

Tạp chí Nghiên cứu khoa học

ĐẠI HỌC SAO ĐỎ
SCIENTIFIC JOURNAL - SAO DO UNIVERSITY

P. ISSN 1859-4190
E. ISSN 2815-553X

Số 3 (91)
2025

P. ISSN 1859-4190
E. ISSN 2815-553X

■ Tổng Biên tập

TS. Đỗ Văn Đỉnh

■ Phó Tổng biên tập

TS. Nguyễn Thị Kim Nguyên

■ Thư ký Tòa soạn

PGS.TS. Ngô Hữu Mạnh

■ Hội đồng Biên tập

TS. Nguyễn Thị Kim Nguyên - Chủ tịch Hội đồng
GS.TS. Phạm Thị Ngọc Yến
PGS.TSKH. Trần Hoài Linh
PGS.TS. Nguyễn Văn Liễn
GS.TSKH. Thân Ngọc Hoàn
GS.TSKH. Bành Tiên Long
GS.TS. Nguyễn Đức Toàn
PGS.TS. Lê Thu Quý
GS.TS. Lê Anh Tuấn
GS.TS. Đinh Văn Sơn
PGS.TS. Trương Thị Thủy
PGS.TS. Nguyễn Thị Bất
GS.TS. Đỗ Quang Kháng
PGS.TS. Ngô Sỹ Lương
PGS.TS. Khuất Văn Ninh
GS.TSKH. Phạm Hoàng Hải
PGS.TS. Đoàn Ngọc Hải
PGS.TS. Nguyễn Ngọc Hà
GS.TS. Yu Ming Zhang
GS.TS. Nguyễn Văn Anh

■ Ban Biên tập

TS. Vũ Văn Đông - Trưởng ban
ThS. Đoàn Thị Thu Hằng - Phó Trưởng ban

■ Editor-in-Chief

Dr. Do Van Dinh

■ Vice Editor-in-Chief

Dr. Nguyen Thi Kim Nguyen

■ Office Secretary

Assoc.Prof.Dr. Ngo Huu Manh

■ Editorial Board

Dr. Nguyen Thi Kim Nguyen - Chairman

Prof.Dr. Pham Thi Ngoc Yen
Assoc.Prof.Dr.Sc. Tran Hoai Linh
Assoc.Prof.Dr. Nguyen Van Lien
Prof.Dr.Sc. Than Ngoc Hoan
Prof.Dr.Sc. Banh Tien Long
Prof.Dr. Nguyen Duc Toan
Assoc.Prof.Dr. Le Thu Quy
Prof.Dr. Le Anh Tuan
Prof.Dr. Dinh Van Son
Assoc.Prof.Dr. Truong Thi Thuy
Assoc.Prof.Dr. Nguyen Thi Bat
Prof.Dr. Do Quang Khang
Assoc.Prof.Dr. Ngo Sy Luong
Assoc.Prof.Dr. Khuat Van Ninh
Prof.Dr.Sc. Pham Hoang Hai
Assoc.Prof.Dr. Doan Ngoc Hai
Assoc.Prof.Dr. Nguyen Ngoc Ha
Prof.Dr. Yu Ming Zhang
Prof.Dr. Nguyen Van Anh

■ Editorial

Dr. Vu Van Dong - Head
MSc. Doan Thi Thu Hang - Deputy Head

Dịa chỉ Tòa soạn:

Trường Đại học Sao Đỏ.

Số 76, Nguyễn Thị Duệ, KDC Thái Học 2, P. Chu Văn An, TP. Hải Phòng.

Điện thoại: (0220) 3587213, Fax: (0220) 3882 921, Hotline: 0912 107858/0936 847980.

Website: <http://tapchikhcn.saodo.edu.vn/> Email: tapchikhcn@saodo.edu.vn.

Giấy phép xuất bản số: 620/GP-BTTTT ngày 17/9/2021 của Bộ Thông tin và Truyền thông.

In 2.000 bản, khổ 21 x 29,7cm, tại Công ty TNHH in Tre Xanh, cấp ngày 17/02/2011.

TẠP CHÍ NGHIÊN CỨU KHOA HỌC ĐẠI HỌC SAO ĐỎ

TRONG SỐ NÀY Số 3(91) 2025

LIÊN NGÀNH ĐIỆN - ĐIỆN TỬ - TỰ ĐỘNG HÓA

Phương pháp phân loại sâu bệnh cho đồng lúa bằng máy bay không người lái và kỹ thuật học sâu	5	Hà Minh Tuân Phạm Đức Khẩn Lê Ngọc Hòa Nguyễn Thị Sim
Ứng dụng thuật toán nhận diện vật thể YOLOv11 và sinh trắc vân tay, đề xuất mô hình cổng tự động nhà xe học sinh, sinh viên	11	Lý Quang Minh Phạm Như Phẩm Hồ Thị Dung
Nghiên cứu ứng dụng thị giác máy tính để tự động hóa công đoạn kiểm tra mạch PCB	18	Nguyễn Ngọc Đức Hà Nhật Tiến Dương Đoàn Văn Khánh Phạm Thành Đạt Vũ Trường Hải
Phát triển hệ thống phát hiện không thắt dây an toàn đúng quy định trên ôtô dựa trên mạng YOLOv11	25	Hoàng Thị An
Đô thị thông minh với sự quản lý giám sát của cảm biến IoT	32	Lê Thị Thanh Bình
Khung nhận dạng hai giai đoạn để kiểm tra ngoại quan các sản phẩm đa thành phần	35	Hà Minh Tuân Lê Ngọc Hòa Nguyễn Trường Huy Nguyễn Thị Việt Hương

