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ANALYZING AND OPTIMIZING OF A PFLUGER COLUMN 

TRAN DUC TRUNG, BUI HAI LE 

ABSTRACT 

The optimal shape of a Pfiuger column is determined by using Pontryagin's maximum 
principle (PMP). The governing equation of the problem is reduced to a boundary-value problem 
for a single second order nonlinear differential equation. The results of the analysis problem are 
obtained by Spectral method. Necessary conditions for the maximum value of the first 
eigenvalue corresponding to given column volume are established to determine the optimal 
distribution of cross-sectional area along the column axis. 

Keywords: optimal shape; Pontryagin's maximum principle. 

1. INTRODUCTION 

The problem of determining the shape of a column that is the strongest against buckling is 
an important engineering one. The PMP has been widely used in finding out the optimal shape 
of the above-mentioned problem. 

Tran and Nguyen [12] used the PMP to study the optimal shape of a column loaded by an 
axially concentrated force. Szymczak [11] considered the problem of extreme critical 
conservative loads of torsional buckling for axially compressed thin walled columns with 
variable, within given limits, bisymmetric I cross-section basing on the PMP. Atanackovic and 
Simic [4] determined the optimal shape of a Pfiuger column using the PMP, numerical 
integration and Ritz method. Glavardanov and Atanackovic [9] formulated and solved the 
problem of determining the shape of an elastic rod stable against buckling and having minimal 
volume, the rod was loaded by a concentrated force and a couple at its ends, the PMP was used 
to determine the optimal shape of the rod. Atanackovic and Novakovic [3] used the PMP to 
determine the optimal shape of an elastic compressed column on elastic, Winkler type 
foundation. The optimality conditions for the case of bimodal optimization were derived. The 
optimal cross-sectional area function was determined from the solution of a nonlinear boundary 
value problem. Jelicic and Atanackovic [10] determined the shape of the lightest rotating column 
that is stable against buckling, positioned in a constant gravity field, oriented along the column 
axis. The optimality conditions were derived by using the PMP. Optimal cross-sectional area 
was obtained from the solution of a non-linear boundary value problem. Atanackovic [2] used 
the PMP to determine the shape of the strongest column positioned in a constant gravity field, 
simply supported at the lower end and clamped at upper end (with the possibility of axial 
sliding). It was shown that the cross-sectional area function is determined from the solution of a 
nonlinear boundary value problem. Braun [5] presented the optimal shape of a compressed 
rotating rod which maintains stability against buckling. In the rod modeling, extensibility along 
the rod axis and shear stress were taken into account. Using the PMP, the optimization problem 
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is formulated with a fourth order boundary value problem. The optimally shaped compressed 
rotating (fixed-free) rod has a finite cross-sectional area on the free end. 

In this paper we determine the optimal shape of a Pfiuger column - a simply supported 
column loaded by uniformly distributed follower type of load (see Atanackovic and Simic [4]). 
Such load has the direction of the tangent to the column axis in any configuration and does not 
have a potential, i.e., it is a non-conservative load. The results of the analysis problem are 
obtained by Spectral method. 

PMP allows estimating the maximum value of the Hamiltonian function that satisfies the 
Hamiltonian adjoint equations instead of solving the minimum objective functions directly. An 
analogy between adjoint variables and original variables holds for some cases. This is an 
advantageous condition to determine the maximum value of the Hamiltonian function. 

Although PMP have been investigated, the objective function is still implicit, the sign of 
the analogy coefficient k is indirectly determined and the upper and lower values of the control 
variable are unbounded. The present work suggests a method of supposition to determine k 
directly and exactly. The Maier functional, which depends on state variables in fixed locations, 
is used as the objective function from a multicriteria optimization viewpoint. The bounded 
values are set up for the control variable. 

The present paper is organized as follows: following the introduction section is presented 
formulation of the problem, optimization problem is considered in section 3, results and 
discussion are given in section 4, and final remarks are summarized in section 5. 

2. FORMULATION OF THE PROBLEM 

The formulation of the problem is established basing on Atanackovic and Simic [4] and 
Atanackovic [1]: 

Consider a column shown in Fig. 1. The column is simply supported at both ends with end 
C movable. The axis of the column is initially straight and the column is loaded by uniformly 
distributed follower type of load of constant intensity q^. We shall assume that the column axis 
has length L and that it is inextensible. 

