IMPROVEMENT OF CO₂ PURIFYING SYSTEM BY PHOTOCATALYST FOR APPLICATION IN MICROALGAE CULTURE TECHNOLOGY Doan Thi Oanh^{1,*}, Quach Thi Hoang Yen², Nguyen Thi Toan², Nguyen Quoc Trung², Tran Que Chi², Nguyen Hong Chuyen³, Tran Thi Minh Nguyet², Bui Thi Kim Anh³, Dang Dinh Kim³ ¹Ha Noi University of Natural Resources and Environment, 41A Phu Dien Road, Hanoi ²Institute of Materials Science, VAST, 18 Hoang Quoc Viet Road, Hanoi ³Institute of Environmental Technology, VAST, 18 Hoang Quoc Viet Road, Hanoi *Email: doanoanh158@gmail.com Received: 26 April 2015; Accepted for publication: 11 October 2015 ## ABSTRACT By reactive grinding method Vanadium-doped rutile TiO₂ nanoparticle material was obtained with an average particle size of 20 - 40 nm, the Brunauer–Emmet–Teller (BET) specific surface area about 20 m²g⁻¹ and it absorbed strongly in the UV region and increased at the visible wavelength of 430 – 570 nm. This study focused on the improvement of exhaust gas treatment from coal-fired flue gas of the traditional adsorption-catalysis system (Modular System for Treating Flue Gas - MSTFG) by using the V₂O₅/TiO₂ Rutile as photocatalyst. The results showed that integrating both catalytic systems mentioned above increased the gas retreatment efficiency: Co from 77 % to over 98 %, NO₄ from 50 % to 93 %, SO₂ was absent as opposed to the input gas component. Also it showed that V₂O₃/TiO₂ Rutile integrated with MSTFG has got high efficiency of CO treatment, also secured the high obtained CO₂ concentration as a valuable carbon source for microagal mass culture as well as saving energy and simplifying devices. Keywords: traditional adsorption-catalysis system, photocatalyst, integrating, coal-fired flue gas, carbon source. #### 1. INTRODUCTION Process of burning coal can emit kinds of exhaust harmful gas out to atmosphere such as dust particles with minor sizes (PM), SO₃, NO₂, VOCs and a big volume of CO₂ gas, which participate in increase of the greenhouse effect, resulting in increase of the earth temperature leading to global climate change [1, 2]. Volume of CO_2 emitted in the exhaust gases was salvaged as material for different technological processes, which have been applied in many countries in the world. Eliminating accompanied exhaust gas and isolation of CO₂ as a Carbon source for algae culture—also included in the strategy—mentioned above and is one of the advanced technologies in the going green of the century [3]. In Vietnam, we started using catalysts/absorbents able to convert harmful exhaust gases (NO₃, CO, C₂H_w, VOCs) into H₂O, N₂, CO₂ in order to improve cleanness of CO₂ used in *Spirulina* culture [3]. However, the catalytic system with the length of 60 cm and section of 25×25 cm² used in our previous study [3] showed that the exhaust gases generated from burning coal have been treated with no high efficiency: only more than 70 % CO, 90 % SO, and 50 % NO₂, at temperature of 310 – 320 °C. So, for reaching higher efficiency it is required to extend the catalytic system as with the length twofold. On the other hand, temperature for converting the harmful gases on catalyst at 320 °C consumes rather big amount of energy for operation. To overcome the two mentioned above drawbacks, we recommend the use of photocatalytic system connected in series with the current treatment system. Photocatalyst can work in normal temperature under sun light. Thus, photocatalytic material is promising component in technology for air purifying [4], decreasing series of pollutants in water environment [5]. In the world, there were many publications on photocatalytic material having high ability of application [4, 5, 6, 7]. Results obtained in the study [5] showed that TiO₂ materials of Rutile type denatured by Vanaduum able to work in visible light area with rather high efficiency: fabricated TiO₂/V₂O₃ not only well absorbs light in the ultraviolet light area but also rather highly absorbs the light with wave length of 400 – 600 nm; This material is also good catalyst for degrading methylene blue at normal light and room temperature. In this work, we fabricated TiO₂/V₂O₃ photocatalyst, tested