LIÊN NGÀNH CƠ KHÍ - ĐỘNG LỰC

Nghiên cứu ảnh hưởng của thông số chế độ cắt đến độ nhám bề mặt khi gia công thép không gỉ S136 trên máy phay CNC	41	Mạc Thị Nguyên Đào Văn Kiên
Nghiên cứu ảnh hưởng của chiều dài mũi may, chiều cao trực vít và chiều cao thanh răng đến biến dạng đường may tra khóa giọt lệ	50	Bùi Thị Loan Nguyễn Thị Hồi
Ảnh hưởng mật độ mũi may, chi số chỉ và số lớp vải đến hệ số tiêu hao chỉ trên đường may 301 và 401	57	Tạ Văn Hiển Nguyễn Thị Hiền
Đánh giá hiệu quả bộ giảm chấn kết cầu đòn hồi nhót trong kiểm soát rung động địa chấn và gió	63	Dương Thị Hà

NGÀNH KINH TẾ

Nghiên cứu các nhân tố ảnh hưởng đến ý định khởi nghiệp của 70 Vũ Mạnh Cường
thanh niên khu vực Hải Dương cũ (thành phố Hải Phòng) Nguyễn Thị Thủy
Lương Thị Hoa

Đào tạo nguồn nhân lực cho các khu công nghiệp tỉnh Hải Dương 76 Nguyễn Thị Kim Nguyên
cũ (nay thuộc thành phố Hải Phòng): Thực trạng và mô hình đề xuất Nguyễn Thị Nhan

Các yếu tố ảnh hưởng đến sự hài lòng của người tiêu dùng khi 82 Vũ Mạnh Cường
mua hàng trên TikTok Shop tại Thành phố Hà Nội Nguyễn Thị Ngọc Mai
Lê Thị Huyền
Đào Thị Kim Tuyến

Nghiên cứu việc thực hiện trách nhiệm và nghĩa vụ thuế của 89 Đinh Thị Kim Thiết
doanh nghiệp nhỏ và vừa ở Việt Nam: Góc nhìn từ số liệu quyết toán Nguyễn Hải Hà
thuế và xử phạt vi phạm

CSR và ý định mua hàng của thế hệ Gen Z tại Việt Nam: Bằng chứng 95 Vũ Mạnh Cường
từ ngành Thời trang Hoàng Thị Hoa
Hoàng Thị Thu Trang

LIÊN NGÀNH TRIẾT HỌC - XÃ HỘI HỌC - CHÍNH TRỊ HỌC

Chuyển đổi số trong dạy học các môn Lý luận chính trị tại Trường 102 Nguyễn Mạnh Tuởng
Đại học Sao Đỏ hiện nay

Xây dựng gia đình văn hóa Việt Nam trong thời kỳ hội nhập toàn cầu 106 Phùng Thị Lý

Nhận thức và vận dụng chủ nghĩa xã hội khoa học ở Việt Nam hiện nay 111 Nguyễn Thị Nhan
Nguyễn Thị Nga

Giáo dục đại học trong nền kinh tế số ở Việt Nam hiện nay 118 Phạm Xuân Đức

Tư tưởng chính trị của Ngô Thị Nhậm, ý nghĩa đương thời và giá trị 123 Phạm Văn Dụ
thời đại

TITLE FOR ELECTRICITY - ELECTRONICS - AUTOMATION

Disease classification method for rice fields using drones and deep learning technique	5	Ha Minh Tuan Pham Duc Khan Le Ngoc Hoa Nguyen Thi Sim
Applying object recognition algorithm YOLOv11 and fingerprint biometrics, proposing an automatic gate model for student parking lots	11	Ly Quang Minh Pham Nhu Pham Ho Thi Dung
Research on applying computer vision for automating PCB inspection processes	18	Nguyen Ngoc Duc Ha Nhat Tien Duong Doan Van Khanh Pham Thanh Dat Vu Truong Hai
An automobile seatbelt non-compliance detection system developed with the YOLOv11 network	25	Hoang Thi An
Smart city with IoT sensor monitoring management	32	Le Thi Thanh Binh
A two-stage identification framework for visual inspection of multi-component products	35	Ha Minh Tuan Le Ngoc Hoa Nguyen Truong Huy Nguyen Thi Viet Huong

TITLE FOR MECHANICAL AND DRIVING POWER ENGINEERING

Study on the effect of cutting parameters on surface roughness during CNC milling of S136 stainless steel	41	Mac Thi Nguyen Dao Van Kien
Study on the influence of stitch length, screw height and gear bar height to on zipper stitch deformation	50	Bui Thi Loan Nguyen Thi Hoi
The influence of stitch density, thread count and number of fabric layers on the sewing thread consumption coefficient on stitch 301 and 401	57	Ta Van Hien Nguyen Thi Hien
Evaluate the effectiveness of viscous elastic dampers in controlling seismic and wind-induced vibrations	63	Duong Thi Ha

SCIENTIFIC JOURNAL SAO DO UNIVERSITY

CONTENTS

No 3(91) 2025

TITLE FOR ECONOMICS

Research on the factors affecting entrepreneurial intentions among 70 Vu Manh Cuong
the youth in the old Hai Duong area (Hai Phong city) Nguyen Thi Thuy
Luong Thi Hoa

Training human resources for Industrial zones in the former 76 Nguyen Thi Kim Nguyen
Hai Duong province (now part of Hai Phong city): Current situation Nguyen Thi Nhan
and proposed, model

Factors affecting consumer satisfaction when shopping on TikTok 82 Vu Manh Cuong
shop in Hanoi city Nguyen Thi Ngoc Mai
Le Thi Huyen
Dao Thi Kim Tuyen

Research on tax compliance of small and medium enterprises 89 Dinh Thi Kim Thiet
in VietNam: Perspectives from tax settlement data and violation Nguyen Hai Ha
penalties

CSR and purchase intention of generation Z in Vietnam: Evidence 95 Vu Manh Cuong
from the fashion industry Hoang Thi Hoa
Hoang Thi Thu Trang

TITLE FOR PHILOSOPHY - SOCIOLOGY - POLITICAL SCIENCE

Digital transformation in teaching political theory subjects at Sao Do 102 Nguyen Manh Tuong
University today

Building Vietnamese cultural families in the period of global integration 106 Phung Thi Ly

