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Introduction
FFEM is the combination of finite element method (FEM) 

and fuzzy sets theory [1], which is used to define the responses of 
structures in cases where the input quantities contain incomplete 
information such as loads, material and geometric properties, 
stiffness of supports, etc., and is described in the form of fuzzy 
numbers. In recent years, a large number of FFEMs have been 
proposed beginning with static analysis, then extending into the 
dynamic analysis of structures. Fundamental strategies of FFEM can 
be categorized into main groups as follows: the interval arithmetic 
approach for static analysis of structures [2-8], the optimization 
strategy for static and dynamic analysis of structures [9-20], the 
combination of interval arithmetic and optimization strategy for 
dynamic analysis of structures [21-23], and applying stochastic 
finite element methods (SFEM) [24] for fuzzy analysis of structures 
[25-27]. Amongst these approaches, the α-optimization method 
[9] has been gradually acknowledged as the standard procedure 
for FFEM. In this method, the search process is performed in the 
input domain to seek the exact bounds on the objective function by 
iteratively evaluating the objective function at designated points. 
Therefore, this method is very time-consuming because it must be 
accomplished with a large amount of finite element analysis.

To overcome this limitation, this study focuses on a novel 
approach for analysing fuzzy finite elements by using the 
transformation between fuzzy and random variables. Firstly, based 
on the combination of the principle of insufficient reason and 

that of maximum specificity, normal random variables equivalent 
to symmetric triangular fuzzy numbers of the input data are 
presented and explored in detail. As a result, these fuzzy numbers 
are replaced by normal random variables so SFEM such as Monte 
Carlo simulations, the perturbation method, the spectral stochastic 
finite element method, and so on can be used for the analysis of 
structures. In this study, the response surface method (RSM) is 
utilized to approximate the real responses of structures.  Then, the 
least-squares error criterion between the training and the test sets 
is proposed to select the suitable response surface model amongst 
the regression models. Lastly, the mean and the standard deviation 
values of the responses of structures are directly calculated from the 
response surface model. The proposed method is verified via a two-
bar truss structure with spring supports.

Methods
The overview of transformation principles and the formulae 

for determining the deviation of the equivalent normal variables

The transformation from fuzzy numbers into random quantities 
and its converse should be taken into account in any problem 
where heterogeneous uncertain and imprecise data appear together 
(e.g., information deficit, linguistic variables, statistical data). 
Representative transformation principles such as insufficient 
reason, maximum specificity, and uncertainty invariance are 
proposed by D. Dubois, et al. (1993) [28], D. Dubois, et al. (2004) 
[29], D. Dubois (2006) [30], and G.J. Klir (2005) [31], respectively. 
The advantage of Klir’s principle is the information preservation 
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of fuzzy measure and equivalent probability. However, in Ref. 
[1], the results of using one may conflict with the probability/
possibility consistency principle. Besides, three assumptions 
must be used in Klir's approach while Dubois's approach does not 
make any assumptions. Nevertheless, an initial fuzzy number will 
differ from the final fuzzy number after a transform forward to 
probability measure by the principle of insufficient reason and then 
a transform back to fuzzy measure by the principle of maximum 
specificity. Hence, transformations (from possibility to probability 
and converse) based on these two principles make non-conservative 
information. To overcome this drawback, T.H. Nguyen and H.X. Le 
(2019) [32] proposed an innovation transformation to calculate the 
deviation of the equivalent normal random variable. This approach 
is presented and detailed explored below. 

Consider a symmetric triangular fuzzy number 
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For the transformation from a standardized symmetric 
triangular fuzzy number (Fig. 1B) into a random quantity, the 
error of probability measure between the equivalent probability 
density function p(x) of the standardized symmetric triangular 
fuzzy number obtained by the principle of insufficient reason 
and the probability density function of the normal random 
variable p1(x) is expressed by the following formula:
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with σ being the deviation of the normal random variable, {A} is 
the event that has 1≤xo≤x, and P(A) and P1(A) are probabilities 
of event A for the density distribution functions p(x) and p1(x).  

