | Spambase 57 2 4597
7 | Spectfheart 44 2 267
8 | Wdbce 30 2 569
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Table 2. The number of selected features of the validated datasets.

No. Dataset name Number of attributes S S
l Bands 19 6 8
2 Dermatology 34 7 10
3 Hepatitis 19 6 8
4 | Ionosphere 34 7 10
5 Sonar 60 9 12
6 Spambase 57 9 12
7 Specttheart 44 8 11
8 Wdbce 30 7 9

First of all, the feature selection preprocessing technique 1s applied to each dataset to select

the most discriminating feature subset. Two feature’s quantities of [\/ﬁ] + 1 and [\/HI + 1 are
used to validate, where » 1s the number of the original dataset, for convenience, named as S, and
Sy, respectively. The feature’s quantity of the original dataset is named as N. After this phase,
the number selected features of the validated datasets are listed in the Table 2.

The subsets of data with the selected features of the corresponding validated datasets after
applying the feature selection preprocessing are taken into account, The same ten-folds cross
validation method 1s applied to every subset of the validated datasets and the original ones, i.e.,
each of them 1s randomly partitioned into 10 folds, 9 folds for the training phase and one fold for
the testing phase. Three trials of the FRBCS design method based on HAs are executed for each
of ten folds and, hence, it permits to extract 30 (= 3 times x 10 folds) FRBCSs from the data.

To Iimit the searching space in the learning process, the same constraints on the semantic
parameter values is applied as examined in [11]. i.e., we have: the number of both negative
hedge and positive hedge is 1, and assume that the negative hedge is L and the positive hedge is

v, 0.00001 < fm(0), fm(I) < 0.01; 0.2< fm(c™)<0.6 ; 0.0001 < fu(W) < 0.
02<u(L)<0.6; 0.0001< (R, )<0.5 and 1<k, <3.

The optimization algorithm used in this study is the multi-objective particle swarm
optimization with fitness sharing proposed in [20]. It is an efficient algorithm as presented in

[18].

The semantic parameter optimization process [11] has been run with the following
parameters. the number of generations = 250, the same as examined in [11]; the number of
particles of each generation = 600; Inertia coefficient = 0.4; the self cognitive factor = (1.2; the

social cognitive factor = 0.2; the number of initial fuzzy rules is equal to the number of
attributes; the maximum of rule length is 1.

The fuzzy rule selection process [11] has been run with the same parameters of the
semantic parameter optimization process, except the number of generations = 1000; the number

of particles of each generation = 600; the number of initial fuzzy rules }Sy| = 300 x number of
classes, the maximum of rule length = 3.

The running time in the #h:mm:ss format of the initial fuzzy rule generation processes from
the validated datasets with and without applying the feature selection preprocessing are listed in
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the Table 3, where noted that L2 and L3 are the running times in case the maximum of fuzzy rule
length 1s 2 and 3, respectively.

Table 3. The comparison of the running times of the initial fuzzy rule generation processes.

S, n
No. | Dataset name 2 13 12 I3 12 57 13
1 |Bands 00:00:18 00:22:45 | 00:00:00 | 00:00:01 | 00:00:00 | 00:00:04
2 [Dermatology 00:02:54 09:17:00 | 00:00:00 | 00:00:00 | 60:00:00 | 00:00:07
3 | Hepatitis 00:00:02 00:01:12 | 00:00:00 | 00:00:00 | 00:00:00 | 00:00:00
4 | lonosphere 00:13:43 38:34:11 | 00:00:00 | 00:00:03 | 00:00:03 | 00:00:31
5 |Sonar 01:53:48 - 00:00:01 | 00:00:08 | 00:00:04 | 00:01:23
6 |Spambase 04:05:01 - 00:00:11 | 00:01:25 | ¢0:00:29 | 00:13:45
7 | Spectfheart 00:11:27 66:12:07 | 00:00:00 | 00:00:03 | 00:00:01 | 00:00:28
8 |Wdbc 00:07:16 10:37:12 | 00:00:00 | 00:00:02 | 00:00:00 | 00:00:15

As shown in the Table 3, the running time of the initial fuzzy rule generation processes
after applying the feature selection to the original datasets are reduced very much, especially, in
case the fuzzy rule length is 3 (in case of L3 as in the Table 3). Ex., the initial fuzzy rule
extraction time from the original Dermatology dataset in case of L3 is 09:17:00 or 33,420
seconds, which is greater than 33,420 and 4,774 times in case of the feature’s gquantities of

[wfﬁ] + 1 (0 seconds) and [x.# 2?1\ + 1 (07 seconds) respectively. The “- values mean that the
fuzzy rule generation processes are too slow that the results cannot be obtained. That while we
usually limit the maximum of rule length to 2 with the datasets having the number of features

greater than and equal to 30 in the previous studies.

