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ABSTRACT 
This paper proposes a new probabilistic algorithm for solving multi-objective 

optimization problems - Probability-Driven Search Algorithm. The algorithm uses 
probabilities to control the process in search of Pareto optimal solutions. Especially, we 
use the absorbing Markov Chain to argue the convergence of the algorithm. We test this 
approach by implementing the algorithm on some benchmark multi-objective optimization 
problems, and find very good and stable results.  

Keywords: multi-objective, optimization, stochastic, probability, algorithm. 
TÓM TẮT 

Một giải thuật tìm kiếm được điều khiển theo xác suất 
giải bài toán tối ưu đa mục tiêu 

Bài này đề nghị một giải thuật xác suất mới để giải bài toán tối ưu đa mục tiêu, giải 
thuật tìm kiếm được điều khiển theo xác suất. Giải thuật sử dụng các xác suất để điều 
khiển quá trình tìm kiếm các lời giải tối ưu Pareto. Đặc biệt, chúng tôi sử dụng Chuỗi 
Markov hội tụ để thảo luận về tính hội tụ của giải thuật. Chúng tôi thử nghiệm hướng tiếp 
cận này trên các bài toán tối ưu đa mục tiêu chuẩn và chúng tôi đã tìm được các kết quả 
rất tốt và ổn định. 

Từ khóa: tối ưu, đa mục tiêu, ngẫu nhiên, xác suất, giải thuật. 
 

1. Introduction 
We introduce the Search via Probability (SVP) algorithm for solving single-

objective optimization problems [4]. In this paper, we extend SVP algorithm into 
Probabilistic-Driven Search (PDS) algorithm for solving multi-objective optimization 
problems by replacing the normal order with the Pareto one. We compute the 
complexity of the Changing Technique of the algorithm. Especially, we use the 
absorbing Markov Chain to argue the convergence of the Changing Technique of the 
algorithm. We test this approach by implementing the algorithm on some benchmark 
multi-objective optimization problems, and find very good and stable results. 
2. The model of Multi-objective optimization problem 

A general multi-objective problem can be described as follows: 
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A solution x is said to dominate a solution y if  
( ) ( ) , {1,..., } ( ) ( ) {1,..., }k k i if x f y k s and f x f y for at least one i s≤ ∀ ∈ < ∈  

A solution that is not dominated by any other solutions is called a Pareto 
optimization solution. Let S be a set of Pareto optimization solutions, S is called Pareto 
optimal set. The set of objective function values corresponding to the variables of S is 
called Pareto front. 
3. The Changing Technique of PDS algorithm and its complexity 

We consider a class of optimization problems having the character as follows: 
there is a fixed number k (1≤k<n) that is independent of the size n of the problem such 
that if we only need to change values of k variables then it has the ability to find a 
better solution than the current one, let us call it Ok. We suppose that every variable xi 
(1≤i≤n) has m digits that are listed from left to right xi1, xi2,…, xim (xij is an integer, 
0≤xij≤9, 1≤j≤m). Let L be a number of iterations for finding correct values of j-th 
digits. The Changing Technique which changes a solution x into a new solution y is 
described with general steps as follows: 

Input: a solution x 
Output: a new solution y 
S1. j←1 (determine j-th digit); 
S2. i←1 (start counting variable of the loop); 
S3. y←x; 
S4. Randomly select k variables of solution y and randomly change values of j-th 

digits of these k variables; 
S5. If (x is dominated by y) then x←y; 
S6. If (i<L) then i← i+1 and return S3; 
S7. If (j<m) then j← j+1 and return S2; 
S8. The end of the Changing Technique; 
The Changing Technique finds the value of each digit from left digit to right digit 

one by one. Consider j-th digit, on each iteration the Changing Technique randomly 
selects k variables, and randomly changes values of j-th digits of these k variables to 
find a better solution than the current one. Let A be the event such that the technique 
can find correct values of j-th digits of k variables on each iteration. The probability of 
A is 
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Let X be a number of occurrences of A with N of iterations. X has the binomial 
distribution B (N, pA) and the probability mass function as follows: 

( ) ( ) ( ) (Pr 1 0,1,...,x N xx
N A A )X x C p p x N−= = − =  

Because N is sufficiently large and pA is sufficiently small, the Poisson 
distribution can be used as an approximation to B (N, pA) of the binomial distribution 
as follows: 

( )Pr
!

x

X x e
x

λλ −= ≈
 

with the parameter  λ=NpA and the expected value of X is E(X) = λ. 
Because the solution has n variables, we select an average number of iterations 

such that the event A occurs at least n/k times. We have 

( )
1
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Because every variable has m digits, so the average number of iterations for 
finding correct values of a solution the first time is 
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On each iteration, the technique performs k jobs with complexity O(1). Because k 

is a fixed number, so the complexity of the Changing Technique is O(nk+1). 
4. The absorbing Markov Chain of the Changing Technique 

Without loss of generality we suppose that the solution has n variables, every 
variable has m=5 digits. Let E0 be the starting state of a solution that is randomly 
selected, Ei (i=1,2,…,5) be the state of the solution having n variables with correct 
values that are found for digits from 1-th digit to i-th digit (1≤i≤5). We have (Xn; 
n=0,1,2,…) is a Markov chain with states {E0, E1, E2, E3, E4, E5}. Let p be the 
probability of event in which i-th digits of n variables have correct values. According to 
section 2, we have 
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Set q=1-p, the transition matrix is then 
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The states Ei (0≤i≤4) are transient states, and the state E5 is an absorbing state. 