Let x-B-y be a Cartesian coordinate system with the origin at the point B and with the x axis 
oriented along the column axis in the undeformed state. The equilibrium equations could now be 
derived 

dH dV dM , , n TT • r, 
= -q-, — = -q,; = -Fcos6'-hi/sin6* (2.1) 

dS ^' dS ' dS 
where H and V are components of the resultant force (a force representing the influence of the 
part {S, L] on the part [0, S) of the column) along the x anAy axis, respectively, Af is the bending 
moment and 6 is the angle between the tangent to the column axis and x axis. Also in (2.1) q'v 
and qy are components of the distributed forces along the x and y axis respectively. Since the 
distributed force is tangent to the column axis we have 

q,=-qf^cosd; qy=-q^sm9 (2.2) 

To the system (2.1) we adjoin the following geometrical 

— = cos^ ; ^ = sin^ (2.3) 
dS dS 
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and constitutive relation 

(2.4) 

y-i-civ M+dM 

Figure 1. Coordinate system and load configuration 

In (2.3) and (2.4) we use x and y to denote coordinates of an arbitrary point of the column 
axis and EIXo denote the bending rigidity. The boundary conditions corresponding to the column 
shown in Fig. 1 are 

x(0) = 0; :i'(0) = 0; M(0) = 0; y{L) = Q', M{L) = 0; H{L) = 0. (2.5) 

The system (2.1)—(2.5) possesses a trivial solution in which column axis remains straight, 
i.e., 

Ff{S) = -qo{L-S)', 1^(5) = 5; A / ( 5 ) = 0; .x\^ = S', / ( 5 ) = 0; ^{S) = 0. (2.6) 

In order to formulate the minimum volume problem for the column we take the cross-
sectional a r e a ^ ( ^ and the second moment of inertia I{S) of the cross-section in the form 

A{S)=Aoa{S)', I{S) = Ioa-{^ (2.7) 

where Ao and /o are constants (having dimensions of area and second moment of inertia, 
respectively) and a{S) is cross-sectional area function. For the case of a column with circular 

cross section we have the connection between AQ and /Q given by IQ = {\I4'K)A^ . Let AH,..., Ad 

be the perturbations of//,..., 6*defined by 

H = lf+AH', V=l^+AV', M = Af+AM',x=x°+Ax',y=y°+Ay', d=^+A0. (2.8) 

Then, by introducing the following dimensionless quantities 

, AHL' AVI} AMI , Ax 

EL Eh EL L 
n 

Ay 

L 

S 
/ = — ; X 

L 

qJl 
EL 

(2.9) 
'0 ^-"o 

and by substituting (2.7) in (2.1) - (2.5) we arrive to the following nonlinear system of equations 
describing nontrivial configuration of the column 
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h = -A{\-cosd); 

V = -As'md; 

m = -vcos0-\-[-/l{\-t) + h]s\n0; 
^ = l - eos^ ; • (2.10) 

;7 = sin6'; 

m 
2 • 

where (•) = d{»)/ dt. The boundary conditions corresponding to (2.10) are 

^0) = 0; ;7(0) = 0; w(0) = 0; rj{]) = 0; w(l) = 0; h{\) = 0. (2.11) 

Note that the system (2.10)-(2.11) has the solution /?(/) = 0,..., 0{t) = 0 for all values of A. 
Next we linearize (2.10) to obtain 

h^O; 

v^-Ad; 

ih^-v + -X{\-t)9; 
1 = 0; (2.12) 

m 
9 = ^ . 

w 

By using boundary conditions (2.11) in (2.12) we conclude that h{t) = <^t) = 0 and the rest 
of Eqs (2.12) could be reduced to 

rh-^ — {l-t)m = 0 (2.13) 
a 

subject to: . , 
w(0) = w(I) = 0. ' (2.14) 

The system (2.13)-(2.14) constitutes a spectral problem. 

