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Introduction

Drying is a separation process in solid-liquid systems. 
In practice, the drying process plays an important role 
in various industries. In principle, these transport 
phenomena in porous media can be modelled by using 
two approaches: continuous and discrete, as mentioned 
by D. Michel, et al. (1987) [1]. By using the continuous 
model, porous media is simulated to be continuous and 
effective parameters for heat and mass transfer are used. 

Following the continuous approach, Whitaker used a 
volume averaging technique to obtain a set of macroscopic 
transport equations from a system of basic transport laws 
at a microscopic level for the three phases (gas, liquid, 
and solid). Details of the above technique can be found in 
Whitaker’s works [2-4]. According to Whitaker’s model, 
porous media is assumed to be continuous, and a system 
of conservation equations of heat, mass, and motion is 
developed through the main state variables. The model 
developed by Whitaker has been widely applied in the study 
of the drying of porous media, for example, in the drying 
analysis of sand [5-8], glass beads [9], sandstone [10], 
porous insulators [11], brick [12], cellular materials [13], 

wood [14-17], and light concrete [18-20]. In these mentioned 
works, the model is usually quite successfully matched 
against experimental data. As a result, the above research 
works highlight the acceptance of the complete theory. 

Among other methods, [21, 22] used a control 
volume finite element method (CV-FEM) [23] to solve 
the numerical problem. The advantage of this method is 
that the coupled heat and mass transfer is modelled using 
effective parameters, which have a physical meaning 
and are not lumped parameters. The model developed 
by Whitaker, Perré, and Turner very effectively solves 
the drying problem of porous media because the heat 
and mass transfer happen simultaneously, and these 
phenomena are simulated using effective parameters. 
However, the most difficult point when solving the 
problem is the determination of the model parameters as 
pointed out by H.T. Vu, et al. (2016) [24]. According to 
[25, 26], these parameters must either be experimentally 
determined or must be modelled from the microstructure 
of the material. In fact, these parameters are functions of 
state variables, e.g., moisture content, temperature, and 
pressure. These parameters should be determined with 
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great care concerning the microscopic material structure 
as they have decisive effects on simulated drying 
characteristics. By solving the so-called inverse problem, 
one can find a way to determine these parameters. 

Experimental methods such as magnetic resonance 
imaging (MRI) have used to obtain the drying kinetics 
of porous materials, for example, the moisture content, 
Xexp, can be obtained as function of space and time.  
By using experimental data such as this, effective 
transport parameters such as diffusivity can be obtained 
by progressively modifying the transport parameters 
until the simulated drying kinetics (Xsim) match the 
experimental ones (Xexp). Therefore, the purpose of 
this research is to develop an algorithm to determine 
the effective parameters of drying of porous media by 
using a continuous model. However, due to the lack 
of experimental data, we use the forward problem to 
generate the data for the inverse problem by employing 
the control volume method and some known material 
parameters. Then, the algorithm of the inverse problem 
is presented, and numerical examples are considered to 
demonstrate the accuracy of the computed parameters. In 
this study, we consider the problem in one-dimensional 
space as well.

Governing equations

There are four equations that govern the drying 
process in a porous medium. The first is the conservation 
equation for water in liquid and gas phases. The second 
is the conservation equation for air in the gas phase. The 
third is the conservation equation of energy, and the 
fourth are the sets of equations of motion for the liquid 
phase and for the gas phase [3, 21].

The conservation equation for water in both liquid 
and gas phase is:
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where ρw, ρv, and ρg are the mass density of the liquid, 
vapor, and gas phases, respectively, εw and εv are the 
volume fractions of the liquid and gas phase, respectively, 
vw and vw are the velocities of the liquid and gas phase, 
respectively, and Deff is the effective diffusivity tensor. 

The conservation equation for air in the gas phase can 

be formulated as:
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The most complex one is the conservation equation of 
energy and it is given as: 
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where w , v , and g  are the mass density of the liquid, vapor, and gas phases, 
respectively, w  and v  are the volume fractions of the liquid and gas phase, respectively, 

wv  and gv  are the velocities of the liquid and gas phase, respectively, and effD  is the 
effective diffusivity tensor.  

