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ABSTRACT 
In this paper, we calculate probabilities of the appearance of a better solution than 

the current one on each iteration, and on the performance of the algorithm we create good 
conditions for its appearance. We improve the algorithm of [3], [6] to search and 
determine the correct values for each digit from left to right of variables of a solution for 
solving numerical optimization problems with long narrow feasible domains. 

Keyworks: Optimization, Probability, Stochastic, Random, Algorithm. 
TÓM TẮT 

Một giải thuật tìm kiếm theo xác suất mới giải bài toán tối ưu kĩ thuật 
Trong bài báo này chúng tôi tính các xác suất của việc xuất hiện các lời giải tốt hơn 

lời giải hiện hành trong mỗi lần lặp, và trong khi thực thi giải thuật chúng tôi tạo điều kiện 
tốt để các lời giải này xuất hiện. Chúng tôi đã phát triển giải thuật của [3], [6] để tìm kiếm 
và xác định các giá trị đúng của mỗi chữ số từ trái sang phải của các biến của một lời giải 
để giải các bài toán tối ưu số có miền khả thi hẹp và dài.  

Từ khóa: tối ưu, xác suất, ngẫu nhiên, giải thuật.  
 

1. Introduction 
The random computing algorithm was invented to solve optimization problems 

with very large-scale feasible domain. However, it is not efficient in sovling the 
optimization problems with long and narrow feasible domain because of the two 
following reasons: 

• Ability to be randomly generated from the initial feasible solution of the random 
algorithm is very poor. Actually the feasible solution does not even arise. 

• The ability to generate a feasible solution from the previous feasible solution is 
very low; which causes the convergent speed to decrease rapidly when the optimization 
process reaches a certain solution close to the optimal solution. 

The Search Algorithms have been introduced in the paper [3], [6] under the name 
‘Search via Probability Algorithm’. These optimization techniques converge very fast 
and are very efficient for solving optimization problems with very large-scale feasible 
domains. But these optimization techniques are not effective in solving the numerical 
optimization problems with long narrow feasible domains. In this paper, we calculate 
probabilities of the appearance of a better solution than the current one on each 
iteration, and on the performance of the algorithm we create good conditions for its 
appearance. We improve the algorithm of [3], [6] to search and determine the correct 
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values for each digit from left to right of variables of a solution for solving numerical 
optimization problems with long narrow feasible domains 

This paper introduces a new approach for solving numerical optimization 
problems. We rely on the following remarks: 
Remark 1.  
 When we calculate a numerical optimization problem by the type of random 
computing, in certain iteration with the current solution, there may be some variables 
that have values very close to or as precise as the values of some variables of an 
optimal solution. So we only need to change and find the correct values for a number of 
remaining variables, it is sufficient to have a new solution better than the current one. 
The change of all n variables often has benefits in the first time to look for a good 
position and to avoid a local optimum. So when the current solution is in the vicinity of 
an optimal solution, it is often difficult to create new and better solutions with the 
techniques that change the values of all n variables, which causes the convergence 
speed of the current solution to the optimal solution to decrease rapidly. 
Remark 2.  
 The role of left digit is more important than the role of right digit of the same 
variable in computing the value of the objective function. The evolutionary algorithms 
do not focus in the role of each digit in a variable of the solution, which means that the 
roles of the digits in a variable are the same. It also means that the evolutionary 
algorithms ignore the important role of the left digits, even though the left digits have 
the role to create the preconditions for the algorithms that are able to find good values 
for the right digits.  
Remark 3. 
 Because the values of right digits depend on the values of left digits in evaluating 
the value of an objective function, the algorithm can only search the good values of 
right digits after the good values of left digits have been found by the algorithm. The 
algorithm in turn performs the following tasks: 

• Step 1: If the values of left digits are not good enough, the algorithm must 
search for the better values of left digits. 

• Step 2: If the values of left digits are good enough, then the algorithm must keep 
the current values of left digits and search for the good values of right digits. 

However the algorithm does not know when to start Step 1 or Step 2, so it uses 
the probability to control the execution of two jobs that are mentioned. 
Remark 4. 

We consider a class of optimization problems with n variables and that class has 
the following properties: In each iteration of the algorithm exists a number k0 (1 ≤ k0 
<n) which does not depend on the size n of the problem, and the algorithm just selects 
k (1 ≤ k ≤ k0) variables to change their values then it is possible to find a better solution 
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than the current one. Notice that in each iteration of the algorithm, the value of k 
changes and depends on the current solution. In particular, the optimization problem 
for a variable (n = 1), we choose k = 1. 
Remark 5. 