3. OPTIMIZATION PROBLEM 

To determine the optimal shape of the column, we will use the PMP (Geering [8]). Let us 
write optimization problem as: find out a{t), a„,„ < a{t) < a,Mx, t e [0, 1], satisfies the objective 
function 

G = -{\-k^j)\+k^,J = 'cmn. (2.15) 

where X\ is the first dimensionless eigenvalue, k^ is non-negative weight, k;^ e [0, 1], the 
dimensionless volume of the column J is defined as 

1 

J=\a{t)dt . (2.16) 
0 

, The state differential equations are 
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X, =x, ; x,=-^{\~t)x, (2.17J 

subject to 

• x,(0) = X2(l) = 0. (2.18) 

TL Proposition.' with the above-mentioned suppositions, Eqs. (2.15) - (2.18), the Hamiltonian 
function H is maximized, and the analogy coefficient k betM'een adjoint variables and original 
variables is positive, where: 

H=-
k 

-4~^{\-i)x: 
a 

• k^jO = max (in a). (2.19) 

Proof. The first eigenvalue A] is here considered as a state variable. It means that the role of/I] is 
equivalent to those of xi and Xi in the state differential equations (2.17). The volume of the 
column J is also a state variable. So, the state equations (2.17) can be rewritten in the form 

jio; ;r 

'If.: . . . I 

1 2 

A 

a' 

J = a 

(1-Ox, (2.20) 

The objective function can be rewritten in term of the Maier's objective functional: 

G = - ( l - A : , , ) ^ ( l ) + ^ , , J ( l ) = min . (2.21) 

From the Eqs. (2.20) the Hamiltonian function //can be established in the form as follows 

^ = /'.vl^'2+P.2 - ^ 0 - O A - , \ + p,,A,+pja, ^ = 0 . 

The adjoint equations can be expressed in the following form: 

a// _ A, 
p..I 

! i f i OX, Cf 

p.l 
dH _ 

dx., 

dH 1 „ , 

0/1, a 

PJ 
dH_ 

' dJ 
0 

The conjugate variables p.rP.xi^Pn^P.i ^''^ determined from the expression: 

, = i , = 1 

Thus 

(2.22) 

(2.23a) 

(2.23b) 

(2.23c) 

(2.23d) 

(2.24) 

p, , (l)^x, (1) + p^, {l)Sx, (1) + p , , (1)^.^ (1) + PJ (1)^^(1) 

-p, , (O)Jx,(O)-p, , (O)Jx,(O)-p„(O)^-^(0)-p,(O)<5J(0)-( l-^, , )&^(l) + /r,,(5J(l) = O (2.25) 
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or 

p,f\)Sxfl) + p,f\)5xf\) + [p,fl)-{\- k„)] ^-^ (1) + [;;, (1) + k,, ]5J{\) 

-p^, {0)5 x, (0) - p^, {0)5 X, {0)-p,, {0)5A, (0) - p, {0)SJ{0) = 0. 

Hence 

P.2 (1) = P..2 (0) = 0; p , , (1) = 1 - k,_,; p „ (0) = 0; p, (1) = -k,_,; p, (0) = 0 

Assigning 

Px\ ~ ~^2H ' Px2 ~ ^\H 

we obtain 

^\H -^JH ^7H ' ^71 
^ 
7 (1-0^1//• 

subject to x^f^ (1) = x,^ (0) = 0 . 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

It is seen that Eqs. (2.17) are similar in form as ones of (2.29) and the boundary conditions 
(2.18) are also similar in form as the conditions (2.30). As a result, we reached the following 
conclusion: the same analogy between the adjoint variables and the original variables holds, or 

KX,f, — X,, /OC-,, (2.31) 

The sign of ^ can be determined by integrating the Eq. (2.23c) with appropriate conditions 
in Eq. (2.27): 

\p^^dt^p,f\)~pJQ) = \~k„=\f^^^dt>Q. (2.32) 
0 "̂  0 '^ 

Thus, the sign of the analogy coefficient k is larger than zero for the case of maximizing X\. 
It was demonstrated by considering the first eigenvalue A\ as a state variable. The Hamiltonian 
function (2.22) will be maximized if 

H = x\-\(\-t)xl •k^jU = max (in a). (2.19) 

Thus, basing on the PMP in optimal control for above-mentioned system's first eigenvalue, 
the obtained optimal necessary conditions consist of: the state equations (2.17), the boundary 
conditions (2.18), the control variable a(t) e fa,^,„, a^^J and the maximum conidition of the 
Hamiltonian function (2.19). 

a{t) 
(initial) i : * • 

Analysis module 

a{t) 
(new) 