The conservation equation for air in the gas phase can be formulated as: 
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where εs and ρs are the volume fraction and the mass 
density of the solid phase, respectively, hs, hw, hv, and ha 
are the enthalpies per unit mass of the solid, water, vapor, 
and air, respectively, and λeff is the effective thermal 
conductivity tensor.

The equation of motion for the liquid phase can be 
written as:
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where K  is absolute permeability tensor, wk  and gk  are the relative permeability tensors 

for liquid and gas phase, respectively, w  and g  are the dynamic viscosity of water and  

gas, respectively, wP  is the pressure of the liquid phase, and gP  is the pressure of the gas 
phase. 

In addition, the boundary conditions for mass and heat transfer at the external 
drying surfaces of the porous medium must be specified. The gas pressures at the external 
drying surfaces are fixed at the pressure of the bulk drying air. Sorption isotherm, 
capillary pressure, ideal gas laws, and enthalpy-temperature relations will complete the 
set of equations (1-8) by facilitating the expression of all variables as functions of the 
three state variables. Finally, initial conditions are needed to close the sets of equations. 
These conditions can be found from the work of H.T. Vu (2006) [27]. 

Material properties 

For our calculations, a light concrete reference material is considered. More 
information about this material can be found in these works of [21, 22]. The porosity is 
=0.8. The solid density is 3kg.m2500 s  and the heat capacity is 

  11.KJ.kg  4185840  XC ssp  . The fully saturated material has a moisture content 
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where K is absolute permeability tensor, kw and kg are the 
relative permeability tensors for liquid and gas phase, 
respectively, ηw and ηg are the dynamic viscosity of water 
and  gas, respectively, Pw is the pressure of the liquid 
phase, and Pg is the pressure of the gas phase.

In addition, the boundary conditions for mass and 
heat transfer at the external drying surfaces of the porous 
medium must be specified. The gas pressures at the 
external drying surfaces are fixed at the pressure of the 
bulk drying air. Sorption isotherm, capillary pressure, 
ideal gas laws, and enthalpy-temperature relations will 
complete the set of equations (1-8) by facilitating the 
expression of all variables as functions of the three state 
variables. Finally, initial conditions are needed to close 
the sets of equations. These conditions can be found from 
the work of H.T. Vu (2006) [27].

Material properties

For our calculations, a light concrete reference 
material is considered. More information about this 
material can be found in these works of [21, 22]. The 
porosity is ψ=0.8. The solid density is 3kg.m2500 −=sρ  

D

D

D D



30 june 2022 • Volume 64 Number 2

Physical Sciences | Chemistry, Engineering

and the heat capacity is 
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where Xirr=0.07, which is the irreducible content and 
)(* TPv  is the saturation pressure.

Parameters of real material and parameters to be 
determined

The following table presents the parameters of 
the real material and the parameters to be determined 
(Table 1). The first column is the parameters of the real 
material, which is light concrete in this case. Based on 
these values, we can derive the unknown parameters, i.e., 
the parameters to be determined, as functions of state 
variables.
Table 1. Parameters of real material and parameters to be 
determined. 
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The problem can be stated as follows: 

1. Vector 0xf  is the vector containing experimental data. For example, moisture 
content X, temperature T, and pressure P at different measurement points during the 
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The problem can be stated as follows: 

1. Vector 0xf  is the vector containing experimental data. For example, moisture 
content X, temperature T, and pressure P at different measurement points during the 
drying time dryt .  Vector 0xf depends on vector x , which contains the material properties.  

2. We can model the drying process of porous media and calculate the vector xcf  
that contains X, V, and P at measurement points. With different values of x , we have 
different values of xcf , respectively, so we can write: )(xff xcxc  . 

3. If we do not know the material properties x , but we have 0xf and find a certain 
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The problem

The problem can be stated as follows:

1. Vector fx0 is the vector containing experimental 
data. For example, moisture content X, temperature T, 
and pressure P at different measurement points during the 
drying time tdry.  Vector  fx0  depends on vector x, which 
contains the material properties. 

2. We can model the drying process of porous media 
and calculate the vector fxc that contains X, V, and P at 

measurement points. With different values of x, we have 
different values of fxc, respectively, so we can write: fxc =  
fxc (x).

3. If we do not know the material properties x, but 
we have fx0 and find a certain vector  such that, after 
inserting into the model ( fxc (x)) we have a vector fxc (x) 
and vector fx0 that are the same (or almost the same), 
we can state that vector  is the vector containing the 
material properties we are looking for. 