for CO conversion reaction in order to replace the traditional catalytic system described in paper [3]. #### 2. SUBJECT AND METHODOLOGY #### 2.1. Studied subject GAF House lagg maters : Teller di i merzee faler. er ilic capital. ani ir : noste Detail ann e. Panti ndte- 戲廳 CONTRACTOR. r defec Jinunans Exhaust gases including CO₂, NO_x, SO_x, CO_y,...in which CO₂ generated from burning coal are removed from accompanied exhaust gases by catalytic – absorption technology. V2O5/TiO2 Rutile photocatalytic material. ## 2.2. Methodology and equipment Exhaust gases were determined by equipment of MX6 and CA-6203, Testo 350-XL Emission Analyzer. Treating accompanied exhaust gases and cleaning CO₂ by traditional exhaust gas treatment modular system (EGTMS) were integrated with V₂O₅/TiO₂ photocatalytic material system. Rutile TiO₂ was used as initial material with particle size bigger than 100 nm. Nano vanadi – doped rutile TiO₂ material was obtained by the reactive grinding method [5]. UV-Vis Absorption spectra of TiO₂ and V₂O₃/TiO₂ samples were measured by CARRY 5000 UV-Vis-NIR equipment. Specific surface area of Brunauer-Emmett-Teller (BET) of samples was determined by nitrogen physical absorption method at 77 K. Size of particles was determined Scanning Electron Microscope (SEM). Concentration of CO was determined by Landcom II machine, U.K. #### 3. RESULTS AND DISCUSSION ### 3.1. Photocatalytic material fabrication According to the paper [5] we carried out fabrication of TiO₂ mixed with vanadium by reactive grinding method via high-energy. The optimal time for grinding samples to synthesize V_2O_3/TiO_2 was selected to be 4 hours. TiO₂ rutile and V_2O_3 in ratio 95:5 were dried at 120 °C/2 hours then was grinded by high energy mill (Spex 8000 M). This machine used two balls, including one with $\Phi15$ mm and the other with $\Phi5$ mm made of WCx hard steel. Mixture of 9.5g TiO₂ and 0.5g V_2O_3 was put into a hard steel container with inner volume of 50 cm³. The obtained material after 4 milling hours was examined in structure, size (by XRD method), morphology (by SEM photo), BET surface properties, light absorption capacity (by electronic absorption spectrometry) and accessed the activity on CO into CO₂ conversion reaction. # 3.2. Determination of material structure by X-ray diffraction diagram X (XRD) Figure 1 is X-ray diffraction diagram X of initial TiO₂ and vanadium mixture material after grinding. It can be seen from the diagram, typical peaks of TiO₂ appeared in form of nutile but peaks of V₂O₅ are absent (for ground material). Typical pics of initial TiO₂ samples were higher and narrower than that of V₂O₅/TiO₂ ground after 4 hours. Thus, it can be seen that ground V₂O₅/TiO₂ proparticles had significantly smaller sizes compared to initial TiO₂ material. On X-ray diffraction diagram of V₂O₃/TiO₂ samples, there were not typical peaks of Vanadium Oxide appearing. Non appearance of typical Vanadium Oxide could be due to the fact that Vanadium Oxide content was below the detectable threshold of the method or Vanadium Oxide's even desperation in the system or vanadium's existence in other forms in the crystal system of titanium oxide. This result was similar to [5]. Accordingly, in spite of non appearance of Vanadium Oxide peaks on X-ray diffraction diagram, the XAS analysis result (X-ray absorption spectrometry) indicated the existence of state of V⁴⁺ replacing V⁵⁺, that means vanadium displacing Ti⁴⁺ or lying at empty position of TiO₂ structure. So it can be said that a part of vanadium existed in form of V₂O₅ evenly dispersed and a part existed in form of V⁴⁺ lying in TiO₅ crystal network. Figure 1 XRD patterns of Rutile TiO2 before grinding (a) and ground V2O5/TiO2 for 4 hours(b). # 3.3. Determining morphology, particle size and the BET specific surface area Thị Toà saturi: अमार at l'hir d mo bi octure of §2 50 cm². To RD methr by electric tion materal di B of male ii S were bç Bal erousi ical peaks die to their or Vanis in the cosi on appears result (As that nos be said that in form of (enzip) Figure 2 is SEM image of the material. We can see that TiO₂ before grinding (a) had size of 100 – 130 nm, after grinding and mixed with vanadum (b) had size of 20 - 40 nm. After determining specific surface area (BET) and comparing the typical features with the sample fabricated in paper [5] represented in Table 1, it is seen that the previously fabricated samples and the present one are rather similar. This also confirms the material fabrication process was stable. Figure 2. Scanning electron microscopy image (SEM) of Rutile TiO₂ before grinding (a) and (b) ground V₂O₅/TiO₂ for 4 hours. Table 1. Particle size and the BET specific surface area of materials. | Samples | Grinding time (h) | Average particle size (nm) | BET (m²/g)
1,19 | | |--|-------------------|----------------------------|--------------------|--| | TiO ₂ | 0 | 100-130 | | | | V ₂ O ₅ /TiO ₂ | 4 | 20-40 | 19,5 | | | [5] V ₂ O ₄ / TiO ₂ | 4 | 22 | 20,80 | | # 3.4. UV-Vis absorption spectrum of V2O5/TiO2 photocatalyst materials Figure 3 is the light absorption spectrometry of unground TiO₂ rutile (a) and ground V₂O₂TiO₂ after 4 hours (b). We can see that the unground TiO₂ sample absorbed light at wave length less than 420 nm, while the mixed and milled sample after 4 hours absorbed light at longer-wave length in 430 - 570 nm area. This result can be compared with some anatase TiO₂ and TiO₂ Rutile previously published of authors Anpo et. al [6] and Liu et. al [7]. Thus, obtained material had rather big nano size and specific surface area, at the same time was denatured by vanadium (be considered as the most brilliant value in the series of metals used as doping for TiO₂) promising a high activity of photo catalyst. 95 Figure 3. UV-Vis absorption spectra of Rutile TiO₂ before grinding (a) and (b) ground V₂O₃/TiO₂ for 4 hours. ## 3.5. The test on application of V₂O₃/TiO₂ Rutile photocatalytic material in treating exhaust gas generated from burning coal in semi-pilot scale We carried out the test on treating exhaust gas generated from burning coal in two stages (Figure 4): 1. Initial exhaust gas was treated for the first time via a traditional catalytic system (A) – exhaust gas treatment modular system — with dimensions of $60 \times 25 \times 25$ cm³ operating at temperature 320 °C. Exhaust gas after being treated by the traditional catalytic system has rather high temperature will be cooled to the room temperature system (B). 2. The volume of cooled gas was treated for the second time by photocatalytic material designed by 3 rock crystal modules, each had diameter of 0.7 cm containing 1g photocatalytic material (C). The exhaust gas after the two said treatment stages was collected into gas collector (D). Concentration of gas components after each stage was determined and served for calculating the treatment efficiency of each stage. Figure 4. Diagram of the flue gas treatment from coal combustion. A: The traditional Modular system of Exhausted Gas Treatment; B' The gas cooling system at room temperature; C: Quartz tube; D: The purified gas storing system. ating city lanc andre 🚈 II 00032 van 25. lume of ac- 1 red or i Ikat anabni. माना लीक al Medila Ought talk | Components | Inlet of
gases | The period after treating via
traditional MEGT systems | | The period after treating via
photocatalyst systems | | |-----------------------|-------------------|---|-----------------------------|--|--------------------------------| | | | Concentration | Efficiency of reduction (%) | Concentration | Efficiency of
reduction (%) | | CO (ppm) | 2000 | 454 | 77,3 | 38 | 98,1 | | SO ₂ (ppm) | 16 – 22 | 2 | > 87,5 | 0 | 100 | | NO _x (ppm) | 30 – 32 | 16 | > 46,7 | 2 | 93 | | CO ₂ (%) | 4,64 | 6,03 | - | 6,47 | - | Table 2. Components of coal-fired flue gases inlet and oulet analysis Obtained results in table 2 showed that the exhaust gas generated from burning coal after going through Exhaust Gas Treatment Modular System with traditional catalyst integrated with V_2O_3/TiO_2 photocatalytic material system was very well treated: the converted CO was more than 98 %, SO₂ – 100 % and NOx – 93 %, respectively compared to the composition of the input exhaust gas. Volume of CO₂ obtained