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ABSTRACT

The paper proposes a theorem to assert the arbitrarily good robustness of the fully actuated
hanical system lled by the adaptive feedback linearization controller. The fully
actuated system to be controlled is considerately perturbed by input disturbances and contains
constant uncertain parameters in its Euler-Lagrange forced model. It is shown in this paper that
independent of input disturbances of the adaptive feedback linearization controller with
appropriately chosen parameters will drive the output of controlled systems to the desired
trajectory for any arbitrary precision. The adaptive controller is applied to the two-link planar
elbow arm robot with unknown mass of the end-effector of second link and input torque noises
caused by the viscous friction forces and Coulomb friction terms. Simulation results show that
the arbitrary precision of the tracking errors always is guaranteed.

Keywords: feedback linearization, robust adaptive feedback control, uncertain systems, Euler-
Lagrange forced model.

1. INTRODUCTION
The uncertainness of fully actuated mechanical systems, which is commonly described by
an Euler-Lagrange forced model as follows [1]:

M(g.8)§+C(4,4,0q+9(a.8) =2 )]
is understood that the ¢ - dimensional vector and ¢ of model parameters are constant but
unknown, which is however linear dependent on the system in the sense of:

M(g,0)§+C(g,4,0d +9(0,0) = Fo(q.4, ) + F (g, 4. )8 )
In the Euler-Lagrange model given above the n dimensional vector ¢ is called the vector

of configuration variables, u is the n dimensional vector of n control inputs, M (g, 8e ™"
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nxn

is the inertia matrix, which is symmetric and positive definite, and C(g,§,8)e R is the
centripetal and coriolis forces corresponding matrix. o

To tracking control for this uncertain system in the sense, that the tracking error e=g—¢,
has to be bounded for all £ >0 and asymptotically convergence to the origin, where R0} is any

desired trajectory, the adaptive controller presented in [1, 2]:
&=(BF)T Pz with z = col(e, £)

e ) 5 5 &

=M@.B)[§, + Kie+ Kpé |+C(g, 5.0+ g(0.8)

is widely admitted to be an effective solution [1 - 3], where the 2nxn matrix B is defined by:

]
M8

in which © is the nXn zeros matrix, K;, K, are any two selected nxn matrices such that the

2n%2n matrix:
(¢} I
A=
K K

with the nXn identity matrix I, will be Hurwitz, and the symmetric posmve definite 2nx2n
matrix P is the solution of the Lyapunov equation:

E(ATP+PA)=*Q

where @ is also an arbirarily chosen symmetric positive definite 2nx2n matrix. In many
references the adaptive controller (3) is referred to as the adaptive feedback linearization
controller.

Furthermore, as it is shown in [2 - 4], for the control problem of input perturbed uncertain
systems:

M(¢,0)i+C(g.4.0)4+9(¢.=u+n @
where n(t) is the vector of input noises, which is assumed to be bounded:
S=suplnct)
t

the g -feedback adaptive feedback linearization controller (3) given above always drives the
tracking error z=col(e,¢) of the closed loop system depicted in Fig. 1 asymptotically to the
neighborhood O of the origin defined by:
PB| &
slls] ©

Aun (@)

where Ay, (-) denotes the minimal eigenvalue and “" the norm of a matrix. The neighborhood

@ is also referred as the attractor of closed loop systems. The smaller this attractor is, the better
tracking performance of the system is.

O:{QERM

271



Nguyen Van Chi, Nguyen Hien Trung, Nguyen Doan Phuoc

[RERE R

Linearization Controlled
Controller (3) system (1)

Figurre 1. Structure of the closed loop system obtained by using the adaptive feedback linearization

p
controller (3).

Since the feedback linearization controller (3) contains in it some freely selected
parameters such as two matrices K, K, and the symmetric positive definite matrix P, the
robust tracking performance defined in the equation (5) above of the closed loop system
depicted in 0 could be evidently improved further, if these parameters have been suitably
chosen.

And this paper will present a methodology to determine matrices Kj, K5, P for adaptive
feedback linearization controller (3) so that the tracking behaviour of the obtained closed loop
system satisfies any desired arbitrarily small attractor O .

2. MAIN RESULTS

Also according to the suggestion of [1], both matrices K;, K, of the feedback linearization
controller (3) could be chosen diagonally:

K =diag(k,), Ky =diaglhy,), i=12, ... o
and appropriately the matrix @ of the form:

2 . 2
0 =[K1 ° Jzidwg(kh) ° J ©
©® K;-K 2] duag(ky; ~ky,)

In this circumstance the matrix A is Hurwitz if and only ift
K, >0, k2 >k, forall i=12, ... .
and the Lyapunov equation has the following unique solution:

p_(2K, K
KK

which is obviously symmetric and positive definite.