^ Converged \ , 

1 False 

<—' Optimization module 

Results 
a{f), Xx,J 

Figure 2. The general algorithm used in the present work 
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From the multicriteria optimization viewpoint, the Parcto front between the criterion (/>.,. J) 
is build basing on the Definition 6 in Coello Coello et al. [6] (page 10): A solution x e Q is said 
lo be Parelo-optimal M'ith respect to Q f and only if there is no x" e Q for which v = 
F(\') = (fi(\'').....f(\")) dominates u = F(\)=(f(\)....J,,(x)). The phrase Pareto-optimcd is meant 
with respect lo the entire decision variable space unless otherwise specified. In words, this 
definition says that x* is Pareto-optimal if there exists no feasible vector x which would decrease 
some criterion without causing a simultaneous increase in at least one other criterion (assuming 
minimization). 

4. RESULTS AND DISCUSSION 

4.1. Validation of the model 

In order to verify results obtained in the present work, the model in Atanackovic and Simic 
[4] is studied for both validation analysis and optimization problems. 

4.1.1. Analysis problem 

The first eigenvalue of the studied column with constant circular cross-section was shown 
in Table 1. 

Table I. The first eigenvalue of the studied column 

.'. \ The first eigenvalue X\ 
Methods 

a{t)=\ t7(/) = 0.81051 

Present 18.957240 12.453513 

Atanackovic and Simic [4] 18.956266 12.452807 

4.1.2. Optimization problem 

We take J = 0.81051, 0 < a{l) < co. The aim of this section is to determine the column's 
optimal shape (optimal distribution of circular cross-sectional area) and maximum value of X\ 
according to above input data. The resuhs are shown in Table 2 and Fig. 3. 

Table 2. The maximum value of Ai 

Methods 

Present 18.950876 

Atanackovic and Simic [4] 18.956266 

Via sections 4.1.1 and 4.1.2, it is evident that the results of the authors, those of 
Atanackovic and Simic [4] are in good agreement, (see Atanackovic and Simic [4] to compare 
the column's optimal shape). 
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0.2 O.J 0.9 0.3 0.4 0.5 0.6 0.7 

The normalized length / 

Figure 3. The column's optimal shape 

4.2. Results and discussion for the optimization problem of the authors 

The content of the problem consists in finding out the changing rule of the circular cross-
section a{t) 6 [amin, <3niax], t £ [0, 1] which satisfiBS the state differential equations (2.17); 
maximizing the first eigenvalue Ai; the total volume J of the column is given. We take Umm = 0-9; 
fl™x= 1-1-Thus, J 6 [0.9, 1.1]. 

4.2.1. Optimization problem with above-mentioned input data 

The results shown in Table 3 and Fig. 4 are the maximum values of A] {Ai^asi), the 
column's optimal s'lape configurations corresponding to five cases of J. 

Table 3. The maximum values of A] (Ai^axi) corresponding to five cases of 
J i n the section 4.2.1 " 

Notation 

Case la 

Case 2a 

Case 3a 

Case 4a 

Case 5a 

J 

1.100 (/„/,,) 

1.050 

1.000 

0.950 

0.900 (J„.i) 

-^Imaxl 

22.937693 (i,,,;,,) 

22.817520 

21.570576 

18.705883 

15.354985 (/l|/„„,,) 

The Pareto front or trade-off curve which includes the set of points that bounds the bottom 
of the feasible region is shown in Fig. 5. 
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Where, /Ipari ("/") ^nd Jpari (%) are the normalized variation of the maximum value of the 
first eigenvalue and the total volume, respectively. 

; 100(/l, - ^ ^ ^ ^ , ) , 100(J-J , ,) 
/l-Parl = , -'Pari = ^̂  2 i ^ 

•^ i(p\ -^ lm>\ 

^ 1.05 

0.95 

0.9-

-r 

•Case la 
' Case 2a 
"Case 3a 
' Case 4a 
"Case 5a 

I I I I I M I I I h I I I 1 I r'l I I I I I I I I I M I I I M 1 I I I I K 1 I 

0.1 0.2 0.3 0.4 0.5 0.6 

The normalized length / 

0.7 0.8 0.9 

Fig. 4. The column's optimal shape configurations corresponding to five cases of J in the section 4.2. 