From Eq. (2), we obtain:
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where π(x) is the membership function of the standardized fuzzy 
number in [-1,0] as:
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Then, π1(x) is the equivalent fuzzy number of a normal 
random variable determined as follows (with limits  –∞ and +∞ 
replaced by -6σ and 6σ, respectively):
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Then, 1(x) is the equivalent fuzzy number of a normal random variable determined as 

follows (with limits  – and + replaced by -6 and 6, respectively): 

𝜋𝜋1(𝑥𝑥) = 𝜋𝜋1(−𝑥𝑥) = ∫ 𝑝𝑝1
𝑥𝑥

−6𝜎𝜎 (𝑦𝑦)𝑑𝑑𝑑𝑑 + ∫ 𝑝𝑝1
6𝜎𝜎

−𝑥𝑥 (𝑦𝑦)𝑑𝑑𝑑𝑑               

     (12) 

To solve the multi-objective optimization problem of Eqs. (9) and (10), one 

transforms multiple objectives into a scalar objective function by multiplying each 

objective function by a weighting factor and summing up all contributors as in: 

𝐻𝐻(𝜎𝜎)  = 𝛾𝛾𝛾𝛾(𝜎𝜎)  +  (1 − 𝛾𝛾)𝐺𝐺(𝜎𝜎)  →  min                             (13) 

where   [0,1]. 

The mathematical meaning of Eq. (13) is an extension that modifies the equivalent 

characteristic according to two principles: the principle of insufficient reason when going 

from a fuzzy number to random variable and the principle of maximum specificity when 

going from a random variable to fuzzy number. To solve Eq. (13), a genetic algorithm (GA) 

is applied using built-in functions in Matlab. The relation between the weighting factor   

and deviation   is depicted in detail in Fig. 2.  
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The calculation for the responses of structures

After a transformation from fuzzy to random variables, fuzzy 
finite element analysis becomes stochastic finite element analysis. 
Then, RSM is utilized to define the responses of the structures. 
The basic idea of RSM is to approximate an implicit function by 
an equivalent polynomial function. The calculation procedure is 
expressed in the next sub-sections. 

Design of experiments: The design of the experiments is based 
on the sampling plan in design variable space (i.e., input data space). 
The design plays a very valuable role in determining the regression 
coefficients of surrogate models. The important problem is how we 
evaluate the goodness of such designs with a limited number of 
samples. In the present paper, the Box-Behnken design [33], which 
has good results in actual problems, is selected to be the design 
of the experiments. In the Box-Behnken design, sample points are 
chosen at all possible combinations of the mean values (μi=0) and 
μi±3σi (0±3) as shown in Fig. 3. 
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Fig. 3. The Box-Behnken design with three standard normal 
random variables.

Surrogate models: In statistical theory, surrogate models are 
often used that include the polynomial regression model, Kringing 
model, and radial basis functions [34]. The first and the second 
models are parametric models based on the assumed functional 
form of the response in terms of the design variables. The last 
model is non-parametric and uses different types of local models in 
different regions of the data to build up an overall model. Among 
these models, the polynomial regression model is often used to 
build a response surface function due to its calculation simplicity. 
In this study, the complete quadratic polynomial regression model 

is used for the responses of structure, in which all random variables 
Xci are standard normal and assumed to be uncorrelated.

The complete quadratic polynomial regression model (The CQP 
model):
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where            are displacements at the membership level µ=1 of the input data and are 

determined by classical FEM. 

The remaining regression coefficients in Eq. (14) are determined by the least-

squares method.  

Error estimation and selecting reasonable design: Due to their ease of calculation, 

split sample and cross-validation methods [34] are always used to select a rational design. 

To reduce the variance of the error estimation, which usually appears in the split sample 

method, the cross-validation method is proposed. Differing from the split sample method, 

this method makes no distinction between the training and test data sets. In this study, 
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where ŷ(x=a) are displacements at the membership level µ=1 of the 
input data and are determined by classical FEM. 

The remaining regression coefficients in Eq. (14) are determined 
by the least-squares method. 

Error estimation and selecting reasonable design: Due to their 
ease of calculation, split sample and cross-validation methods [34] 
are always used to select a rational design. To reduce the variance 
of the error estimation, which usually appears in the split sample 
method, the cross-validation method is proposed. Differing from 
the split sample method, this method makes no distinction between 
the training and test data sets. In this study, leave-one-out cross-
validation is applied where each response point is tested once and 
trained k-1 times because the centre point was computed from Eq. 
(15). The error estimation of the jth design (using X(j) as the test set) 
is determined by the formula:
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where GSEj is the square error estimation of the jth design; yj is 
output value at X(j) determined by classical FEM; and ŷj

(-j) is the 
estimated value at X(j) of the jth design. 