The Markov chain is an absorbing Markov Chain and its model as follows: 
 

0 

q 

p 
1 

q 

p 
2

q 

p 
3

q 

p 
4

q 

p 
5 

1  
 
 
Figure 1. The model of absorbing Markov Chain of the Changing Technique 
Absorption Probabilities: Let ui5 (0≤i≤4) be the probability that the absorbing 

chain will be absorbed in the absorbing state E5 if it starts in the transient state Ei 
(0≤i≤4). If we compute ui5 in term of the possibilities on the outcome of the first step, 
then we have the equations 
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Here the result tells us that, starting from state i (0≤i≤4), there is probability 1 of 
absorption in state E5.   

Time to Absorption: Let ti be the expected number of steps before the chain is 
absorbed in the absorbing state E5, given that the chain starts in state Ei (0≤i≤4). Then 
we have results as follows: ti = (5-i)/p   (0≤i≤4). 
5. PDS algorithm for solving multi-objective optimization problems 
5.1. The Changing Procedure 

Without loss of generality we suppose that a solution of the problem has n 
variables, every variable has m=5 digits. We use the Changing Technique of section 3 
and increase the speed of convergence by using two sets of probabilities [4] to create 
the Changing Procedure. Two sets of probabilities [4] are described as follows: 

• The changing probabilities q=(0.46, 0.52, 0.61, 0.75, 1) of digits of a variable are 
increasing from left to right. This means that left digits are more stable than right digits, 
and right digits change more than left digits. In other words, the role of left digit xij is 
more important than the role of right digit xi,j+1 (1≤j≤m-1) for evaluating objective 
functions. 

• The probabilities (r1=0.5, r2=0.25, r3=0.25) for selecting values of a digit. r1: the 
probability of choosing a random integer number between 0 and 9 for j-th digit, r2: the 
probability of j-th digit incremented by one or a certain value (+1,…,+5), r3: the 
probability of j-th digit decremented by one or a certain value (-1,…,-5).  
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We use a function random (num) that returns a random number between 0 and 
(num-1). The Changing Procedure which changes values of a solution x via probability 
to create a new solution y is described as follows:  

The Changing Procedure 
Input: a solution x 
Output: a new solution y 
S1. y←x; 
S2. Randomly select k variables of solution y and call these variables yi (1≤i≤k). 

Let xij be j-th digit (1≤j≤m) of variable xi. The technique which changes values of these 
variables is described as follows: 

For i=1 to k do 
    Begin_1     
        yi=0;  
        For j=1 to m do 
            Begin_2 
                If j=1 then b=0 else b=10;     
                If (probability of a random event is qj ) then  
                    If (probability of a random event is r1) then yi=b*yi+random(10); 
                    Else  
                        If (probability of a random event is r2) then yi= b*yi+( xij -1); 
           Else yi= b*yi+( xij +1); 
                Else yi= b*yi +xij; 
            End_2 
        If (yi<ai) then yi=ai;   If (yi>bi) then yi=bi; 
    End_1; 
S3. Return y; 
S4. The end of the Changing Procedure; 
The Changing Procedure has the following characteristics:  

• The central idea of PDS algorithm is that variables of an optimization problem 
are separated into discrete digits, and then they are changed with the guide of 
probabilities and combined to a new solution.  

• Because the role of left digits is more important than the role of right digits for 
evaluating objective functions. The algorithm finds  values of each digit from left digits 
to right digits of every variable with the guide of probabilities, and the newly-found 
values may be better than the current ones (according to probabilities).  
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• The parameter k: In practice, we do not know the true value of k for each 
problem. According to statistics of many experiments, the best thing is to use k in the 
ratio as follows: 

o n ≥ 5, k is an integer selected at random from 1 to 5. 
o n>6, k is chosen as follows: 

 k is an integer chosen randomly from 1 to n / 2 with probability 20% (find 
the best peak of a hill to prepare to climb). 

 k is an integer selected at random from 1 to 4 with probability 80% 
(climbing the hill or carrying out the optimal number). 
5.2. General steps of Probabilistic-Driven Search algorithm  

We need to set three parameters S, M and L as follows: 
• Let S be the set of Pareto optimal solutions to find 
• Let M be a number of Pareto optimal solutions which the algorithm has the ability 

to find 
• After generating a random feasible solution X, set L is the number so large that 

after repeated L times the algorithm has an ability to find a Pareto optimal solution that 
dominates the solution X.  