was rather high, from 4.54 % increased to more than 6.47 % quite good for microalgae culturing. ## 4. CONCLUSION V₂O₂/ΓiO₂ photocatalytic material system was successfully fabricated with size 20 – 40 m, BET specific surface area is of approximately 20 m²/g. This material strongly absorbs light in both UV area and 430 – 570 nm wave length area. V₂O₂/TiO₂ photocatalytic material was a good catalyst for CO, NO₄ and SO₂ conversion process. The integration of a traditional catalytic system (A) – Exhaust Gas Treatment Modular System with V₂O₂/TiO₂ photocatalytic material system increased treatment efficiency of exhaust gases: CO from 77 % up to 98 %, NO₄ from 50% up to 93 % and 100 % for SO₂ compared to the input exhaust gas composition. The rather high CO2 concentration- 6.47 %, is quite good carbon source for microalgae cultivation. In the economical point of view, The EGTMS with traditional catalysts operating at comparatively high temperature 320 °C (Project KC08.08/11-15) intergrated with V_2O_2/TiO_2 photocatalytic material system operating at the room temperature will help to significantly reduce equipment size. Acknowledgement. This study was implemented based on developing content of the Project of National level KC08.08/11-15 funded by Ministry of Science and Technology. #### REFERENCE - Minutillo M. and Perna A. A novel approach for treatment of CO₂ from fossil fired power plants, Part A: The integrated systems ITRPP, International Journal of Hydrogen Energy 34(9) (2008) 4014-4020. - Jeremy Colls. Air pollution, Second Edition, Spon Press (2002). 97 - Đặng Đình Kim, et al. Utilization of CO₂ captured from the coal fired flue gas by catalyst - adsorption method for growing Spirulina having high nutritive value, Journal of Biology 35 (3) (2013) 320-327. - Benoît Kartheuser Photocatalytic nanomaterials for air purification, NANOCON 2009, conference with international participation, 2009. - Thi Minh Nguyet Tran et al. Synthesis of vanadium-modified rutile TiO₂ nanoparticle by reactive grading method and its photocatalytic activity under solar light at room temperature, Adv. Nat. Sci.: Nanosci. Nanotechnol 4 (2013) 035010 (4 pp). - Anpo M., Ichihashi Y., Takeuchi M. and Yamashita H. Design of unique titanium oxide photocatalysts by an advanced metal ion-implantation method and photocatalytic reactions under visible light irradiation, Research on Chemical Intermediates 24 (2) (1998) 143-149. - Liu H. and Giao L. Codoped Rutile TiO₂ as a New Photocatalyst for Visible Light Irradiation, J. Chemistry Letters. 33 (6) (2004) 730-731. # TÓM TẮT # CẢI THIỆN HỆ THỐNG LÀM SẠCH CO₂ BẰNG XÚC TÁC QUANG NHẨM ỨNG DỤNG TRONG CÔNG NGHĒ NUÔI TẢO Đoàn Thị Oanhⁱ", Quách Thị Hoàng Yến^{*}, Nguyễn Thị Toàn^{*}, Nguyễn Quốc Trung², Trần Quố Chi², Nguyễn Hồng Chuyên^{*}, Trần Thị Minh Nguyệt^{*}, Bùi Thị Kim Anh^{*}, Đằng Đình Kim^{*} ¹Trường Đại học Tài nguyên và Môi trường Hà Nội, Nhồn, Từ Liêm, Hà Nội ²Viện Khoa học vật liệu, Viện Hàn lâm KHCNVN, 18 Hoàng Quốc Việt, Hà Nội ⁴Viện Công nghệ môi trường, Viện Hàn lâm KHCNVN, 18 Hoàng Quốc Việt, Hà Nội *Email: doanoanh158@email.com Bằng phương pháp nghiền phản ứng, vật liệu xúc tác quang Nano Vanadi – doped Rutile TiO₂ chế tạo được có kích thước 20 – 40 nm, điện tích bề mặt riêng BET gần 20 m³/g, vật liệu hấp phụ mạnh trong vùng UV đồng thời tăng sang vùng bước sóng đài 430 – 570 nm. Bài báo này nghiên cứn khá năng cải thiện hiệu quá xử lí khí thải của Hệ Modun xử lí khí thái (HMĐXLKT) xúc tác truyền thống bằng việc kết nổi thêm hệ modun sử dụng xúc tác quang V₂O₃/ TiO₂ Kết quá cho thấy việc tích hợp hai hệ xúc tác nói trên đã làm tăng hiệu quá xử lí khí đầu Côn tỷ 77 % lên trên 98 %, NO₃ tử 50 % lên 93 % và làm sạch hoàn toàn SO₂ so với thành phần khí đầu vào. Điều này cho thấy hiệu quá của việc sử dụng hệ vật liệu xúc tác quang V₂O₃/ TiO₂ trong quá trình xử lí triệt để CO, đồng thời vẫn đảm bào hàm lượng CO₂ thu được khá cao đáp ting cho quá trình nuôi tào như một nguồn cacbon giá trị, tiết kiệm được năng lượng và vận hành đơn giản. Tu khóa: hệ thống xúc tác/ hấp phụ truyền thống, xúc tác quang, tích hợp, khí thải đốt than, nguồn cacbon.