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TONG HQP, CAU TRUC MOT SO KETONE A, B- KHONG NO
TU ACETONE VA ALDEHYDE

Tém tiit: Céc ketone o, f3- khéng no co6 hoat tinh rat da dang, nhu khang khucfn, chéng ncfm,
diét ¢6 dai va triv sdu, chong ung thie gan, phoi,... dd dwoc dé cdp trong nhiéu cong trinh
nghién cuu [1,2,3,4,5,6,7]. Ngodi ra, cac ketone o,p- khong no con la loai dan xudt ¢é vai
1ro rat quan trong trong viéc téng hop cac hop chdt chira di vong co hoat tinh rat phong
phii. Bd cé nhiéu nghién ciru tong hop [1,2,3,4,5,6,7,...] va chuyén héa ching thanh cdc
hop chit chira di vong [8, 9, 10,..] cho thdy vai tré quan trong ciia cdc ketone a,f- khong
no. Bai viét nay gidi thiéu két qua nghién civu tong hop, cdu triic mot so ketone a,f- khong
no twr acetone va aldehyde.

Tir khoa: Xeton o, - khéng no, phé IR va phé NMR, cdu triic phdn tir.
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1. INTRODUCTION

In high school, we often study primary problems with basic solutions on arithmetic
properties, equivalent transformations, or acknowledged methods. For example, when
solving a product equation on the real numberset ( ). ( ) = 0, we give the equivalent of
solving two equations () = Qor ( ) = O; or solving a first-degree equation with an
unknown =  where |, ,  Z 0, we divide both sides by and get the solution

= —. Besides, the number sets , , , and also are studied, but the construction of

them is not paying attention. Here we will consider the nature of the solutions of the above
problems by the properties of algebraic structures such as group, ring, integer, and field
properties of the set considered respectively.

2. CONTENT
First we will review some algebraic structures.
2.1. Group, ring and field
A group is aset  together with a binary operation, denote by (*), such that:
1) Associativity: For any , , , we have ( ) = ( ).

2) Identity: There exists an such that = = for any . We
say that is an identity element of

Il
Il
z

3) Inverse: For any , there exists a such that
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say that is an inverse of .
A ring 1s a set with two binary operations (addition and multiplication) such that:

1) is an abelian group with respect to addition ( so that has a zero element, denoted
by 0, and every has an inverse, — ).

ii) Multiplication is associative: ( ) = ( ) forall , |,

iii)) Multiplication distributive over addition:
(+)= + (+) =+ foral , ,

A zero-divisor inaring is an element which “divides 07, i.e., for which there exists
#Z0in suchthat = 0.Inotherhand,if =O0then =0or =0.

Aring , which is commutative (= ), has an identity element (denoted by 1) and
has no zero-divisor (and in which 1 # 0), is called an integral domain.

A field is an integral domain in which every non-zero element is a unit.

A given binary relation ~ on a set X is said to be an equivalence relation if and only if it
is reflexive, symmetric and transitive. That is, for all a, b and ¢ in X:

e a~a. (Reflexivity)
e a~bifand onlyif b ~a. (Symmetry)
e ifa~band b~ cthen a~ c. (Transitivity)

The equivalence class of under ~, denoted , is defined as = { | - }.
The set

/~={] }

is called the quotient set of X by ~.

A field extension / is called a simple extension if there exists an element in E with
= (). The element is called a primitive element, or generating element, for the
extension; we also say that E is generated over by .Inotherhand, isasimple extension

of generated by then it is the smallest field which contains both and
2.2 Product equation

The rationale for explaining the solution of a product equation is the notion of zero-

divisor. For the sets, , , ,and have no zero-divisor so that = O implies =0 or
=0.
Consider the product equation ( ). ( )=0on (or , , ). In fact, this is the
problem of finding (or , , respectively) such that (). ( ) = 0. For each
(or , , respectively) then (), () are elements of (or , , respectively).
For the sets, , , ,and have no zero-divisor so that ( ). ( ) =Oimplies ( ) =0

or ()=0. Reserve, if ()=0or ()=0then (). ()=0 is obviously.
Therefore, ( ). ( ) =0isequivalentto ( )=0or ( )=0.
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The same explanation for the solution of a product equation in the case of two variables,
three variables, etc.

