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1. INTRODUCTION

Being as Dark Matter (DM) candidate, nowadays, axion is very attracted subject in
Particle Physics. The axion is a hypothetical CP-odd scalar, protected by a shift symmetry
and derivatively coupled to Standard Model (SM) fields. It is predicted by the Peccei-Quinn
solution to the strong CP problem [1, 2].

Among the beyond SM, the models based on SU(3). x SU(3), x U(1)y (3-3-1) gauge
group [3] have some intriguing properties. It is emphasized that Peccei-Quinn symmetry is
automatically satisfied in the 3-3-1 models [4]. That is why the 3-3-1 models is attractive for
the axion puzzles.

In the framework of the 3-3-1 models, the axion has been studied in the papers [5—-8]. In
[5, 7], the axion is massless field and its mass is generated by quantum gravity effects. In
addition, in diagonalization of square mass matrix for CP-odd scalars, the mixing matrix is
not unitary leading to extra states such as PS, and PS,. In this paper, these eros are corrected.



6 | TRUONG BAI HOC THU B8 HA NOI

2. CONTENT

2.1. Brief review of the model

As usual, fermion content satisfying all the requirements is

=(, ,N)~(1,3-1-3), ~(1,1,-1),
=C. . )~@B3179), =C .-, )~@3,0, (1
. ~(3,1,173), . ~(31,-13),

where a = 2, 3 and a = 1, 2, 3 are family indices. The quantum numbers as given in
parentheses are respectively based on SUQ3).., SUB3), , U (1), symmetries. The U and D

are exotic quarks, while Ny are right-handed neutrinos. The above model is named by the 3-
3-1 model with right-handed neutrinos.
The model with right-handed neutrinos requires three triplets:
~(1,3,-43), ~(1,3,—¥3), ——(1,3,273), )

with expansions as follows

1
ﬁ( + )
=+ )
V2 1 )

] —+ )

= ve :i i( + )

1 ' V2 V2

—( +

VAR

In addition, ones introduce a singlet
1

R
The full potential invariant under 3—3—1 gauge and Z11 Z2 discrete symmetries is

+  + ~(1,1,0).

determined as [5]
= + + + + ( )+ ()
+ )+ C ) )+ C )X )+ C )X ) &
+ C )0 )+ C H)C )+ HC ).

Substitution of (3) into (4) leads to the following constraints at the tree level as follows
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+ + = +—= +—= +—=
2 Oy
+ + = +— +7 +—=0,
®)

+ + = +—= +— +—=0,

2 2 2
+ + — +— +— +—=0,

2 2 2

where L =g, vgv,v,vi.

2.2. Charged scalar sector

In this sector we have two square mass matrices. One of them is as follows: In the base
( , )ones get square mass matrix as

2 2 2 2 -

2 2 2 2

This matrix has one massless G and one massive H  with mass equal to

= 5 . : (7)
From (7) it follows
= )
The physical fields are given as
__cos  sin ©)
~ sin cos '
where
tan =— (10)

In the limit Vp  vpwe have

= : (1)
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In the base (y , ) ones get square mass matrix as
_ 11
2 2 2 2 - -
- =——— 1 1 M
2 2 2 2
This matrix has one massless G = and one massive with mass equal to
_ ’ 13
- 2 * ( )
From (13) it follows
> — (14)
The physical fields are given as
cos  sin
= . , (15)
sin cos
where
tan =— (16)
In the limit vp vy we have
G=X G. (17)
2.3. CP-ODD sector
For CP-odd scalars, in the base (| , | ) ones get square mass matrix as
- —— -— +
4 2 4 2
, = : (18)
—_—— + — e —
4 2 4 2

Diagonalization of matrix in (18) yields one massless scalar G| and one massive field

A1 with mass as follows

= — . . (19)

From (19) it follows
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> — (20)
The physical fields are
_sin cos
~ cos —sin Q1)

Next, in the base (IX3’ Inl, Ip, I(p) we have square mass matrix

C1 1 0 )

v

2
z zn z P z ¢

11

_ 2
=- v, vu, VY M 22)
LI
2
v, VY,
1
UZ

4

Let us diagonalize the matrix in (22). For this aim, we denote

1 1 1 1
:_’ :—’ :—’ = —_— (23)
The the matrix in (22) is rewritten as
[ N> NB NC ND |
2
_ NB B° BC BD (24)

NC BC C* CD
ND BD CD D?

NI

The above matrix has three massless states and one massive with the following eigenvectors
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( )
_213 _EIl ——1 EI
N # N 7 N [
= 0 0 1 EI
> D* | (25)
0 I 0 gI
n D [
3
Iz I¢

Taking eigenvector in the first column of (25) and write rotation matrix

( )
Dy N
C2 C2
_ 0 1 0 O o (26)
0 01 O
Ny B
C, C,
where we denote
= + —=sin —=cos ,tan =—=— (27)
For the limit vy v, we have
=1/

We can check out that

(0 0o o o0 )

0 B’ BC BC,
= 43 % X 43 =—= . 28
2] 0 BC C* CC, (25)

0 BC, CC, C;

2
Here we get one massless state a which is identified to axion and one massive state A,

= coS —sin ,

=sin + coS (29)

From (29), it follows that in the limit

= . (30)
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Summarising the first step

7 a
1
I L
= C43 I , (31)
I, o
1 p A,
In the basis , ,,  we have square mass matrix given in (28). The 3x3 matrix in right-

bottom here has two massless states and one massive as follows
__1011 il __1110 1 _1_!1 (32)