The PDS algorithm for solving multi-objective optimization problems is 
described with general steps as follows: 

S1. i←1 (determine i-th solution);    
S2. Select a randomly generated feasible solution Xi; 
S3. j←1 (create jth loop); 
S4. Use the Changing Procedure to transform the solution Xi into a new solution 

Y; 
S5. If (Y is not feasible) then return S4.   
S6. If (Xi is dominated by Y) then Xi ← Y; 
S7. If j<L then j←j+1 and return S4; 
S8. Put Xi on the set S;  
Remove the solution in the set S which is dominated by another;   
Remove overlapping solutions in the set S;  
Set | S | = i;      
S9. If i<M then i←i+1 and return S2;  
S10. The end of PDS algorithm; 
Remarks: After generating a random feasible solution x, the algorithm repeats L 

times to find a solution that dominates the solution x. Thus each of the solutions works 
independently of the other solutions. The changes of solutions are driven by 
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probabilities. Every solution has an ability to change and directs its position to a point 
of the Pareto front.    
6. Illustrative examples 

In order to assess the performance of DPS algorithm, the algorithm will be 
benchmarked by using six optimization test cases developed by Deb et al. [1]. The 
problems are minimization problems with M=3 objectives.  
DTLZ1:  
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DTLZ3: As DTLZ2, except the equation for g is replaced by the one from DTLZ1. 

DTLZ4: As DTLZ2, except xi is replaced by ixα where 0α >  (i=1,2) 

DTLZ5: As DTLZ2, except x2 is replaced by 
( )
( )

21 2
2(1 )

M

M

g X x
g X

+
+

 

DTLZ6: As DTLZ5, except the equation for g is replaced by 
0.1

M
ii X

x
∈∑  

DTLZ7: 
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Because the memory of computer is limited, we divide the Pareto surface into 
four parts as follows:  

• Part 1: f1(x)≤0.5 and f2(x)≤0.5 
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• Part 2: f1(x)≤0.5 and f2(x)≥0.5 
• Part 3: f1(x) ≥0.5 and f2(x)≤0.5 
• Part 4: f1(x) ≥0.5 and f2(x) ≥0.5 

Set L=30000 and M=700, we apply PDS algorithm to finding 700 Pareto optimal 
solutions for each part. We use two digits after decimal point for all problems. It takes 
120 seconds to implement PDS algorithm for finding Pareto surface of each problem. 
Here the Pareto surfaces of illustrative examples are found by PDS algorithm. 

We use two digits after decimal point for all problems. Here the Pareto fronts of 
illustrative examples are found by PDS algorithm. 

 
Figure 2. DTLZ1 

 
Figure 3.  DTLZ2 

 
Figure 4.  DTLZ3 
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Figure 5. DTLZ4 (α=10) 

 
Figure 6. DTLZ4 (α=50)                           Figure 7. DTLZ4 (α=100) 

 
Figure 8. DTLZ5                                           Figure 9. DTLZ6 

 

 
Fig. 10. Pareto surface of DTLZ7 
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Remarks: 

• PDS algorithm has the ability to find a large number of Pareto optimization 
solutions and these solutions are able to express the concentrated regions of Pareto 
front.  

• PDS algorithm has the ability to maintain diversity and the overall distribution of 
solutions on Pareto front is acceptable. 

Now we use three digits after decimal point for problem DTLZ4 and the Pareto 
front is found by PDS algorithm with α=100 as follows: 

 

 
Figure 11. DTLZ4 (α=100 with three digits after decimal point) 

7. Conclusions 
In this paper, we consider a class of optimization problems having the character 

as follows: there is a fixed number k (1≤k<n) and k is independent of the size n of the 
problem such that if we only need to change values of k variables then it has the ability 
to find a better solution than the current one, let us call it Ok. We introduce PDS 
algorithm for solving multi-objective optimization problems of the class Ok. We 
compute the complexity of the Changing Technique of PDS algorithm. Specifically, we 
use the absorbing Markov Chain to argue the convergence of the Changing Technique. 
PDS algorithm has the following advantages:  

• There is no population or swarm, the algorithm is very simple and fast. The 
changes of solutions are driven by the probabilities and every solution has the ability to 
independently operate.  

• The PDS algorithm has the ability to find a large number of Pareto optimization 
solutions and the overall distribution of solutions on Pareto front is acceptable.  

• There are not many parameters to be adjusted. There is no predefined limit of 
objective functions and constraints, and the algorithm does not need a pre-process of 
objective functions and constraints.  

• The parameter k: In practice, we do not know the true value of k for each 
problem. According to statistics of many experiments, the best thing is to use k in the 
ratio as follows: 

o n ≥ 5, k is an integer selected at random from 1 to 5. 
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o n>6, k is chosen as follows: 
 k is an integer chosen randomly from 1 to n / 2 with probability 20% (find 

the best peak of a hill to prepare to climb). 
 k is an integer selected at random from 1 to 4 with probability 80% 

(climbing the hill or carrying out the optimal number). 
In next paper, we apply PDS algorithm to solving optimization problems with 

equality constraints by increasing the degree of equality accuracy step by step. On the 
other hand, because the memory of computer is limited, we study to divide the Pareto 
front into several parts and apply PDS algorithm to finding a lot of solutions for each 
part. Especially, we apply PDS algorithm to solving multiobjective portfolio 
optimization problems. 
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