Example 1. Consider the equation ( +3)(2 +4) =0(1)on .Forevery , We
have + 3 2 +3 . Since  has no zero-divisor so that (1) be equivalent to +
3=0o0r2 +4=0,leadto =-—3and = —2 satisfies equation (1).

We have another way to explain equation (1) as follows: The expressions + 3 and
2 + 4 are two elements of the polynomial ring [ ]. Since isafield, [ ]is an integral
domain, so that [ ] has no zero-divisor. Thus (1) is equivalentto +3 =0o0r2 +4=0.

2.3. First degree equation with an unknown and difference between two numbers

The nature of these problems is the existence of the symmetric element ' of an element
in group . If the operation on is a multiplication, we call ' as the inverse of . If the
operation on is an addition, we call ' the opposite element of

If has the symmetric element then we can define the division (dividing by is
multiplying by the inverse element of ) and subtract ( minus equals plus with the
opposite element of ).

Consider , , ,and together with addition, they are groups, so every element has
an opposite element. Therefore, we always solve the problem of finding the difference of
twonumbers and on these sets. The result is the sum of and the opposite element of
thatis, — =+ (— ).

Consider the first-degree equation with an unknown =  with the coefficients |,

, # O(similarto or ). Since , ,and are fields so has an inverse element

Now we multiply both sides by the inverse element of , we get = =-.

2.4. Number sets

In this section, we consider the construction of number sets from the perspective of
algebraic structures.

2.4.1. Integer set

In elementary school teaching, integers are often intuitively defined as the (positive)
natural numbers, zero, and the negations of the natural numbers. However, this style of
definition leads to many different cases (each arithmetic operation needs to be defined on
each combination of types of integer) and makes it tedious to prove that these operations
obey the laws of arithmetic. Therefore, in modem set-theoretic mathematics a more abstract
construction, which allows one to define the arithmetical operations without any case
distinction, is often used instead. The integers can thus be formally constructed as
the equivalence classes of ordered pairs of natural numbers (a,b). Now we will construct the
set of integers

Consider x ={(, )] . } and we define an a binary relation ~ on these pairs
with the following rule: ( , )~(, )ifand only if + = + .Itis easy to check,
reflexive property: ( , )~( , ), symmetric property: if ( , )~(, )then (, )~(, )
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and transitive property: if ( , )~(, )and(, )~(C, )then(, )~(, ). Therefore, ~
is an equivalence relationon % .Set = X /~ isasetof equivalence classes. With

and ( , ) ,we denote = (, ). Now, we equippe two binary operations on
one called addition and the other called multiplication:

( 1 ) + ( ) ) = ( + 1 + )
(.D)C.H)=C + , + )
It is easy to prove  with two binary operations is a commutative ring whose the additive
identity is (0,0) = ( , ) and the multiplicative identity is (1,0) = ( *, ),forall n , the
inverse of ( , )is ( , ) which is denoted —( , ). Now, we prove has no nonzero zero

divisors: if (, ).(, )=( + , + )=(, )then + =+ or( —
)( — ) = 0. Without loss of generality we may assume that — and —
Then we have — =0or — =0,leadto = or = . In case of =
then( , ) =(0,0); and when = then(, )=1(0,0). Thus is an integer domain.
Consider a map
-, (,0).
Since ( ,0) = ( ,0) ifandonlyif = .Hence isan injection. Forall |, , we have

(+)=(C+.,0=0,0+C.0= )+ (),
()= 0=0.0.C.0= () ()

Consequently, is both a homomorphism of the monoids with addition and both a
homomorphism of the monoids with multiplication. Since is an injection, it follows that
is both a monomorphism of the monoids with addition and both a monomorphism of the
monoids with multiplication.

Since (, )=(C,0+(,00=(,0—(,00= ()— () . Hence, forall
elementsin  have the foom ( )— ().