Q]

Moreover, it is easily to recognize from the equation (5), that the measure of O defined as
follows:

m(0)= n;ayx’g—g‘ forall z,ye O

is an intuitive value to appreciate the robustness of the closed loop system. The smaller m(0)
is, the better robustness of the system is.

278

=y

o

ol

it



ation

selectef
P, te

 System
Sty

adzpie
xed fop

eatzila

s

About the robustness of adaptive feedback linearization controller...

Theorem: For any given £>0 always exits two matrices K|, K, such that the proposed q-
feedback dynamic controller (3) satisfies the desired robusiness: B
m(0)se @®
Proof:
Chosen K, K, diagonally with:
K, =diag(k), k>1 and K, = diag(ak), a>2 ©)
as well as @ from the structure (6), then there are obtained:

(21{11{2 K\ © KM
K K \m? KM

2 . 2
and 0= Ki © |_[diag(k}) <]
© Ki-kK ®  disg(, ~ky,)

|PB|= symax{hy, , ky)

= Ao @ =min(kf, , K~k )

where M is the short expression of the matrix M (g,é) = (mlj(g, é)) and:

y:”]\;['1”= max E m,, (¢ 5)’
isism gl 0T
Hence, it deduces:
|pafs __rmexEcB) e
A (@ min(k? , 0%%? —k) min{k? , a%? )
t t
< Yook _ yoak - - Pa

min(lc2 , a2k? —kz) min(k? , (a? - Dk?)
: 1
and from which to find out:
lim e =0
ko k
Therefore, by any given £>0 always exists a sufficiently large number % > 0 such that:
m(0)< % <e
which affirms the rightness of Theorem. .

3. NUMERICAL EXAMPLE

To illustrate the proposed theorem it is considered hereafter a two-link planar elbow arm
robot (Fig. 2), which is now additionally perturbed by input noises n = (n;,n, )T and described
by the uncertain Euler-Lagrange forced model (4) with the following parameters [1]:
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Mw.®) _[(m+ O)2 +612 + 200, cosgy, B2 +1L, cosq)z)]
= 63 +h cosgy) o (10)
(20bgysing, Oy sing,
C(“’Q)’[ Ol singy 0 )
o0.0)= [(m +8)gl, cosgy + bgl, cos(@ + @, ))
Ogl; cos(gr + ¢,)

where 7=(7,7; )7 is the input vector, in which the torque 7, produces the angular motion ¢
and the torque 7, produces the angular motion ¢; of robot arms.

w is the torque which produces the angie ¢
uy isthe torque which produces the angle ¢
 is the mass which 1s not exactly measurable.

g= 9.8[m/ 52 15 the acceleration of gravity

Figure 2. The controlled system is a two-link planar elbow arm robot.

Now, the adaptive controller (3) is applied to the arm robot in Fig. 2 for tracking problem
of the angles and the velovities of two links, by using two diagonal matrices K, K, suggested
in(®witha=2:

k0 2% 0 22 0
K = , Ky = = KK,=
0k 0 2k o 22

w0 kK O

and

P=(2K1Kz K1]= 0 4 0 k
K K, E 0 2% O
0 k 0 2%

the feedback linearization controller (3) for the controlled system (10) with parameters:
9=9.8m/s%,m=1kg,6 =2.5kg,}; =0.5m,l, =0.5m
becomes
4=

(;L;T)Lzz(o,o,tfﬁ-afz, —aﬁ+(c/é+b)ﬁ)P(§] an

where e=g—gq , g= (O q.= (@] .¢5)T denotes the tracking deviation and
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Ll:(c-téb QZJ[‘? +k£+2k£]+[—2d¢,—dq')z.+(ril+é)h+éf} a
ba 02 )T ey +0f
with
a=B +hhcosgy, d=bysing,, f=ghcos(p +p,)
b= +a e=hh@sing, h=gjcosq
c=mif
and

h=b@ +ap, —2d¢y —dpy +h+f
h=ah+B vep +o
Figure 3 and Fig. 4 depict angle and velocity simulation results obtained with k=3, k=10
and k=30 respectively. In this simulation, the input noises applying in two links are considered
to be depend on velocities of the links as below:
() = 3|y | @ysign(dr) + 0.5y sign(@, ) + Srand(l,1)
np(£) = 5|, | @ sign(y) + 0.32¢ysign(gy) + Srand(l,1)
The Fig. 4 shows that the response angles of the robot arm track to the set points after the
transient period in 7.5 seconds. There is 0.113 rad of maximum angle errors which reduce to

2.55x10” rad by using k=10 and 5.3x10* rad by k=30 as showing in the Fig. 5. The more k&
increases, the more angle errors and velocity errors reduce.