Theoretical and practical values of scientific socialism in the 111 Nguyen Thi Nhan
construction of a fair, democratic and civilized society in Vietnam today Nguyen Thi Nga

Higher education in the digital economy in Vietnam now 118 Pham Xuan Duc

Ngo Thi Nham's political thought, contemporary significance and 123 Pham Van Du
contemporary values

A two-stage identification framework for visual inspection of multi-component products

Khung nhận dạng hai giai đoạn để kiểm tra ngoại quan các sản phẩm đa thành phần

Ha Minh Tuan*, Le Ngoc Hoa, Nguyen Truong Huy, Nguyen Thi Viet Huong

*Corresponding Author: minhtuanha031@gmail.com

Sao Do University

Received date: 13/01/2025

Accepted date: 21/4/2025

Published date: 29/8/2025

Abstract

Currently, object detection techniques have not achieved sufficient accuracy for direct application in the visual inspection of complex products due to the diversity in shapes, sizes, and types of product abnormalities. To overcome this limitation, the paper proposes a two-stage identification framework to enhance the effectiveness of visual inspection. First, from the original image containing multiple objects, each object is detected and extracted as small patches. These images are then preprocessed and further analyzed using a classification model in a second prediction step. By inspecting each product through these two stages, the proposed technique significantly improves abnormal detection accuracy. Experimental results demonstrate that the proposed method not only enhances reliability but also reduces error rates, affirming its potential for practical application in industrial production.

Keywords: Visual inspection; object detection; two-stage identification; image classification; deep learning.

Tóm tắt

Hiện nay, các kỹ thuật phát hiện đối tượng chưa đạt được độ chính xác đủ cao để áp dụng trực tiếp vào việc kiểm tra ngoại quan các sản phẩm phức tạp, do sự đa dạng về hình dạng, kích thước và các loại lỗi của sản phẩm. Để khắc phục hạn chế đó, bài báo này đề xuất một khung nhận dạng hai giai đoạn nhằm nâng cao hiệu quả kiểm tra ngoại quan. Đầu tiên, từ hình ảnh gốc chứa nhiều đối tượng, từng đối tượng được phát hiện và tách riêng thành các ảnh nhỏ. Sau đó, các ảnh này được tiền xử lý và tiếp tục dự đoán lần nữa thông qua một mô hình phân loại. Với việc mỗi sản phẩm được kiểm tra qua hai giai đoạn như vậy, kỹ thuật mới này đã cải thiện đáng kể độ chính xác trong phát hiện lỗi. Kết quả thí nghiệm cho thấy phương pháp đề xuất không chỉ tăng cường độ tin cậy mà còn giảm thiểu tỷ lệ lỗi, khẳng định tiềm năng ứng dụng thực tế trong sản xuất công nghiệp.

Từ khóa: Kiểm tra ngoại quan; phát hiện đối tượng; nhận dạng hai giai đoạn; phân loại ảnh; học sâu.

1. INTRODUCTION

In industrial companies, visual inspection of products plays a crucial role in ensuring quality before they are released to the market. This process helps detect defects such as scratches, dimensional inaccuracies, or assembly errors to meet strict product quality standards. However, traditional manual inspection methods have revealed several limitations, including low accuracy, low inspection efficiency, and susceptibility to worker fatigue during shifts.

The diversity in product characteristics, including complex details like plastic or metal materials, glossiness and reflectivity, poses significant challenges for computer vision-based inspection techniques.

Reviewers: 1. Prof.Dr. Tran Hoai Linh
2. Dr. Do Van Dinh

These factors increase the complexity of developing automated visual inspection systems.

In recent years, machine learning techniques have been widely applied in product visual inspection due to their automation capabilities and quick adaptability. However, despite achieving notable results, the accuracy of current systems remains insufficient to meet the stringent requirements of industrial production.

In companies manufacturing consumer electronic products such as Wi-Fi routers, switches, and others, accessory boxes accompanying the products play a crucial role in ensuring customer convenience during installation, inspection, and maintenance. It is essential to guarantee the completeness, quality, and correct positioning of accessories in the box, especially for automated assembly systems. As illustrated in Figure

1, these accessory boxes contain 23 different items. They are made from various materials such as plastic, metal, and foam, with differing colors. These properties cause variations in reflectivity in the images captured by visual inspection devices across different shots. This presents a significant challenge for automated inspection systems. Previous techniques only directly detected these components, including their normal and abnormal states. As a result, these techniques were at risk of falsely detecting small, highly reflective objects. If this problem were not addressed, these abnormalities would reach customers, damaging the company's reputation and causing failures in subsequent production lines in which these products served as materials. Therefore, it is necessary to study a new technique to improve the accuracy of multi-component product inspection.

To overcome these challenges, this paper proposes a two-stage identification framework leveraging deep learning models to enhance accuracy in product visual inspection. First, images of the products in different scenarios are collected using a visual inspection device. These images are then selected to form the dataset for the YOLOv8 object detection model. In the second stage, images of individual product details are grouped and used to train the SVM image classification model. During the visual inspection process, images of the product box are analyzed by the object detection model in the first stage. Each detected detail is subsequently classified by the SVM model in the second stage. The final inspection results are displayed on a screen, with abnormal positions highlighted in the image. Compared with previous direct object detection techniques, the proposed technique adds a classification stage, which significantly improves the accuracy of visual inspection equipment.

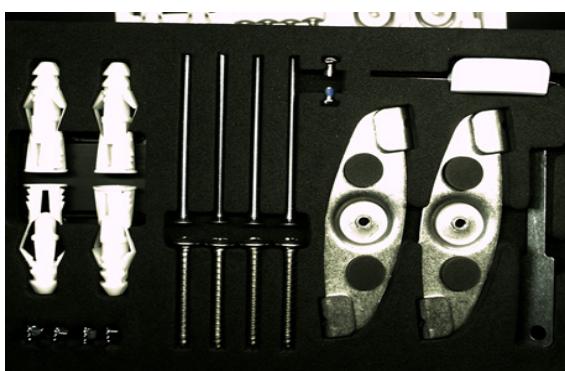


Figure 1. Illustration of wifi accessory box product

2. RELATED WORKS

Product inspection or disease diagnosis techniques based on computer vision have been extensively researched and applied to date. Studies often focus on using machine learning and deep learning models. Each of these has its own advantages and

disadvantages. Below is an analysis and evaluation of several studies related to this paper.

