TAP CHi KHOA HOC - SO 39/2020 | 37

rechargeable lithium-ion batteries after prolonged cycling, Electrochim. Acta 47 1899-1911.

13. N. Philip, P. Stefano, W. Martin (2013), Interface Investigations of a Commercial Lithium lon
Battery Graphite Anode Material by Sputter Depth Profile X-ray Photoelectron Spectroscopy,
Langmuir 29 5806-5816.

14. Wang, S. Kadam, H. Li, S. Shi, Y. Qi (2018), Review on modeling of the anode solid electrolyte
interphase (SEI) for lithium-ion batteries, Npj Comput. Mater. 4 1-26.

KHAO SAT CAC PAC TRUNG PIEN HOA CUA
PIN LITI-ION THUONG MAI DANG TRU

Tom tit: Pin liti-ion thwong mai dang tru, kiéu dang 26650, cé dung lwong danh dinh
4000 mAh da dwoc thdo do phuc vu nghién ciru cdu tric va thanh phcfn cau tao cua vat
liéu dién cuwc. Céc phép phdn tich nhiéu xa tia X (X-ray), hién vi dién tir quét (SEM), phé
tan xa nang heong tia X (EDX) cho thdy vit liéu dwong cwc la hon hop ciia cdc oxit
LiMn>O4va LiMO; (M = Mn, Co, Ni), vdt liéu am cuc la graphit. Vat liéu duvong cuc duoc
cdu tao tir cdc hat 6xit twong doi dong déu véi dwong kinh trung binh trong khoang tir 1-
3 um, vat lieu am cuc la cac hat graphit voi duong kinh trung binh khodng 10 um. Dung
lwong xd cua pin & chu ky dau tién la 3820 mAh (twong iing khoang 95,5% dung Iu’O’ng
danh dinh). Dung liwong pin giam dan trong cdc chu ki phong, nap tiép theo. Hiéu dién thé
hoat ddng trung binh ciia qud trinh phéng la 3.7 V, gid tri nay twong dong véi hiéu dién
thé hoat dong danh dinh cua pin.

Tir khoa: Pin liti-ion, pin thuong mai, vat liéu am cuc, vat liéu dwong cuc, hop chat liti.
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FOR Gd CRYSTAL: ELECTRONIC STRUCTURE AND
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Abstact: Description and understanding of electronic structures and magnetic properties of
gadolinium Gd have been challenging. Especially, its magnetic phase stability of gadolinium
has been in debate for a long time. In this report, the precise all-electron full-potential
linearized augmented plane wave (FLAPW) method is introduced to study properties of Gd.
Due to strongly localized f-states, the calculation may lead to weird results depending on
defined parameters. The calculations including both 4f-core and 4f-band models are
performed. The analysis of the electronic structure and magnetic phase stability are shown
and discussed. All the results are good agreement with available experiments and previous
theoretical reports.
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1. INTRODUCTION

In modern material science, the economy-efficient approach to explore is using the
density functional theory [1] proposed by Honhenberg, Kohn and Sham. The core of the
theory is Kohn — Sham equation (in atomic unit) [2],

—+ O+ 22w O = (1)

()= | )

is electron density, n the occupation number, vi.[p]|=0Ex[p]/dp the exchange-corelation
potential, and v the external potential. One can solve this equation self-consistenly [3]. The
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seft-consistently converged solution obtained gives us information of the ground states, e.g.
eigenvalues g;, total energy, forces, and etc. [3] Nevertheless, this task is very demanding
and the method to solve is still being developed in different ways, e.g. to deal with exchange
correlation potential [4—6] and to develop numerical methods. Practically, when working on
a magnetic system, many local minima may occur basically which infer multi-solutions.
Some of the solutions are therefore unphysical meaning. Especially, in the case of strongly
localized system such as Gd bulk (the well-known rare earth materials), the calculations may
contain gosh states which originate from the strongly localized f states. As in general, the
electron-nuclear interaction is given by the bare Cloulomb interaction whereas exchange
correlation is very tough to describe. The strongly localized f states affect drastically in both
of them. There are two classes of electrons: valence electrons (participate actively in
chemical bonding), and core electrons (tightly bound to the nuclei, do not participate in
bonding and to be treated as frozen orbitals). There is a third class of electrons called semi-
core electrons. The f electrons usually are in this class. Its wave functions polarizes. There
are two way to treat the problam: pseudopotential methods and all-electron methods. The
precise all-electron full-potential linearized augmented plane wave (FLAPW) method is one
of the most precise all electron method [3—5]. In this report we will present some matrix
elements within FLAPW method. The exchange correlation potential will be treated by using
local density approximation (LDA) [7]. The numerical results will be shown and discussed.

2. CONTENT
2.1. Hamiltonian matrix in FLAPW method

To solve Kohn-Sham equation, orbitals y are written as a linear combination of a
complete basis set, i.e.