Using the second solution, we have rotation matrix

([ 0)

0 0
0 £ —E 0
SN
o — — 0
C, C, (33)
0 O 0 1
where
11
= + —~ ——
. Therefore:
tan =—~— sin =—,cos =— (34)
Then
(00 0o o )
32 32 00 ’ X (35)
= x X = ]
0 0 C§ C,C,
0 0 CC, C;

Here we have one massless G, and one massive fields A3
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=sin  —cos
. (36)
= + SIN
Here, G2 is Goldstone boson for the Z boson. We have
(1) a
. G
I' z
n | = 43. 32 , 37
I A3 G7
’ A
I 4 2
The 2 x 2 matrix in right-bottom of (35) is easily diagonalized. Let define
tan @ =——— (38)

Then we have one massless G; which is identified as G, and one massive A, fields

= sin — COoS , (39)
= CoS + sin , (40)
where mass of A, is given as
= x 41)
Let us write

1 0 0 0

01 0 0
21= 0 0 cos —sin 0 (42)

0 O sin cos
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( I’ \
V4
Il
then n | = 43, 32. 21 =
I
Vel
I
"’ 43)
sin 0 —COS COS —Ccos sin a
0 sin —cos sin COS CoS G,
0 cos sin  sin —CO0S Sin G,
CcoS 0 cos sin cos sin
A4
For practical analysis
a ( sind, 0 0 coso, ) (p )
V4
G, 0 sin@, cosd, 0 I
G = ) . . . T (44)
/ —cosf cost), —cost,sinf, sind sin@, cosd, sind, I
A, —cos® sinf, cos,cosd, —cosf,sinf, cosb sind, 1,
Note that here we do not have massive states PS, and PS, as in Ref. [? ].
From (44), it follows that in the limitv, v, v, v,
| (43)
Substituting related values into (41) yields
1 1 1 1
= _— 4 — 3+ — (46)
= — (47)
From (46) it follows
Ay, > 0. (48)

Hence, if Ay~ O(1) then A, is very heavy with mass in the range of v,
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Summary: In the CP-odd sector we have 6 fields: two Goldstone bosons for Z and Z',
one axion a, one massless field G; and two massive pseudoscalars A, and A,.

2.4. CP-EVEN sector
There are six CP-even scalars and they separate into two square mass matrices.

Within the constraint conditions in (5), ones get square mass matrix of CP-even scalars
written in the basisof ( , ) as

, = (49)

Diagonalization of matrix in (5) yields one massless scalar G4 and one massive field H{ with
masse as follows

= - . : 50
> (50)
The physical fields are
—sin  co
__ s 0S _ 51)
COS Sin
In the limit , we have R’ = Ga,R,' = H\,G\=1,>,1, = A1, hence
= (52)
Here
1
=—=( + )=— + :
V2 V2

is the Goldstone boson for the X° boson.

Looking at Eqs (41) and (50) we realize that 41 and H; have the same mass and they are
component of y . Hence we can compose them to new massive complex scalar ¢°

1
= — + ,
V2
with mass given in (50).
In the limit 4 one has

X m
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1
* V2 L
\/E%(++ ’ V2 V2

+ +

+  + ) (53)

Thus, at this step we have already determined Goldstone bosons for Z, Z' and neutral bilepton

0 .
X and one massive complex scalar ¢°.

Next let us consider the second part of CP-even scalars. In the basis ( o om ¢), one
has
2 —
2 2 32 > '3 2
+ 2 - e
> 2 2 2 "2 2
(54)
+ + 2 - e~
2 2 2 2 2 2
- - - 2 -
2 2 2 2
In the case of . , ,we have that R, decouples and its mass is predicted to be
2 . (55)
From (55) it follows
1o > 0. (56)

For the future studies, we will identify R¢ to inflaton.

Keeping the next term of order v,v, yields

(2110)2( 0 0 0 )
o Lo L
20” ZUPU”
= (57)
o L L
20 L 20
PN P
0 0 0 2110%

Hence at this step one has one massive state , with mass
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(58)
From (58) it follows
4> 0. (59)
We will identify , = . This is heavy scalar.
It is easily diagonalize matrix in (57) and there are two solutions: one massless G5 and one
massive H,
= —CO0S —sin ,
. (60)
= +sin — COS ,
wheretan =, and the H, mass is given by
( + )
= = 61
> > (61)
To avoid massless state G35, let us diagonalize 2 x 2 matrix in central part of (54), e.g.,
, . (b —q)
_ 2 2 2 _ { b d J
- - (62)
+ 2 -
2 2 2 -d
]
Then we have two massive states  and
= —sin + COS ,
: (63)
= —COS — SIn ,
where
2
tan2 =—— (64)
with masses given by
2 =(+)- (- ) +4 , (65)
2 =(+)—- (—-) +4 . (66)

We can identify ~ as the SM-like Higgs boson h.

Let us consider the limit , then
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= =2 + 2— = —,
=2  +5—=-2 4+ — ©67)
1
= + = +—
2 2 2 2
Hence
- =-7 — —,
(+)=-2 + -, (68)
tan2 = . tan =
a =—= an  =o—
A= 2 + — +4 > + 5
(69)
~ — VBE= —
Substituting (69) into (65) and (66) yields
==, (70)
= E— - (71)
From (70) it follows
<a0. (72)

From (70) it follows that A3 <0 and H3 can be identified to SM Higgs boson h, while H4 is
heavy scalar and A > 0. Note that

i
i

, - . (73)

Hence

0 + + | | | (74)