In [1] and [2], both papers focus on analyzing the YOLO model, particularly the latest version, YOLOv8, and emphasize its outstanding advantages in speed and accuracy for object detection. In [1], Vijayakumar provides a detailed analysis of YOLOv8's improvements and compares it with other models such as Faster RCNN, SSD and RetinaNet, while also clarifying its applications in fields like robotics, healthcare, and surveillance. Meanwhile, in [2], Sohan et al, take a more general approach, offering a comprehensive overview of the evolution of the YOLO model series from the first version to YOLOv8, including architectural analysis, performance metrics, and post-processing methods. Both papers affirm that YOLOv8 is an excellent solution for object detection due to its fast inference capabilities and high accuracy, effectively meeting practical requirements.

In [3-5], all three papers focus on improving the YOLOv8 model to enhance accuracy, reduce computational complexity, and increase inference speed to meet practical application demands. In [3], the paper focuses on lightweight applications in agriculture with an improved algorithm utilizing DSConv, DPAG, and FEM, achieving a mAP accuracy of 93.4%, reducing the model size from 22M to 16M, and reaching a speed of 138.8 FPS, but it is limited to narrow domains. In [4], the improved YOLOv8 technique with modules such as Faster-C2f, Rep-Fasterblock, and Sim-SPPF helps reduce parameters (by 21%-54.5%) while maintaining accuracy (84.2% on VOC, 42.1% on MSCOCO) with a speed of 100-108 FPS; however, performance may decrease on complex datasets. In [5], the authors introduce an intelligent fire detection system (SFDS) applying YOLOv8, integrating IoT, Fog, and Cloud to collect and process real-time data, achieving 97.1% accuracy, but requiring complex infrastructure and high costs. The commonality among the papers is leveraging YOLOv8 to meet diverse requirements, from fire detection and real-time performance improvement to lightweight applications for agricultural robots. Improvement techniques include parameter reduction, backbone network enhancements, attention strengthening and multi-scale processing efficiency improvement. These advancements not only ensure high performance but also expand YOLOv8's application potential across various fields.

Object detection and image classification are two critical domains of deep learning, each with its own applications. Object detection models, such as YOLOv8, are used to identify and locate multiple objects within an image, often applied in surveillance and autonomous vehicles. In contrast, image classification

primarily assigns labels to entire images and is widely used in agriculture, healthcare, and data management. Both fields have witnessed significant advancements through deep learning. In [6] and [7], the authors focus on the field of image classification, emphasizing the role of deep learning and modern neural networks in enhancing efficiency. In [6], the authors delve into a detailed evaluation of performance, while in [7], Chen provides a comprehensive overview of CNNs and current research trends. Both papers make significant contributions to the understanding and application of deep learning models in image classification.

SVM models and deep learning both play crucial roles in image classification but exhibit clear differences in capabilities and applications. SVM, with its solid mathematical foundation, is suitable for small-scale problems and structured data, achieving high accuracy in fields such as face recognition, disease diagnosis, and genetic data classification. However, SVM's performance diminishes when handling large or unstructured datasets and is highly dependent on kernel selection and optimal parameter tuning. On the other hand, deep learning models like CNN excel due to their ability to automatically extract and represent features, particularly effective for large and diverse datasets, though they require substantial computational resources and long training times. Papers [8-11] have highlighted the strengths and weaknesses of SVM, emphasizing its high performance in applications such as breast cancer prediction with ensemble methods and its potential for improvement through variants like Twin SVM or Lagrangian SVM. However, they also point out that deep learning remains the optimal choice for complex and large-scale data.

From the above analysis, it can be seen that YOLOv8 stands out with its fast processing speed and ability to accurately detect and localize components in images, but it has limitations in detailed classification of physical features. Meanwhile, SVM excels at feature-based classification, making it suitable for anomaly detection but unable to directly handle object detection tasks. Combining these two models leverages the strengths of both: YOLOv8 detects and extracts image regions containing components, while SVM analyzes detailed physical features to check for anomalies, making it particularly effective for multi-component products with diverse physical properties.

3. SYSTEM CONFIGURATION

To achieve the goal, we used an industrial camera with a resolution of 2448×2048 pixels to capture images of the products. To enrich the dataset, the images of 500 different products were collected. The data processing system was a desktop computer equipped with an Intel Core i7-8700 processor, 16GB RAM, and an NVIDIA

GeForce RTX 2070 graphics card. Additionally, the image capturing process was conducted in a tightly controlled environment to minimize interference factors such as ambient light or unwanted obstructions.

The camera was securely mounted on a fixed stand with precisely aligned angles to capture clear images from various perspectives. To increase the diversity of the dataset, the products were arranged in different ways, such as changing positions, angles, or using various backgrounds. This approach helps the machine learning model become familiar with multiple variations of the products in real-world scenarios, thereby improving the accuracy during inspection.

Furthermore, the data processing system was optimized to handle large volumes of collected images quickly and efficiently. The NVIDIA GeForce RTX 2070 graphics card not only accelerated the model training process but also supported complex calculations in deep learning, ensuring optimal performance at every stage of the project.