The pair ( , ) defined as above is unique, differing from one isomorphism, meaning
that if there is a pair ( , ) where P is aring and : - is both a monomorphism of
monoids with addition and both a monomorphism of monoids with multiplication, the
elements of P have the form () — (), there exists anisomorphism : -  such that

= . This is evidenced by a map:

-, O=- 0 O-= )

It is tobe noticed that, is a monomorphism. Hence, we can identical element

with element ( ,0) . This leads to . Therefore, every , =(, ),wehave:
if = then =( — ,00= — Andif < then =-(, )=—-( — ,0)=
—( — ). It follows that every ,either or —

The ring above is called ring of integers.
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2.4.2. Rational set

In mathematics at high school, a rational number is a number that can be expressed as
the quotient or fraction — of two integers, a numerator , and a non-zero denominator
Since may be equal to 1, every integer is a rational number. The set of all rational numbers
often referred to as "the rationals", is usually denoted by Q.

In algebraic structures, the set of all rational numbers is constructed as a field. Rational
numbers can be formally defined as equivalence classes of pairs of integers ( , ) such that
# 0, for the equivalence relation defined by ( , )~ (, )if,andonlyif = . With
this formal definition, the fraction — becomes the standard notation for the equivalence class
of ( , ). Now we will construct a field of rational numbers from an integer ring:

Consider x ={(, )] , ,  # 0}, where is the set of nonzero integer
numbers. We define anabinary relation ~ on these pairs with the following
rule:( , )~(, )ifand only if . = . .Itis easy to check that ~ is an equivalence
relationon X .Set = X /~isthe set of equivalence classes.

With and ( , ) , we denote =(, ). Now, we equippe two binary
operations on , one called addition and the other called multiplication:

(.)+C.)=C + . ). )0 )=C. )

It is easy to prove  with two binary operations above is a field whose the additive
identity is (0,1) and the multiplicative identity is (1,1). Consider the map

-, (,1).
It is clear that  is a ring monomorphism. Hence, we can identical element with
element ( ,1) . This leads to . And every can be written

=(.)=0.D.aa)= () () =

The pair ( , ) defined as above is unique, differing from one isomorphism, meaning

that if there is a pair ( , ) where Pis a field and : - is a ring monomorphism, the
elements of P have the fom = () () , , , #0, there exists an
isomorphism

-, () (O) () )

suchthat . =

The fact that is the field of quotients of the integral domain of integers. The field ,
which is constructed above, is called field of rational numbers. Every rational number may

be expressed in the form —, which is called fraction, where a and b are integer numbers and

# 0. Then two fractions are equal, write
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—=—ifand only if ;
two fractions are added as follows:
—_—t - =

and the rule for multiplication is:

2.4.3. Real set

In basis mathematics, a real number is a value of a continuous quantity that can represent
a distance along a line. The real numbers include all the rational numbers, such as the integer
—3 and the fraction 5/4, and all the irrational numbers, such as Vv3,V4, , . There are also
many ways to construct the real number system, for example, starting from natural numbers,
then defining rational numbers algebraically, and finally defining real numbers as
equivalence classes of their Cauchy sequences or as Dedekind cuts, which are certain subsets
of rational numbers. Another possibility is to start from some rigorous axiomatization of
Euclidean geometry (Hilbert, Tarski, etc.) and then define the real number system
geometrically. All these constructions of the real numbers have been shown to be equivalent,
that is the resulting number systems are isomorphic. In this section, we describe a
constructive way set of real numbers from Cauchy sequences.

Let be the set of all Cauchy sequences of rational numbers. That is, sequences
, 4., .. of rational numbers such that for every rational > 0, there exists an
integer N such that for all natural numbers , > wehave| — |<

Cauchy sequences { }and{ }can be added and multiplied as follows:

{ y+{ 3={ + }{ ¥ }={  }

It is easy to prove  with two binary operations above is a commutative ring whose the
additive identity is {0}  and the multiplicative identity is {1} . And subset

={} [llm =o

is an ideal of X. Therefore, the quotient / is a field. The inverse of nonzero elements
={ }={ }+ / is{ } / where
0 <

— =>

The field / , which is denoted by , is called field of real numbers.