The design uses the least-squares error estimation method to 
calculate the responses of the structures.    
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of the responses of structures, including the mean and the deviation 
values, are directly calculated from the surrogate model. After using 
the properties for the nth moments of the standard normal variable, 
we obtain:

- The mean value of the responses of structures:

9 
 

leave-one-out cross-validation is applied where each response point is tested once and 

trained k-1 times because the centre point was computed from Eq. (15). The error 

estimation of the jth design (using X(j) as the test set) is determined by the formula:          

GSEj=(yj‒ŷj(-j))2                 (16)  

where GSEj is the square error estimation of the jth design; yj is output value at X(j) 

determined by classical FEM; and ŷj(-j) is the estimated value at X(j) of the jth design.  

 The design uses the least-squares error estimation method to calculate the responses 

of the structures.     

 Determination for the responses of structures: The parameters of the responses of 

structures, including the mean and the deviation values, are directly calculated from the 

surrogate model. After using the properties for the nth moments of the standard normal 

variable, we obtain  

- The mean value of the responses of structures: 

                      (17) 

 

 - The standard deviation value of the responses of structures 

 

                     (18) 

where 𝐸𝐸(𝑦𝑦2) is determined as follows  

 

                                             (19) 

Results and discussion 

n
iir o

i=1
m = E(y)= a + a  

( )22( ) ( ) ( )r y E y E y = = −

( ) ( ) ( ) ( ) 
n n n-1 n n-1 n n

22 2 22
o i ii ij ii kk o ii

i=1 i=1 i=1 j=i+1 i=1 k=i+1 i=1
E(y ) = a + a  + 3 a  + a + 2 a a + 2a a     

 (17)

- The standard deviation value of the responses of structures:
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where E(y2) is determined as follows:
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Results and discussion
Numerical example

Consider a two-bar truss with a spring support in Fig. 4, 
where the elastic modulus of the material is Ẽ, the loads are P1̃ 
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Fig. 2. Representation of the relation between deviation and 
weighting factor. 
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and P̃2, and the spring stiffness k̃ are symmetric triangular fuzzy 
numbers: Ẽ=(210,20)LR GPa; P̃1=(30,3)LR kN; P̃2=(25,3)LR kN; 
k̃=(2000,400)LR kN/m.

The cross-sectional area of both bars is A1=A2=5.10-4 m2. 

Required: Determine the horizontal displacement u1 and the 
vertical displacement v1. 
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Fig. 4.  Two-bar truss with spring support. 
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One realizes that the weighting factor of 0.5 represents 
the equivalent characteristic according to two principles: The 
principle of the insufficient reason when going from fuzzy 
numbers to random variables and the principle of maximum 
specificity when going from random variable to fuzzy number. 
Hence, in this study, we utilize the weighting factor to calculate 
the responses of the structure. The other weighting factor values 
are used to survey the variation of the responses of the structure.  

The mean values mr and the standard deviation values σr of the 
horizontal displacement u1 and the vertical displacement v1 for each 
value of the weighting factor γ are shown in Table 1. 
Table 1. The mean values mr and the standard deviation values σr 
of the horizontal displacement u1 and the vertical displacement v1.

The 
weighting 
factor γ

The horizontal displacement u1 (m) The vertical displacement v1 (m)
The mean 
value mr 

The standard 
deviation value σr  

The mean 
value mr 

The standard 
deviation value σr  

0 0.0007425 0.000218 -0.0013835 0.000310
0.1 0.0007395 0.000036 -0.0013735 0.000248
0.2 0.0007397 0.000068 -0.0013793 0.000096
0.3 0.000740 0.000102 -0.0013799 0.000144
0.4 0.0007406 0.000136 -0.0013807 0.000192
0.5 0.0007411 0.000161 -0.0013815 0.000229
0.6 0.0007421 0.000204 -0.0013830 0.000290
0.7 0.0007431 0.000239 -0.0013840 0.000343
0.8 0.0007451 0.000273 -0.0013862 0.000391
0.9 0.0007464 0.000310 -0.0013878 0.000439
1 0.000740 0.000098 -0.0013798 0.000138

Tables 2 and 3 show the results of fuzzy horizontal 
displacement u1̃ and fuzzy vertical displacement v1̃ using the 
α-optimization method, respectively. Membership functions of 
fuzzy horizontal displacement u1̃ and fuzzy vertical displacement 
ṽ1 are depicted in Figs. 5 and 6, respectively.

Table 2.  The result of fuzzy horizontal displacement u1̃ using the 
α-optimization method.

α-cuts
The α-optimization method

Lower u1 (m) Upper u1 (m)

0.0 0.000188 0.001352

0.2 0.000294 0.001224

0.4 0.000402 0.001098

0.6 0.000512 0.000976

0.8 0.000624 0.000856

1.0 0.000739 0.000739

Table 3.  The result of fuzzy vertical displacement ṽ1 using the 
α-optimization method.