4. METHODOLOGIES AND DATA

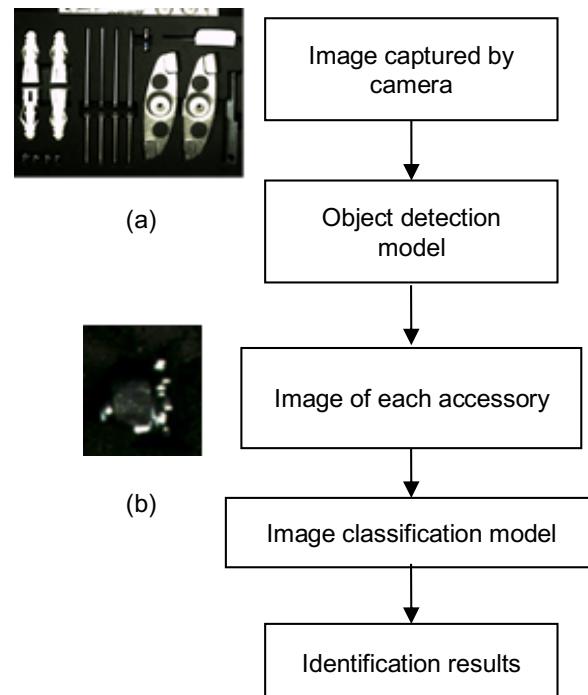


Figure 2. Illustration of the proposed method:
(a) Original image; (b) Accessory image

As mentioned above, due to the inconsistency of the accessories to be inspected and the variation in their reflectivity and color between captured images, conventional object detection models like YOLOv8 fail to achieve the required accuracy. To improve this, a two-stage identification framework proposed in this paper is illustrated in Figure 2. First, images captured by the visual inspection device are processed by the object detection model in stage one. After individual

sub-images containing the corresponding accessories are extracted from the original image, they are fed into an SVM image classification model for identification in stage two. Finally, the identification results are displayed on the computer screen.

4.1. Object detection and extraction

The original dataset, captured by the camera of the visual inspection device, consists of 500 images. Among them, 52 images were randomly selected as the test set. To enrich the dataset, data augmentation techniques such as contrast adjustment, zooming, and noise addition were applied to the remaining images. As a result, the final dataset contains 5000 images. To ensure high efficiency and accuracy during the model training process, the dataset was reasonably divided into subsets, including training, validation sets, with corresponding ratios of 8:2. This division is essential to achieve specific objectives in each stage of model training and evaluation. The training set accounts for 80% of the data. This is the primary dataset used for model training. The validation set (20% of the data): This set is used to evaluate the model's performance during training, helping to adjust hyperparameters and minimize overfitting.

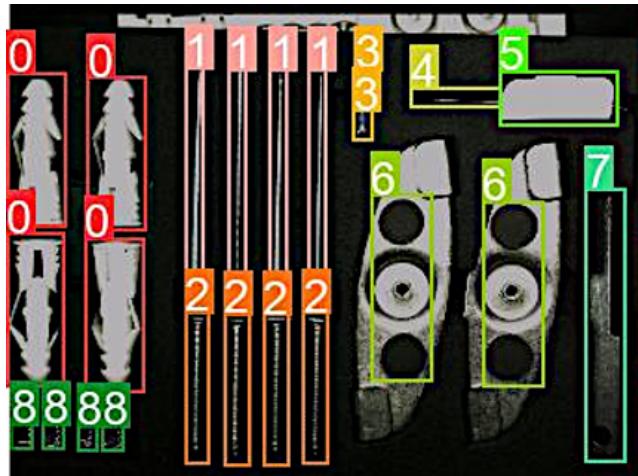


Figure 3. Illustration of data labeling technique for object detection model

The images in training set and validation set were meticulously labeled using the LabelImg tool to clearly define the location and type of accessories in each image. Figure 3 illustrates the labeling technique used in this study, where each accessory is labeled according to its specific type. This allows the model to detect different types of accessories accurately and comprehensively. To ensure the ability to recognize accessories within the product box, the accessories were divided into nine groups numbered from 0 to 8, including wall plugs, long bolts, short bolts, screws, nuts, brackets, caps, hex keys, and sticks. This grouping approach enables the object detection

model to clearly identify and distinguish each type of accessory, thereby improving the accuracy of the product's visual inspection.

Currently, many object detection models have been introduced; however, due to its outstanding advantages in real-time processing speed and accuracy, YOLOv8 was chosen for use in this study. For training and testing the models in this paper, we use the Python programming language and the PyTorch framework. Python is a widely used and powerful language with a rich ecosystem, allowing for flexible implementation of deep learning algorithms. PyTorch is chosen for its strong GPU support, which accelerates the training process, as well as its intuitive and easy-to-use syntax, making it suitable for both research and real-world deployment.

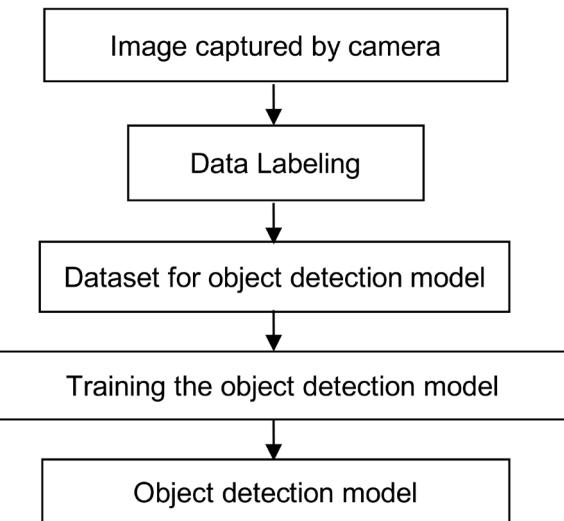


Figure 4. Flowchart of object detection model training process

Figure 4 illustrates the training steps for this model. Before starting the training process, the hyperparameters were set, including a batch size of 24, a learning rate of 0.001 and 100 training epochs. During training, the input data, including images and their labels, were fed into the model. After each batch, the gradient of the loss function is computed and used to update the model weights. Additionally, optimizers are also used to improve the learning process. At this stage, the model learns features and patterns from the data to optimize internal parameters, thereby improving its object detection capability. After completing the training process, the testing set was used to evaluate the model's generalization ability on unseen data. This ensures that the model can perform effectively and accurately in real-world scenarios.