()= ( ). (M is dimension of the basis orbitals) 3)

For the specific basis set ¢, in FLAPW, it is chosen by deviding space into interstitial
and muffin-tin regions (here we are interested in 3D bulk calculations, if 2D oe 1D needed
vacuum should be included) [3]

— in the interstitial region: | — | >

= (4)
) O+ ) O )

in the tomicregion muffin-tin | — | <
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In the muffin-tin region, these two radial wave functions are (i) the solutions of the radial
Schrodinger equation, ui, solved at a fixed energy, Ei; (atom unit)

1
L S SRS (=0, 5)

and (ii) their derivatives #,. Yim are spherical harmonics and the coefficients a;» and by

are determined by the requirement that the plane waves and their radial derivatives are
continuous at the muffin-tin boundary. For the potential, there is no shape approximation
assumed [3,8]

interstitial
()= , (6)

() muffin-tin

Accordingly, hamiltonian and overlap matrices consist of two contributions from the
two regions where space is divided, i.e. H=HrtHwmr and S=Si+Swmr in which 7 stands for
“Interstitial” and MT “muffin-tin”

Contribution of muffin-tins. Let denote the quantum states as follow: - -
. The contribution of muffin-tin to the Hamiltonian and overlap matrices are is given by
inserting Egs. (3,4) into Egs. (2) and (1) to obtain

= ()+
™
+ O ()+ OF
= )+
®)
O ()+ O

These contain the following type of matrix elements
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= () () ©)

H can be splited into two parts, the spherical Hy, and the nonspherical contributions
ie.

= + (10)
Note that ¢ ,¢L“ can be chosen to diagonalize Hy,
= : (11)
= s (12)
Taking inner product with [, ° | respectively gives
= | = (13)
=0, | =0, (14)
= ' = L+ = (15)
= e , e = (16)
N
It is noted that the potential is also expanded by using spherical harmonics, i.e.

OO= . ) () (17)

Thus, hamiltonian matrix is obtained

(18)

Where
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= SRR (19)

.= ¢ O -0)

Similarly, the overlap matrix is

(20)

The interstitial contribution. Using basis function (4) for the interstitial region, the
hamiltonian matrix is derived by noting that the kinetic energy is diagonal in momentum
space and the potential is local, diagonal in real space and of convolution form in

momentum space,

The muffin-tin a- and b-coefficients are determined by expanding planewave into
spherical harmonics using Rayleigh expansion, i.e.

— 4 () O, (22)
where =||; = + ; =] |. The requirement of continuity of the wave
functions at the muffin-tin boundary leads the coefficients a and b [9]
= — C ) - o)
e« ),
= — ) - @9
C ) "« ),

With
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(

) O )

(25)

The density therefore can be obtained by tanking inner product from Eq. (2)

2.2. Numerical results

In numberical calculation for Gd pristine crystal, we used hexagonal structure with
lattice constants a =6.89 au and ¢=10.92 au. The star-function cut-off, Gmax, is 11.5. The
plane-wave cut off Kmax is 3.8. The spin polarization has been included. For the k-point
mesh, we use 17x17x9 Monkhorst-Pack grids. The initial spin polarization is provided by
starting magnetic moments of 7.0ug and 7.0us. At first, Gd-4f states are treated as core. In
this model so-called 4f-core model, we vary the lattice constants a and ¢ and calculate the
corresponding total energies. The results are presented in FIG. 1. This calculation shows the
equilibrium lattice constants, i.e. @ = 6.79 au and ¢ = 10.80 au.
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Fig. 1. (a) Crystal structure of Gd and (b) its energy mesh. The minimum value infers the
equilibirum lattice constants.

Table 1. Equilibrium lattice constants and total magnetic moments within
LDA calculation in 4f-core model together with experimental result.

a(au) Hiot(uB)
LDA 6.79 c(au) c/a 7.81
Experiment 6.88 10.92 1.59 7.63
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Fig. 2. Band structure calculation and Density of states within LDA calculation
and 4f-core model

As can be seen, in the 4f-core model, calculation using LDA gives slightly
underestimated equiriblium lattice constants as it does [6,10]. The results still are very well
consistent with experiments and theoretical reports earlier [11]. The magnetic moment has
been reported to be 7.41up whereas our result shows 7.81ug and the experiment result is
7.63uB. Our calculated result is only 2.4% larger than the experimental value.
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Fig. 3. Band structure of Gd in 4f-band model with different Kmax values.
Ghost states result in weird band structures.

To continue, we examine the band structure of Gd. The results are presented in FIG. 2.
As can be seen, 4f bands are disappeared from the valence band structure. It is well agreed
with results reported of Ph Kurz et al. using all-electron FLAPW-FLEUR package [11].
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In 4f-band model in which 4f electrons is treated as valence electrons, by using the
experimental lattice constants, we found that some gosh states occur. These lead to weird
results as shown in FIG. 3. These unrelevant results stem from chosing unappropriate
parameters such as Kmax values and the gosh states appears during self-consistently solving.