We do not know the value of k in each iteration of the algorithm, so we should 
apply probability to search for the optimal solutions. We can speed up the 
implementation of the algorithm by computing the probabilities for controlling the 
algorithm and select the values of digits when changes are made.  

We can use more than one set of probabilities and it is important to note that the 
probabilistic sets have the following characteristics simultaneously: 

• It is possible to search the values of leftmost digits. 
• It is possible to keep the values of left digits in search of the values of right 

digits. 
2. The model of single-objective optimization problem 

We consider two models of single-objective optimization problem as follows: 
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Without loss of generality, we design an algorithm to solve the problem (I), the 
problem (II) is a similar calculation by reversing the inequality signs. 
3. The sets of probabilities of the algorithm 
3.1. The sets of probabilities for controlling the algorithm 

• The set of probabilities for finding the good value of leftmost digits 
However, many problems have the constraints that are too tight and their feasible 

domains are very narrow, so the feasible solutions can only be generated if two, three 
or four leftmost digits are determined simultaneously. The following table shows the 
probabilities for finding the values of many leftmost digits simultaneously. 

Table 1. Probabilities for finding the values of many leftmost digits simultaneously 
 

Searching for leftmost 
digits 

first 
digit 

Second 
digit 

third 
digit 

fourth 
digit 

fifth 
digit 

sixth 
digit 

seventh 
digit 

probability of searching 
for 7 digits 1 1 1 1 1 1 1 

1/2 1 1 1 1 1 1 probability of searching 
for many leftmost digits 1/2 1/2 1 1 1 1 1 

(II) 

(I) 
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1/2 1/2 1/2 1 1 1 1 
1/2 1/2 1/2 1/2 1 1 1 
1/2 1/2 1/2 1/2 1/2 1 1 

or a next digit 

1/2 1/2 1/2 1/2 1/2 1/2 1 
Average probabilities 0.57 0.64 0.71 0.79 0.86 0.93 1 

 

• The set of probabilities for finding the good value of right digits 
According to the results of the paper [3][6], we have the set of probabilities for 

finding the good value of middle digits as follows: 
(0.37, 0.41, 0.46, 0.52, 0.61, 0.75, 1) 
We now provide a summary of the sets of probabilities. We have three sets of 

probabilities for controlling the algorithm as follows: 
1. The set of probabilities for finding the good value of leftmost digits:  
(0.57, 0.64, 0.71, 0.79, 0.86, 0.93, 1) 
2. The set of probabilities for finding the good value of right digits:  
(0.37, 0.41, 0.46, 0.52, 0.61, 0.75, 1) 
According to some tests, the best rate is 30% for using the first set, 40% for the 

second set. 
3.2. The set of probabilities for selecting the value of digits 

According to the results of the paper [3][6], we have the set of probabilities for 
selecting the value of digits as follows: 

• r1=0.5: Probability of selecting a random integer  from 0 to 9 
• r2=r3=0.25: Probability of increasing or decreasing a random integer from 1 to 5 

4. The expanded search via probability (ESVP) algorithm  
4.1. The Changing Procedure 

Without loss of generality we suppose that a solution of the problem has n 
variables, every variable has m digits, one digit is displayed to the left of the decimal 
point and m-1 digits are displayed to the right of the decimal point. We use a function 
random (num) that returns a random number between 0 and (num-1). The Changing 
Procedure that changes the value of a solution x under the control of probability to 
create a new solution y is described as follows:  

The Changing Procedure 
Input: a solution x 
Output: a new solution y 
S1. y←x; 
S2. Select one of the following three cases according to the probabilities (0.3, 0.7) 

and set the probabilities (P1, P2, P3, P4, P5, P6, P7) with the following values: 
Case 1: (0.57, 0.64, 0.71, 0.79, 0.86, 0.93, 1) 
Case 2: (0.37, 0.41, 0.46, 0.52, 0.61, 0.75, 1) 
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S3. Select randomly k variables of solution y and call these variables yi (1≤i≤k). 
Let E1 and E2 be the random events that are independent of each other. The technique 
for changing values of these variables is described as follows: 

For i=1 to k do 
Begin_1     
  yi=0;  
  For j=1 to m do 
    Begin_2 
       If (j<4) then a=random(3) else a=random(5); 
    If (the probability of a random event E1 is Pj) then 
      If (the probability of a random event E2 is r1) then yi=yi+random(10)*101-j; 
         Else  
           If (the probability of a random event E2 is r2) then yi= yi+( xij +a)*101-j; 
    Else yi= b*yi+( xij -a)*101-j; 
      Else yi= yi +xij*101-j; 
   End_2; 
 If (yi<ai) then yi=ai; If (yi>bi) then yi=bi; 
End_1; 
S4. Return y;   
S5. The end of Changing Procedure; 