4.2. Identifying objects in images

The dataset for the image classification model comprises images containing individual accessories

extracted from the original images. These accessories are categorized into 9 groups, numbered from 0 to 8, and stored in corresponding folders. Each group is further divided into two subfolders containing two types of images: Normal and Abnormal for each type of accessory, as illustrated in Figure 5.

Figure 5. Illustration of images in the dataset of the image classification model: (a) Normal Image; (b) Abnormal Image

The original dataset of the classification model consists of 10300 images. To enhance data diversity, image processing techniques such as left shift, right shift, zoom, contrast adjustment and brightness modification were applied. After data augmentation, the final dataset for classification model, including 103000 images, was split into training and testing sets in a 9:1 ratio, ensuring balance and sufficient representation for both training and evaluation phases of the model.

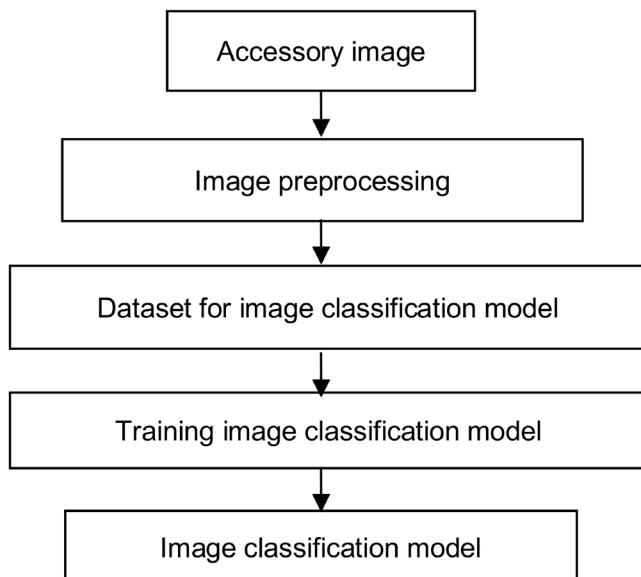


Figure 6. Flowchart of image classification model training process

During the training process of the SVM model, the `sklearn.svm.SVC` class was utilized with default parameters such as `C=1.0, kernel='rbf', gamma='scale'`, and other options to optimize classification performance. To find the best hyperparameters for the model, the `GridSearchCV` method was applied with the parameter set `param_grid={'C': [0.1, 1, 10, 100], 'gamma': [0.0001, 0.001, 0.1, 1]}`. This method helps select the optimal values for the `C` and `gamma` parameters, ensuring the model achieves the highest performance.

After completing the training process, the SVM model was used to classify the small images containing individual accessories extracted from the test set images by the object detection model. Based on the identification results, the visual inspection system displays the final output on the computer screen, marking abnormal locations and providing detailed information about the status of the accessories.

5. EXPERIMENTAL RESULTS

Once the two models were trained, they were integrated into our visual inspection software. The experimental results are illustrated in Figure 7. When applying the method in [5], most accessories were correctly recognized. However, for small accessories with highly variable reflective properties between images, many cases were misclassified. Specifically, the Abnormal state of these accessories was often misclassified as Normal. In contrast, with the two-stage identification framework proposed in this paper, after the accessories were extracted from the original images in the first stage by YOLOv8, their state was further examined in the second stage. As a result, the misclassification caused by reflections was significantly mitigated, improving the overall accuracy of the system.

To evaluate the performance of the proposed method in product visual inspection, 52 test images were used. Among these, 26 images contained accessories in an Abnormal state, while the remaining images were Normal. Also, to evaluate the accuracy, this paper employs three metrics: Precision (Pre), Recall (Re), and Accuracy (Acc). These metrics are defined respectively by Equations (1), (2) and (3).

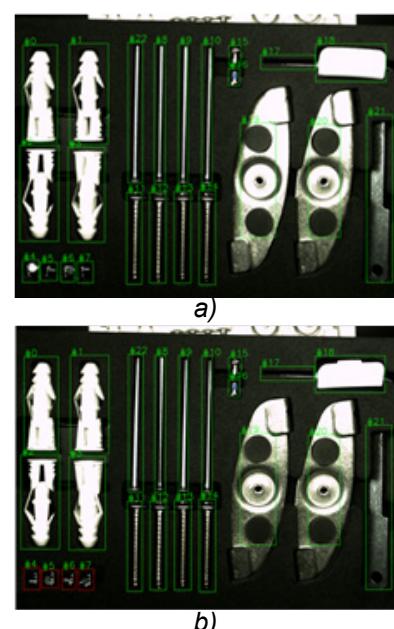


Figure 7. Comparison of experimental results with different methods: (a) Proposed method; (b) Method in [5]

$$Pre = \frac{TP}{TP + FP} \quad (1)$$

$$Re = \frac{TP}{TP + FN} \quad (2)$$

$$Acc = \frac{TP + TN}{TP + FP + TN + FN} \quad (3)$$

Where:

True Positive (TP) represents the number of abnormalities correctly identified;

False Positive (FP) represents Normal images misclassified as Abnormal, and False Negative (FN) represents the number of images containing abnormalities that were not identified.

True Negative (TN) represents the number of Normal images correctly identified.

The comparison of the accuracy of the different methods is presented in Table 1. It can be observed that for the method in [5], the number of misclassified images remains high, resulting in lower accuracy. In contrast, with the proposed method, all images containing abnormalities were correctly identified. Note that one Normal image was misclassified as Abnormal, meaning that inspection staff would need to recheck the image to confirm the presence or absence of abnormalities. However, this is a non-critical and acceptable error. Experimental results demonstrated that the proposed method achieved significantly higher overall accuracy, effectively addressing the issue of misidentification. However, due to the use of two deep learning models for inspecting, this method requires the device to have a core i7 configuration and at least 8GB of RAM to operate in real time.