13)

Angle of first link { rad)

Veloclty of first link {rads)

& °
o e - 2w

0 5 w0 s
umegs)

H

£ £

HE H

H LE .
a) e s) b) time(s)

Figure 3. Desired angles, simulated angles (2) and desired velocities, simulated velocities (b) of first link
and second link with k=3, k=10 and k=30.
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Figure 4. Angle errors(a) and velocities errors (b) of first link and second link with k=3, k=10 and
k=30.

Input nolse of first ek (N m}

Input noise of sacond ik (N m)

o
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Figure 5. Input noise of the first link (a) and Input noise of the second link {b) with & =3, k=10 and
k=30.

Torque of Tst link(N m)
Torque of 2nd link(N m)

16 15 20 25 30
time(s) . time(s)
Figure 6. The torques apply to the first ink and second link with k=3, k=10 and £=30.

In the Fig. 6 there are input torques computed by the adaptive controller to get the tracking
of the links, the maximum amplitudes of input torques is 60 N.m with k=3 and 200 N m with
k=30.
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Figure 7. The adaptive parameter § with k=3, k=10 and k=30.
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Figure 8. The responses of angle and velocity with changing of the mass of the end-effector.

Theta hat

time(s)
Figure 9, The adapti & with changing of the mass of the end-effector.

The adaption of the parameter 6 with k=3, k=10 and k=30 are depicted in the Fig. 7.
It changes strongly when the arm robot is effected by input noises and it reached to the real
value of the mass of the end-effector when the input noises are zero. The Fig. 8 shows that the
angle and velocity responses by changing of the mass at the end-effector with m, =1kg,
my =2.5kg and my =5kg are not quite different. It means that the influence of m, to the
angles and velocities has been attenuated by the adaptation of § as showing in Fig. 9. Finally,
all obtained simulation results above have concluded that any desired robustness for the control

of systems with unknown parameters and input noises (4), will be always satisfied with the
feedback linearization controller (3).
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3. CONCLUSIONS

This paper refers to robustness of the fully actuated mechanical system which 1s consxdere'd
by Euler — Lagrange forced model with input disturbances and contains constant uncertain
parameters. By giving and proofing a theorem we conclude that the outputs of thg sysl?m
controlled by the adaptive feedback linearization controller will track to the desired trajectories
for any arbitrary precision with appropriately chosen controller parameters. The adaptive
controller is proposed in this paper not only keeps the tracking of the outputs in the presence of
the uncertain parameters but also attenuates the influence of the input noises to the system. For
more details, the adaptive controller is applied to the tracking problem of the two-link planar
elbow arm robot with unknown mass of the end-effector and the influences of the noises to the
input torques, the simulation results show that we can get the arbitrary precision of the angles
and velocities of the links. The proof of the convergence of adaptive parameters to real values of
unknown parameters and applying this control method to the practice are our further researches.
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Bai bao nay dua ra mit dmh liva kh?mg din]: tiqh bén vimg tity ¥ cho hé co khi déy dil co

chu chip hanh ¢o céc tham s bét dinh va nhiéu diu vio mé ta du6i dang md hinh Euler-
Lagrange dugc diéu khién bang bé diéu khién tuyén tinh héa phan hoi thich nghi. B§ diéu khién
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tuyen tinh héa phan hdi thich nghi véi cac tham 6 duge chon mot céch phu hop s& didu khién
‘ dhu ra ciia h¢ bam theo quy dao mong mubn véi d6 chinh xac yéu ciu ma khéng phy thude vao

nhifu dau vao, B6 diéu khién dugc 4p dung cho hé robot khuyu tay hai thanh ni véi khéi lugng
diém cubi khong biét trude va co mb men du vao chiu anh hudng cia céc lyc ma st nhét va
cac thanh phin ma sat Coulomb. Két qua m6 phong cho thdy ring db chinh xac tiry ¥ cta sai
1éch bam quy dao ludn ludn duoc dam bao.

\dereq
Certain
System
Clories
daptive
weol | Ty kkoa: tuyén tinh hoa phan hdi, didu khién phan héi thich nghi bé vimg, cic hé bét dinh, hé
om. fy phi tuyén Euler-Lagrange.
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