The experimental results of the classification performance of the application of the feature
selection technique presented in the above section for the FRBCS design are shown in the Table
4, where note that #R, #C and #R*#C are the number of fuzzy rules, the number of conditions
and the complexity of the extracted fuzzy rule set respectively; P, := the performance in the
training phase and P, := the performance in the testing phase; The #C and #Pte columns
represent the differences of the complexities and the performances of the compared methods
respectively. Specifically, the average results of the three validated methods are not much
different. Therefore, the final conclusion should rely upon the statistic studies given in the Table
5 and the Table 6 in which the Wilcoxon’s signed-rank tests [21] have been applied to test the
complexities and performances of the fuzzy rule bases extracted by three methods respectively.
It is assumed that the two compared versions are statistically equivalent (nuil-hypothesis).

Table 4. The comparison of the classification performances of the original datasets and their subsets of

[V2n] + 1 and [Vn| + 1 features.

Dataset N S, Ay
No.| "ame [#R™C| P, | P. |[#R™C] Py | Pe | 7C |™M GR*ac] P, [ P, | 7€ |#Pte
| [Bands 58.20| 78.19] 73.46] 51.78) 73.051 70.52| 6.42] 2.94] 52.36] 73.070 70.35] 584 377
> |Dermato. | 182.84 96.37| 94.40] 269.04] 90.37| 89.18|-86.20] 5.22| 328.91|95.94] 94.14]_145 07| 0,26
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TOM TAT

UNG DUNG PHUONG PHAP LUA CHON DAC TRUNG CHO THIET KE
HE PHAN LOP MO DUA TREN DAI SO GIA TU' MG RONG bOI VOI CAC
TAP DU LIEU CO SO CHIEU LON

Pham Dinh Phong'"?
'Prévoir Vietnam, 23 Phan Chu Trinh, Hanoi
2 Truong Dai hoc Céng nghé, Dai hoc Quﬁc gia Ha Ngi, 144 Xudn Thiy, Cau Gidy, Ha Noi

Email: dinhphongpham{@gmail.com

Cac phuong phép thiét ké hé phin 16p dya trén ludt m& dang if-then da va dang duoc
nghién ciru rong réi trong nhimg nam gan diy. Mot trong cac phuong phap thiét ké hé phén Iop
dua trén Judt md xuat sac sir dung phuong phap luan dai sd gid tir m& rong lam co ché hinh thirc
cho viéc thiét ké 1di uu cac tr ngdn ngu cung voi ngir nghia dya trén céc tdp mo hinh thang cua
chiing d3 dugc dé& xuat bai nhom tac gia Nguyen Cat H&. Ciing gidng nhu cac tiép cdn khac, mot
trong nhitng kho khan can phai khic phuc ddi véi tiép cén nay la xir li cac tap dir liéu miu cé sb
chiéu 16m va nhleu mau dir liéu. Bai bao trinh bay mét tlep can dé giai bai toan phan lc:fp v@i tap
dit lidu ¢6 sé chidu lém déi véi phucmg phap thiét ké hé phan 16p dua trén ludt md sir dung
phuong phap luén dai sO gia tr mo rong bing viéc ap dung giai thuat lua chon déc trung dugc dé
xuét béi nhom tac gia Xin Sun. Két qua thuc nghiém véi 8 tap dir liéu miu o sb Chlf:l.l Iém cho
thay phuong phép dugce dé xuat cho phép giam dang ké thdi gian thuc thi nhung van dam bao
dugc hiéu suat phan 1op cling nhu dd phirc tap ciia hé phéan 16p thu duge.

Tir khéa: dai sb gia tir, hé phan 16p mo, lua chon dac trung, tap dit liéu c6 sé chiéu lém.
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