Therefore, the parameters invoked must be opted to be very careful. After a number of
tests, here we present the calculations with Gmax= 11.5, Kmax=3.8. We obtained relevant
results, as presented in FIG. 4 for LDA calculation
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Fig. 4. Band structure calculation and DOS within LDA calculation and 4f-band model

As can be seen, within LDA calculation, Gd-4f states localize strongly at around -4.5
eV from the Fermi energy for majority spin and right beside the Fermi energy for the
minority spin. The latter alters the band near the Fermi energy thereby the chemical bonding
and the phase stability of Gd crystal. To take into account the effect of on-site interactions
from f bands, Hubbard U correction is adapted, i.e. LDA+U calculation with the correlation
energies of Ug= 5.0eV; Ja= 1.0eV and Ur= 7.7eV; Ja= 0.7eV [11-17]. The calculated
electronic band structure is presented in FIG. 5. As shown, the on-site interaction with U and
J corrections pushes majority and minority spins away. The majority spin locates at ~ -10.3
eV (deep) below Fermi energy. This explains why 4f-core model works for some cases, e.g.
band structure as presented above, and 4f electrons play as semi-core electrons. The minority
spin is at ~1.8eV above Fermi energy. The calculated results are excellent agreement with
previous publications [11-14,18,19]. Note that all the calculations have been done by
assuming that FM phase is stable. Next step, we will demonstrate that FM ordering is indeed
stable.
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Fig. 5. Band structure calculation and DOS within LDA+ U calculation and 4f-
band model

Table 2. Total energy (TE, in hatree) and energy differences, dE (in meV),
between two phases FM and AFM

Approximation TE, AFM phase TE, FM phase _dE(meV)
_EFM'EAFM
Caleulation I LDA -22545.5176615281 | -22545.5173656716 8.1
LDA+U -22545.3641565677 | -22545.3677646254 -98.2
Caleulation 2 LDA -22545.5176887987 | -22545.5173456476 9.3
LDA+U -22545.3639499519 | -22545.3678762767 -106.8

In order to do this, we carefully consider two sets of calculations. In calculation 1, lattice
constants are taken from Shick et al. [13] and we let x-axis be along [ 110] direction. Numer
of states are 90 of which the highest state is about 54 eV above Er. In calculation 2, lattice
constants are taken from Kurz et al. [11] and x-axis is along [010] direction. The number of
states are 40 of which the highest state is about 19 eV above Er. Basically, these two results
of calculations should not be much different. For each calculation, we align magnetic
moments to be parallel each other for FM and antiparallel for AFM and fix them during the
self-consistent process to search for the minimum energy within both LDA and LDA+U
calculations. The total energies are obtained by solving Eq. (1). We tabulate the results in
Table II. Indeed, there are not much different between the two results of calculations.
Accordingly, the calculated results show that in LDA calculation, the AFM is more stable
with 8~9 meV lower than those of FM. Hower, in LDA+U calculation, the FM phase is more
stable with 98~107meV lower than those of AFM. Our results are well agreement with
results of Harmon el al. [20] in which LMTO+ASA calculation had been performed. And
they found that within LDA calculation the energy difference is 8.2meV/atoms with AFM
stable. In LDA+U calculation, the difference is -56.4meV/atom with FM stable. Shick et
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al. [13] also found that FM is stable with energy different of about 63 meV (even this number
is not clearly indicated for specific configurations in the paper) using LDA+U calculation
within all-electron method. Kurz et al. [11] by using FLAPW-FLUER packages also
demonstrated that the AFM phase is more stable over FM with -69meV in LDA calculation
whereas the FM becomes more stable with energy difference of 34meV in the LDA+U
calculation. By using the self-consistent semi-relativistic TB-LMTO-ASA method, Jenkins
etal. [21] also argued that AFM is stable within LDA calculation with energy difference of
9.2 meV per atom. In another work, they used FP-LMTO method to prove both LDA and
GGA giving AFM stable whereas in LMTO-ASA method, LDA gives AFM stable and GGA
gives FM stable, with the energy difference of about 6mRy [22]. Petersen et al. [23] also
used pseudo-potential method implemented by VASP package to testify that the orbital
moment is very small and in GGA-PBE scheme, the energy different is AE=-7meV/atom
with AFM stable whereas in GGA+U, calculated energy diference is 69 meV/atoms with
FM stable. Our calculated results are excellent agreement with all these publications. And
also 4f bands should be treated as valence bands with the Hubbard correction included, i.e.
+U implementation [13].

3. CONCLUSION

FLAPW method is a very precise computational method to solve the modern material
problems. It can well describe any system without shape approximation within atomic
muffin-tin area, especially for dealing with the system with core structure, e.g. polarized
wave functions. The use of input parameters should be very careful to obtain relevant results
in the f compounds. The calculations applied for Gd show that Gd-4f can be treated either
core, semi-core or valence states in some particular cases. The LDA scheme gives
underestimated equilibrium lattice constants. Beyond this, it predicts excited f states to
localize strongly near Fermi enery thereby the valence band close to Fermi level. Moreover,
LDA calculation leads to AFM stable over FM phase whereas in LDA+U calculation, FM
phase is more stable. This is reason giving rise to LDA+U implemented throughout the study
and it should be invoked in studies of f-electron compounds. All the results from LDA and
LDA+U calculations are well consistent with previous publications, especially for the proof
of magnetic phase stability.
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