Table 1. Evaluation of the accuracy of the proposed method

Method	TP	FP	TN	FN	Pre	Re	Acc
Ours	26	1	25	0	0.96	1.00	0.98
Method in [5]	23	2	24	3	0.92	0.88	0.90

6. CONCLUSION

This paper proposed a two-stage identification framework combining the YOLOv8 object detection model and the SVM image classification model to improve the accuracy of visual inspection in product quality control. This approach outperforms traditional object detection techniques by accurately detecting and classifying abnormalities in accessories, especially for small details with highly variable reflective properties. The two-stage identification framework not only meets the stringent requirements of production but also proves its feasibility for implementation in industrial companies. The system automates the visual

inspection process, ensures product quality before market release, minimizes errors, and increases productivity. This is particularly critical in the electronic accessory manufacturing industry, where precise and rapid inspection is a key factor in meeting high-quality standards.

ACKNOWLEDGEMENTS

This research is part of the grassroots-level science and technology project No. 67.KHCN/24-25, funded by Sao Do University. The authors would like to express their sincere gratitude to Sao Do University for its support and for providing the conditions necessary to complete this study.

REFERENCES

- [1]. Vijayakumar, A et al (2024), *Yolo-based object detection models: A review and its applications*, Multimedia Tools and Applications, pp.1-40.
- [2]. Sohan, M et al (2024), *A review on yolov8 and its advancements*, In International Conference on Data Intelligence and Cognitive Informatics, pp. 529-545.
- [3]. Yang, G et al (2023), *A lightweight YOLOv8 tomato detection algorithm combining feature enhancement and attention*, Agronomy, Vol. 13, No. 7, pp.1824.
- [4]. Zhong, J et al (2025), *Improved real-time object detection method based on YOLOv8: a refined approach*, Journal of Real-Time Image Processing, Vol. 22, No. 1, pp.1-13.
- [5]. Talaat, F.M et al (2023), *An improved fire detection approach based on YOLO-v8 for smart cities*, Neural Computing and Applications, Vol. 35, No. 28, pp.20939-20954.
- [6]. Obaid, K.B et al (2020), *Deep learning models based on image classification: a review*, International Journal of Science and Business, Vol. 4, No. 11, pp.75-81.
- [7]. Chen, L et al (2021), *Review of image classification algorithms based on convolutional neural networks*, Remote Sensing, Vol. 13, No. 22, pp.4712.
- [8]. Abdullah, D.M et al (2021), *Machine learning applications based on SVM classification a review*, Qubahan Academic Journal, Vol. 1, No. 2, pp.81-90.

[9]. Chandra, M.Aetal (2021), *Survey on SVM and their application in image classification*, International Journal of Information Technology, Vol. 13, No. 5, pp.1-11.

[10]. Huang, S et al (2018), *Applications of support vector machine (SVM) learning in cancer genomics*, Cancer genomics & proteomics, Vol. 15, No. 1, pp.41-51.

[11]. Huang, M.W et al (2017), *SVM and SVM ensembles in breast cancer prediction*. PloS one, Vol. 12, No. 1, pp.e0161501.

THÔNG TIN TÁC GIẢ

**Hà Minh Tuân*, Lê Ngọc Hòa, Nguyễn Trương Huy,
Nguyễn Thị Việt Hương**

*Tác giả liên hệ: minhtuanha031@gmail.com

Trường Đại học Sao Đỏ.

THỂ LỆ GỬI BÀI

TẠP CHÍ NGHIÊN CỨU KHOA HỌC, TRƯỜNG ĐẠI HỌC SAO ĐỎ

Tạp chí Nghiên cứu khoa học, Trường Đại học Sao Đỏ (P. ISSN 1859-4190, E. ISSN 2815-553X), thường xuyên công bố kết quả, công trình nghiên cứu khoa học và công nghệ của các nhà khoa học, cán bộ, giảng viên, nghiên cứu sinh, học viên cao học, sinh viên ở trong và ngoài nước.