4.2. The general steps of the expanded search via probability algorithm 
We apply the Changing Procedure to build the algorithm for solving single-

objective optimization problems. The algorithm is described with general steps as 
follows: 

S1. Select a random feasible solution x;    
S2. Use the Changing Procedure to transform the solution x into a new solution y; 
S3. If y is not a feasible solution then return S2; 
S4. If f(y)≤f(x) then x←y; 
S5. If the condition of stop is not satisfied then return S2; 
S6. The end of the algorithm; 
Stop condition is the desired value of the objective function or after a number of 

certain iterations. 
4.3. The characteristic of the expanded search via probability algorithm 

The Changing Procedure has the following characteristics:  
• The central idea of the Changing Procedure is that variables of the solution x are 

separated into discrete digits, and then the values of these digits are changed with the 
guide of probabilities and combined to a new solution y.  

• Because the role of left digit is more important than the role of right digit for 
assessing values of objective functions, the Procedure finds values of each digit from 
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left digits to right digits of every variable with the guide of probabilities and the newly-
found values may be better than the current ones (according to probabilities).  

• The parameter k: In practice, we do not know the true value of k for each 
problem. According to statistics of many experiments, the best thing is to use k in the 
ratio as follows: 

• n <10, k is an integer chosen randomly from 1 to 5. 
• n>10, k is chosen as follows: k is an integer chosen randomly from 1 to n / 2 

with probability of 20% (finding the best peak of a hill to prepare to climb), k is an 
integer chosen randomly from 1 to 5 with probability of 80% (climbing the hill or 
optimizing the solution).  
5. Examples 

Using PC, Celeron CPU 2.20 GHz, Borland C++ 3.1. We performed 30 
independent runs for each example. The results for all test problems are reported in 
Tables. The following test problems have no real-time data as shown in papers [1], [2], [4]. 
5.1. Test Problem 1: three-bar truss design 
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T. Ray and K. M. Liew [4] used an optimization algorithm based on the 
simulation of social behaviour for solving the problem. 

Table 2. The best solutions found for Three-Bar Truss Design problem 
 

 ESVP algorithm Ray & Liew [4] 
x1

x2

g1(x) 
g2(x) 
g3(x) 
f(x) 

0.7886753505
0.4082476798

-0.0000000000059739
-1.4641023093510375 
-0.5358976906549365

263.8958433772909300

0.7886210370 
0.4084013340 

-0.0000000082754600 
-1.4639276500479634 
-0.5360723582274965 

263.8958466196 

(III) (III) 
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However just using 6 digits after the decimal point, ESVP algorithm found a 
solution that was better than the solution of [4] as follows: 

x=(0.788706, 0.408161) 
g1(x)=-0.0000000023386963; 
g2(x)=-1.4642008532399351; 
g3(x)=-0.5357991490987614; 
f(x)=263.8958443850068530; 

Table 3. Statistics of 30 times by running ESVP algorithm for Three-Bar Truss Design 
problem (running time is 3 seconds for each experiment) 

 

Min 263.8958433772909300 
Max 263.8958433772909300 

Average 263.8958433772909300 
Median 263.8958433772909300 

Standard deviation 0 
 

 

5.2. Test Problem 2: design of a hydrostatic thrust bearing 

 
Figure 1. The hydrostatic thrust bearing 

 

The following paragraph that describes hydrostatic thrust bearing problem is 
obtained from [1][2]:  

In this problem we want to minimize the power loss during the operation of a 
hydrostatic thrust bearing which has to withstand a specified load while providing an 
axial support. Four design variables are considered: R (bearing step radius), R0 (recess 
radius), µ (viscosity), and Q (flow rate). The optimization problem can be stated as 
follows: 
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Table 4. Values of C1 and n for various grades of oil 
 

Oil C1 N 
SAE5 10.85 -3.91 
SAE 10 10.45 -3.72 
SAE 20 10.04 -3.55 
SAE 30 9.88 -3.48 
SAE 40 9.83 -3.46 
SA 50 9.82 -3.44 

(IV) 
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To solve this problem, there was a solution of Siddal (1982). Coello used a 
method to handle constraints as the objective function and the approach used multi-
objective optimization based on genetic algorithm. Deb used two algorithms, a binary 
genetic algorithm (BGA), and a combined genetic search technique (GeneAS). 