In practice, it is difficult to find  such that vector  fxc (x) 
and vector fx0 are identical. Therefore, we will determine 
 so that the two mentioned vectors are nearly identical. 

This means we need to determine  such that  [ fxc (x) - 
fx0]T[ fxc (x) - fx0] is a minimum, i.e., to solve the optimal 
problem. This problem can be summarized as follows:
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where m is the length of vector f .  

In this research, we use the Levenberg-Marquardt [28] method to solve the optimal 
problem. FoRTRAN and MATLAB are employed to solve the equations. 

Levenberg-Marquardt method 

More details of the Levenberg-Marquardt method can be found from the research 
work of Marquardt [28]. The Levenberg-Marquardt steps, ks , can be defined by: 
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'  , vector kΔ  is a given vector, and kD  is a matrix.  

Note that kx is the value of vector kx at step k and ks is a vector of the same length 
as kx . The length of x is the number of parameters. For example, if we need to determine 
one parameter ( 1vd ), the length of x is 1 and the length of kΔ is 1 as well. The size of the 
matrix kD is 1x1, but the length of  xf is 3n, where n is the number of measurement 
points. In our model, we have 3 elements, so then there are 3 measurement points. Then, 
the length of  xf  is 9 and, similarly, the length of  kxf '  is 9. 

We have 2
a  as the norm matrix of vector a , which can be calculated as:
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Fig. 1. Algorithm to determine the effective diffusivity.

Results and discussion
The convergence of the inverse problem is illustrated 

in Fig. 2. From this figure, we can see that after four 
iterations, the problem is converged. This result also 
shows that dv1 from the calculation is very consistent 
with the initial assumption value of dv1. This result is very 
important because it determines the convergence of the 
inverse problem and also confirms the correctness of the 
algorithm.

Furthermore, we will apply this algorithm to determine 
the effective diffusivity. This parameter is calculated as 
follows:
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Fig. 2. Illustration of the convergence of the inverse problem.

In the inverse problem, we assume that both material 
parameters Dv1 and Dv2 are unknown. The inverse problem 
is then to retrieve the values Dv1= 2.26.10-5

  and Dv2=1.81 
given above. We then use the Levenberg-Marquardt 
algorithm first by assigning Dv1 and Dv2 to some initial 
values Dv1= 0

11 vv DD =  and Dv2=
0
22 vv DD = . After that, we solve the 

inverse problem to determine the computed parameters, 
which are denoted by C

vD 1  and C
vD 2 . In our calculation, 

we use a 20-node mesh (N=20) and 51 sampling points 
(S=51) for the forward problem. In the inverse problem, 
we choose the initial values 50

1 100.3 −⋅=vD =3.0.10-5 and 0.30
2 =vD =3.0. By 

solving the inverse problem, we get 5
1 1026.2 −⋅=C

vD =2.26.10-5  and 
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81.12 =C
vD =1.81. These values are very close to the value of Dv1 

and Dv2 above. 

Fig. 3. Simulation of drying using data computed from solving the 
inverse problem (N=20, S=51).

The use of these two computed parameters in the 
forward problem is presented in Fig. 3. In this figure, the 
result of the inverse problem is shown, and the assumed 
input is presented by dotted lines (assumed experimental 
data) taken from a spherical specimen. From these data, 
the inverse problem is solved by iteratively changing 
the material parameters Dv1 and Dv2. With each new 
set of material parameters, a simulation is done, and 
the moisture profiles (solid lines) are computed and 
compared with the assumed input data. The process is 
repeated until the simulated result (solid lines) matches 
the input data (dotted lines). In Fig. 3, the solid lines are 
the simulation result computed with the final values of 
material parameters Dv1 and Dv2. It shows that, in this case, 
the drying kinetics are computed with good accuracy.

Conclusions

In this research, an algorithm to determine the 
effective parameters of the drying of porous media is 
presented. By solving the inverse problem, we obtained 
very reasonable results. However, more numerical tests 
should be realized to understand and improve the solution 
of the inverse problem. In the next step of our research, the 
model will be extended into two- and three-dimensional 

space. In addition, the use of real experimental data to 
evaluate the model will also be within the scope of our 
future research.
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