4 60 

i 

10 20 30 40 50 60 70 

Variation of Jp^^\ , % 

80 90 

Figure 5. The Pareto fi-ont of the optimization problem in the section 4.2.1. 
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4.2.2. Optimization problem with above-mentioned input data and an additional constraint 

The additional constraint in this section is that a{t) = 1, ? e [0.1, 0.2]. It means that the 
distribution of the cross-sectional area along the column axis is discontinuous. 

The results described in the Table 4, Fig. 5 & 6 are the maximum values of A\ {AU^XT), the 
column's optimal shape configurations corresponding to five cases of 7and the Pareto front. 

Table 4. The maximum values of A\ (/liniax2) corresponding to five cases of J in the section 4.2.2 

Notation 

Case lb 

Case 2b 

Case 3b 

Case 4b 

Case 5b 

J 

1.089 (7,„,2) 

1.050 

1 

0.950 

0.911 (J/„„,2) 

A 1 ma\2 

22.431435 (i,,,;,,) 

22.386033 

21.487410 

18.427398 

15.661187 (A„„„.2) 

03 

C 
O 

o 

-o 
N 

o 
c 

H 

15 1.05-

•ig. 6, 
(J. 95 

0.9' 

1 1 1 1 1 1 1 1 1 

11 l l 1111 

•Case lb 
Case 2b 

•Case 3b 
Case 4b 

'Case 5b 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I l l I I I M I I I I I I I I I I I I I I I I I I I I I I I I I 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 

The normalized lensth / 

0.8 0.9 

Figure 6. The column's optimal shape configurations corresponding to five cases of J in the section 4.2. 

Where, A^^a (%) and Jpar2 (%) are the normalized variation of the maximum value of the 
first eigenvalue and the total volume, respectively. 

Ap 
lOO(^„,2-^,„ax2) , 1 0 0 ( J - J , „ , 0 

• 7 p a i 2 -

'\up2 ^lou'2 f up2 "^ lOM-l 
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Figure 7. The Pareto front of the optimization problem in the section 4.2.2 
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4.2.3. Discussion 

From the Tables 3 & 4, we can see thai the maximum value of the first eigenvalue A\ is 
directly proportional to the value of the column's volume ./. It is a sensible relation. 

The results shown in Figs. 4 & 6 are the column's optimal shape configurations 
corresponding to five cases of ./ and two cases of constraints. So, the optimization problem 
could be solved for both continuous and discontinuous control variables. 

The Pareto front represents the possible trade-off among different objectives {A\, J). From 
the Figs. 5 & 7, we reached the following conclusion: we never have a situation in which all the 
objectives can be in a best possible way satisfied simultaneously (point O). The trade-off curves 
shown in Fig. 5 & 7 could be divided into three segments including AB, BC and CD 
corresponding to different trade-off levels between /l, and J. 

5. CONCLUSION 

In the present work, the problem of analyzing and optimizing of a Pfiuger column was 
investigated. The main results are summarized as follows: 

• Using the Maier objective functional allows solving the multi-objective optimal problem 

(maximizing A\ and minimizing J) as a problem of controlling the final state of the objective 

function. 

• Considering the first eigenvalue /l| as a state variable allows demonstrating the 

Proposition of the authors. 
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• Via the Eq. (2.19), the above-mentioned, multi-objective and multi-constraint optimal 
design problem could be divided into e.xtremuin, single-objective and single-constraint 
problems. 

• Via the Pareto fronts shown in the Figs. 5 & 7, we can evaluate the trade-off level 
between the objectives {A], J). 

• Using PMP shows that we can control the value of the Pfiuger column's first eigenvalue 
with the bounded and unbounded control variables a{l). 

• The results can be applied to determine the shape of a column that is the strongest 
against buckling under some given conditions and to separate the natural frequencies from the 
frequencies of excitation loads under some given conditions of a vibrating structure. 
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TOM TAT 

Bien dang toi uu cua cot Pfiuger dupc xac dinh nha nguyen li cue dai Pontr\agin. Phuong 
trinh chti dao cua bai toan duoc rtit gpn thanh mpt bai toan gia trj bien ctia phuong trinh \ i phan 
bac hai phj tuyen. Ket qua ciia bai toan phan tich nhan dupc nha phuong phap Spectral. Dieu 
kien can doi voi tri rieng thtr nhat cue dai dupc lh\k lap d^ xac dinh phan b6 toi uu cua dien tich 
mat cat ngang dpc theo true ciia cot. 
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