Table 5. The solutions of the test problem in the original papers [1] [2] 
 

Best solution found Design 
Variables Coello GeneAS BGA Siddall 

x1(R) 6.271 6.778 7.077 7.155 
x2(R0) 12.901 6.231 6.549 6.689 

x3(µ)x10-6 5.605 6.096 6.619 8.321 
x4(Q) 2.938 3.809 4.849 9.168 
g1(x) 2126.86734 8329.7681 1440.6013 -11086.7430 
g2(x) 68.0396 177.3527 297.1495 402.4493 
g3(x) 3.705191 10.684543 17.353800 35.057196 
g4(x) 0.000559 0.000652 0.000891 0.001542 
g5(x) 0.666000 0.544000 0.528000 0.466000 
g6(x) 0.000805 0.000717 0.000624 0.000144 
g7(x) 849.718683 83.618221 467.686527 563.644401 
f(x) 1950.2860 2161.4215 2296.2119 2288.2268 

 

Remark. 
• We check the solution of Coello and there are 4 violated constraints (in bold) as 

follows: 
g1(x)=-100983.773300; 
g2(x)=999.941374;  
g3(x)=  3.705191; 
g4(x)= -0.073873;   
g5(x)= -6.630000;  
g6(x)= -0.000419; 
g7(x)=5000.040635;   
f=1624.342273 (ft-lb/s); 

• We check the solutions of the GeneAS, BGA, Siddall  and their results are the 
same as the results listed in Table 5. 

We use 6 digits after the decimal point of the solution x, ESVP algorithm can  
find a solution which has an objective-function value better than that of other authors 
as follows: 

x=(5.955782, 5.389014, 5.365305, 2.271058) 
g1(x) =0.0070179975171740;   
g2(x)=0.0003615996265580; 
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g3(x)=0.0000293538797393;   
g4(x)=0.0003251798841270; 
g5(x)=0.5667680000000006;   
g6(x)=0.0008333632160746; 
g7(x)=0.0055866538696425;   
f(x)=1626.4459513996814600; 

Table 6. Statistics of 30 times by running ESVP algorithm for hydrostatic thrust 
bearing problem (running time is 5 seconds for each experiment) 

 

Min 1626.445951399680 
Max 1626.448425542740 

Average 1626.447472035290 
Median 1626.447482542920 

Standard deviation 0.000994413 
 

6. Conclusion and further development 
The Search Algorithms have been introduced in the paper [3][6] under the name 

‘Search via Probability Algorithm’. These optimization techniques converge very fast 
and are very efficient for solving optimization problems with very large-scale feasible 
domains. But these optimization techniques are not effective in solving the numerical 
optimization problems with long narrow feasible domains. In this paper we have 
extended the algorithms of [3][6] by adding a set of probabilities for controlling the 
algorithm and finding the optimal solution. The algorithm does not use the population 
or the swarm. During each execution, the algorithm only uses a solution and changes 
the current solution under the guidance of probability until the algorithm finds the 
global optimal solution. We test the improved algorithm on some engineering 
optimization problems with long narrow feasible domains, and obtained better results 
than those found by other algorithms. The complexity of the algorithm will be 
presented in the next paper. 

Based on the idea of SVP algorithm for solving numerical optimization problems, 
we can develop the algorithm for tuning parameters in the other problems or solving 
optimization problems with a non-numeric search objective. We consider the 
optimization problem and its solution with n components, the algorithm is developed 
based on the following rules:  

• Rule 1: In each iteration of the algorithm, a number k (1<=k<n) is chosen 
randomly and the algorithm searches k components. 

• Rule 2: The component that is most important and decisive is searched first. If 
we can sort the components in descending order of importance and decision, then we 
will search the components each in turn using that order. In case of components in the 
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same level for which they are not sorted in order of importance, their search potential 
opportunities are divided equally. 

• Rule 3: If a component is analyzed into smaller components then the rules 1 and 
2 will be applied again. 

• Rule 4: Probabilities are applied to perform the rules mentioned above. 
Finally, we can summarize the ideas of the ESVP algorithm according to the 

ideas of the Oriental Tao as follows: The algorithm must be soft and flexible as the 
water, it is sometimes as the large waves at the sea, it is sometimes as the spring water 
flowing through a slit in the stone. The algorithm must be reasonable and natural as the 
water flowing down from high to low. The algorithm does not have certain shapes, but 
it is frequently changed and extremely transformed. 
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