1. Tạp chí xuất bản 01 số/quý bằng hai ngôn ngữ tiếng Việt và tiếng Anh. Tạp chí nhận đăng các bài báo khoa học thuộc các lĩnh vực: Điện - Điện tử - Tự động hóa; Cơ khí - Động lực; Kinh tế; Triết học - Xã hội học - Chính trị học; Các lĩnh vực khác gồm: Công nghệ thông tin; Hóa học - Công nghệ thực phẩm; Ngôn ngữ học; Toán học; Vật lý; Văn hóa - Nghệ thuật - Thể dục thể thao...
2. Bài nhận đăng là những công trình nghiên cứu khoa học chưa công bố trong bất kỳ ấn phẩm khoa học nào.
3. Tòa soạn chỉ nhận bài báo gửi online trên website <http://tapchikhcn.saodo.edu.vn>. Bài báo gửi về tòa soạn dưới dạng file điện tử (*.doc *.docx và *.pdf); cuối bài báo, tác giả ghi rõ thông tin địa chỉ liên hệ, số điện thoại, email và cập nhật thông tin trên website. Bài báo phải được trình bày đúng định dạng, rõ ràng; Trường hợp bài báo phải chỉnh sửa theo thể lệ hoặc theo yêu cầu của Phản biện thì tác giả sẽ cập nhật trên website. Người phản biện sẽ do tòa soạn mời. Tòa soạn không gửi lại bài nếu không được đăng.
4. Các công trình thuộc đề tài nghiên cứu có Cơ quan quản lý cần kèm theo giấy phép cho công bố của cơ quan (Tên đề tài, mã số, tên chủ nhiệm đề tài, cấp quản lý,...).
5. Tên bài báo trình bày bằng hai ngôn ngữ (tiếng Việt và tiếng Anh), font Arial, cỡ chữ 14, in đậm, căn giữa.
6. Tên tác giả (không ghi học hàm, học vị), font Arial, cỡ chữ 10, in đậm, căn lề phải; cơ quan công tác của các tác giả, font Arial, cỡ chữ 9, in nghiêng, căn lề phải.
7. Chữ "Tóm tắt" in đậm, font Arial, cỡ chữ 10; Nội dung tóm tắt của bài báo không quá 10 dòng, trình bày bằng hai ngôn ngữ (tiếng Việt và tiếng Anh), font Arial, cỡ chữ 10, in thường.
8. Chữ "Từ khóa" in đậm, nghiêng, font Arial, cỡ chữ 10; Có từ 03-05 từ khóa, font Arial, cỡ chữ 10, in nghiêng, ngăn cách nhau bởi dấu chấm phẩy, cuối cùng là dấu chấm.
9. Nội dung bài báo viết bằng tiếng Việt hoặc tiếng Anh; Nếu là bài báo viết bằng tiếng Việt: Tiêu đề tiếng Việt trước, tiếng Anh sau; Tóm tắt tiếng Việt trước, tiếng Anh sau; Từ khóa tiếng Việt trước, tiếng Anh sau; Nếu là bài báo viết bằng tiếng Anh: Tiêu đề tiếng Anh trước, tiếng Việt sau; Tóm tắt tiếng Anh trước, tiếng Việt sau; Từ khóa tiếng Anh trước, tiếng Việt sau.
10. Bài báo được đánh máy trên khổ giấy A4 (21 x 29,7cm) có độ dài không quá 8 trang, font Arial, cỡ chữ 10, giãn dòng At least 12pt, Before 3pt, After 3pt; căn lề trên 2,5cm, dưới 2,5cm, trái 3cm, phải 2cm; hình vẽ phải rõ ràng, đủ nét và được định dạng dưới dạng file ảnh (*.jpg); Phương trình, công thức phải soạn thảo bằng MathType hoặc Equation; Phần nội dung bài báo được chia thành 02 cột, khoảng cách cột là 1cm; Trong trường hợp hình vẽ, hình ảnh có kích thước lớn, bảng biểu có độ rộng lớn hoặc công thức, phương trình dài thì cho phép trình bày dưới dạng 01 cột.
11. Tài liệu tham khảo được sắp xếp theo thứ tự tài liệu được trích dẫn trong bài báo.
 - Nếu là sách/luận án: Tên tác giả (năm), Tên sách/luận án/luận văn, Nhà xuất bản/Trường/Viện, lần xuất bản/tái bản.
 - Nếu là bài báo/báo cáo khoa học: Tên tác giả (năm), Tên bài báo/báo cáo, Tạp chí/Hội nghị/Hội thảo, Tập/Ký yếu, số, trang.
 - Nếu là trang web: Phải trích dẫn đầy đủ tên website và đường link, ngày cập nhật.
12. Định dạng mẫu bài báo tham khảo tại địa chỉ http://tapchikhcn.saodo.edu.vn/news/detail/198/format_paper
Bài báo sau khi xuất bản sẽ được công bố trên <http://tapchikhcn.saodo.edu.vn>.

THÔNG TIN LIÊN HỆ:

Ban Biên tập Tạp chí Nghiên cứu khoa học, Trường Đại học Sao Đỏ

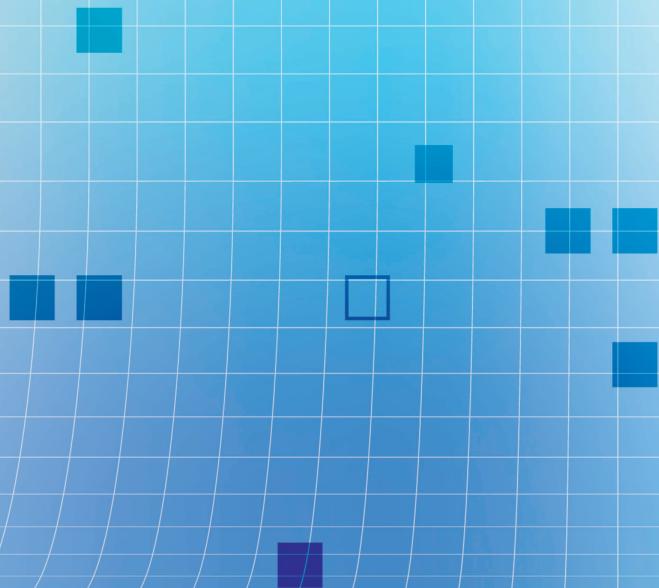
Phòng 203, Tầng 2, Nhà B1, Trường Đại học Sao Đỏ.

Địa chỉ: Số 76, Nguyễn Thị Duệ, KDC Thái Học 2, P. Chu Văn An, TP. Hải Phòng.

Điện thoại: (0220) 3587213, Fax: (0220) 3882921, Hotline: 0912 107858/0936 847980.

Website: <http://tapchikhcn.saodo.edu.vn>

Email: tapchikhcn@saodo.edu.vn


BỘ CÔNG THƯƠNG TRƯỜNG ĐẠI HỌC SAO ĐỎ

Địa chỉ:

- Số 1: Số 76, đường Nguyễn Thị Duệ, KDC Thái Học 2, phường Chu Văn An, thành phố Hải Phòng.
- Số 2: Số 72, đường Nguyễn Thái Học, quốc lộ 37, phường Chu Văn An, thành phố Hải Phòng.
- Điện thoại: (0220) 3882 269 Fax: (0220) 3882 921 Website: <http://saodo.edu.vn> Email: info@saodo.edu.vn

P. ISSN 1859-4190
E. ISSN 2815-553X

Số 3 (91)
2025

Địa chỉ Tòa soạn:

Trường Đại học Sao Đỏ

Số 76, đường Nguyễn Thị Duệ, KDC Thái Học 2, phường Chu Văn An, thành phố Hải Phòng.
Điện thoại: (0220) 3587213, Fax: (0220) 3882 921, Hotline: 0912 107858/0936 847980.
Website: <http://tapchikhcn.saodo.edu.vn>/Email: tapchikhcn@saodo.edu.vn.

Giấy phép xuất bản số: 620/GP-BTTTT ngày 17/9/2021 của Bộ Thông tin và Truyền thông.
In 2.000 bản, khổ 21 x 29,7cm, tại Công ty TNHH in Tre Xanh, cấp ngày 17/02/2011.