α-cuts
The α-optimization method

Lower v1 (m) Upper v1 (m)

0.0 -0.002283 -0.000675

0.2 -0.002083 -0.000803

0.4 -0.001893 -0.000937

0.6 -0.001713 -0.001078

0.8 -0.001542 -0.001225

1.0 -0.001379 -0.001379
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To verify the accuracy of the proposed methods, the mean value mr and the 
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the non-linearity terms are comprised of the responses of structure, the load effects (the 

output data) such as displacements and internal forces exhibit non-Gaussian probabilistic 

characteristics. Hence, the interval [mr-3.2� r, mr+3.2� r], which corresponds to the largest 

99% confidence interval for the Laplace, the uniform, and the triangular probability 

distributions [29] is chosen. Table 4 and Table 5 show the percentage errors between the 

mean values at each value of the weighting factor �  and the belief values for the horizontal 

displacement u1 and the vertical displacement v1, respectively. The differences between the 

results of the confidence intervals and that of the support of fuzzy displacements  and  

are calculated in Table 6 and Table 7, respectively, including percentage errors in the lower 

bound, the upper bound, and the width of solutions. The formulae for calculating these 

percentage errors are presented in [4]. 
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To verify the accuracy of the proposed methods, the mean value 
mr and the confidence interval [mr-h.σr, mr+h.σr]  are compared with 
the belief value and the support of fuzzy response of the structure 
using the α-optimization method, respectively. Because the non-
linearity terms are comprised of the responses of structure, the 
load effects (the output data) such as displacements and internal 
forces exhibit non-Gaussian probabilistic characteristics. Hence, 
the interval [mr-3.2σr, mr+3.2σr], which corresponds to the largest 
99% confidence interval for the Laplace, the uniform, and the 
triangular probability distributions [29] is chosen. Tables 4 and 5 
show the percentage errors between the mean values at each value 
of the weighting factor γ  and the belief values for the horizontal 
displacement u1 and the vertical displacement v1, respectively. The 
differences between the results of the confidence intervals and that 
of the support of fuzzy displacements ũ1 and ṽ1 are calculated in 
Tables 6 and 7, respectively, including percentage errors in the lower 
bound, the upper bound, and the width of solutions. The formulae 
for calculating these percentage errors are presented in [4].
Table 4. The percentage errors between the mean and belief values 
for the horizontal displacement u1.

The weighting 
factor γ

The mean value 
mr (m)

The belief 
value (m) Error (%)

0 0.0007425 0.000739 -0.48864

0.1 0.0007395 0.000739 -0.07360

0.2 0.0007397 0.000739 -0.10331

0.3 0.000740 0.000739 -0.15292

0.4 0.0007406 0.000739 -0.22886

0.5 0.0007411 0.000739 -0.29201

0.6 0.0007421 0.000739 -0.43162

0.7 0.0007431 0.000739 -0.57072

0.8 0.0007451 0.000739 -0.84072

0.9 0.0007464 0.000739 -1.00942

1 0.000740 0.000739 -0.14791

Table 5. The percentage errors between the mean and belief values 
for the vertical displacement v1.

The weighting 
factor γ

The mean value 
mr (m)

The belief 
value (m)

Error (%)

0 -0.0013835 -0.001379 -0.30406

0.1 -0.0013735 -0.001379 0.41886

0.2 -0.0013793 -0.001379 -0.00017

0.3 -0.0013799 0.000739 -0.04119

0.4 -0.0013807 -0.001379 -0.09851

0.5 -0.0013815 -0.001379 -0.26862

0.6 -0.0013830 -0.001379 -0.34153

0.7 -0.0013840 -0.001379 -0.40643

0.8 -0.0013862 -0.001379 -0.50283

0.9 -0.0013878 -0.001379 -0.61848

1 -0.0013798 -0.001379 -0.03628

Table 6. The percentage errors between the confidence intervals 
and support of fuzzy horizontal displacement ũ1.

The 
weighting 
factor γ

The confidence interval 
[mr–3.2σr, mr+3.2σr]

The support of fuzzy 
displacement ũ1

Error 
LB 
(% )

Error 
UB (%)

Error 
width
(%)Lower (m) Upper (m) Lower (m) Upper (m)

0 0.000044 0.001441 0.000188 0.001352 76.57 6.57 19.96
0.1 0.000625 0.000853 0.000188 0.001352 233.53 36.88 80.42
0.2 0.000522 0.000958 0.000214 0.001320 143.91 27.43 60.56
0.3 0.000414 0.001066 0.000214 0.001320 93.70 19.24 41.08
0.4 0.000307 0.001175 0.000240 0.001288 27.60 8.78 17.12
0.5 0.000224 0.001258 0.000240 0.001288 6.66 2.31 1.31
0.6 0.000088 0.001396 0.000267 0.001256 66.93 11.18 32.26
0.7 -0.000023 0.001509 0.000267 0.001256 108.62 20.20 54.97
0.8 -0.000128 0.001618 0.000294 0.001224 143.53 32.21 87.67
0.9 -0.000247 0.001740 0.000320 0.001192 177.15 45.95 127.93
1 0.000427 0.001053 0.000320 0.001192 33.37 11.69 28.25

Table 7. The percentage errors between the confidence intervals  
and the support of fuzzy vertical  displacement ṽ1.

The 
weighting 
factor γ

The confidence interval 
[mr-3.2σr, mr+3.2σr] 

The support of fuzzy 
displacement v1̃

Error 
LB 
(%)

Error 
UB
(%)

Error 
width
(%)Lower (m) Upper (m) Lower (m) Upper (m)

0 -0.002376 -0.000391 -0.002283 -0.000675 4.04 42.03 23.37
0.1 -0.002167 -0.000580 -0.002283 -0.000675 5.09 14.09 1.31
0.2 -0.001685 -0.001073 -0.002283 -0.000675 26.20 59.07 61.97
0.3 -0.001841 -0.000919 -0.002283 -0.000675 19.39 36.20 42.71
0.4 -0.001996 -0.000765 -0.002283 -0.000675 12.58 13.38 23.47
0.5 -0.002115 -0.000648 -0.002283 -0.000675 7.37 4.02 8.77
0.6 -0.002312 -0.000454 -0.002283 -0.000675 1.24 32.67 15.46
0.7 -0.002481 -0.000287 -0.002283 -0.000675 8.64 57.41 36.34
0.8 -0.002636 -0.000137 -0.002283 -0.000675 15.44 79.77 55.38
0.9 -0.002793 0.000017 -0.002283 -0.000675 22.31 102.57 74.70
1 -0.001822 -0.000938 -0.002283 -0.000675 20.23 39.00 45.08

Discussion 
Based on the results of the above example, the following 

discussions are presented:
- The mean values of the displacements obtained by the proposed 

method are close to the belief values of fuzzy displacements by 
the α-optimization method. Due to the difference between the 
mathematics of fuzzy sets and that of random parameters, this 
demonstrates that the complete quadratic polynomial in which all 
equivalent random variables are standard normal random variables 
using Eqs. (14) and (15) is a reasonable regression model to 
determine the displacements of the structure. 

- The confidence intervals of the displacements with the weighting 
factor γ=0.5 approximate the supports of fuzzy displacements (the 
percentage errors are less than 10%).  One realizes that a deviation 
of 0.476 for the equivalent normal variable, which corresponds to 
the weighting factor γ=0.5, is a plausible selection for calculating 
the responses of structures. This also points out that the proposed 
method is reliable. Indeed, when the weighting factor γ=0.728 
corresponding to the method [25], the average percentage of errors 
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is about 50%, which is much more than the largest percentage errors 
with the weighting factor γ=0.5. Once the spread of the fuzzy spring 
stiffness k=200 kN/m, which is the same as the example presented 
in [35], the percentage errors between the confidence intervals of 
the displacements corresponding to the weighting factor γ=0.5 and 
the support of fuzzy displacements are also less than 10%. 

- The number of computations obtained by the proposed method 
is less than that of the vertex method [12]. Indeed, in the illustrative 
example, the proposed method requires 25 deterministic finite 
element problems while 81 deterministic finite element problems 
are needed for analysis by the vertex method. This especially reveals 
that besides achieving reasonable accuracy, the proposed method is 
also a solution to reduce the number of computations. 

Conclusions
This paper presents a new method for analysing FFE by using 

the transformation between fuzzy and random variables. The novel 
formulae for determining equivalent normal random variables are 
established and explored in detail. By using the standard normal 
random variables in the quadratic polynomial regression models and 
selecting the suitable response surface model amongst the regression 
models, reasonable accuracy can be achieved for the responses 
of structures. Simultaneously, by applying suitable experimental 
designs, a reduction in the number of computations is demonstrated. 
A weighting factor of 0.5 is a reasonable selection to calculate the 
responses of structures. Thorough surveys of more complex examples 
will be presented in future research. Additionally, the present study 
will be extended to asymmetric triangular fuzzy numbers.
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