Email: tapchikhoahoc@hcmue.edu.vn; Website: http://tckh.hcmue.edu.vn

EXISTENCE RESULTS FOR A CLASS OF LOGISTIC SYSTEMS

Nguyen Bich Huy ${ }^{7^{*}}$, Bui The Quan ${ }^{2}$
${ }^{l}$ Department of Mathematics - Ho Chi Minh University of Education
${ }^{2}$ Department of Mathematics - Dong Nai University
Received: 05/8/2017; Revised: 25/7/2017; Accepted: 23/9/2017

ABSTRACT

We consider logistic system

$$
\begin{cases}-\Delta_{p} u=\lambda f_{1}(x, u, v)-g_{1}(x, u) & \text { in } \Omega \\ -\Delta_{p} v=\lambda f_{2}(x, v, u)-g_{2}(x, v) & \text { in } \Omega \\ u=0, v=0 & \text { on } \partial \Omega\end{cases}
$$

Assume that the nonlinearity f_{i}, g_{i} satisfies certain growth condition. Using the fixed point index and the arguments on monotone minorant, we prove the existence results for the system. This extends some known results.

Keywords: Logistic system, (p-1)- sublinear, fixed point index.

TÓM TȦT

Sự tồn tại nghiệm của một lớp hệ phương trình logistic

Trong bài báo này, chúng tôi xét hệ phuơng trình logistic sau:
$\begin{cases}-\Delta_{p} u=\lambda f_{1}(x, u, v)-g_{1}(x, u) & \text { trong } \Omega, \\ -\Delta_{p} v=\lambda f_{2}(x, v, u)-g_{2}(x, v) & \text { trong } \Omega, \\ u=v=0 & \text { trên } \partial \Omega,\end{cases}$
Giả sủ̉ các hàm phi tuyến f_{i}, g_{i} thỏa mãn điều kiện về bậc tăng (của ẩn hàm) được chỉ ra sau. Bằng phuơng pháp bậc tô pô kết hợp với lí luận về chặn dưới đơn điệu, chúng tôi chưng minh sự tồn tại nghiệm cho hệ. Đây là một kết quả mở rộng cho các nghiên cúu truớc đây.

Tù khóa: hệ phương trình logistic, (p-1)-tuyến tính, bậc tô pô.

1. Introduction

In this paper, we consider the following system

$$
\begin{cases}-\Delta_{p} u=\lambda f_{1}(x, u, v)-g_{1}(x, u) & \text { in } \Omega \tag{1.1}\\ -\Delta_{p} v=\lambda f_{2}(x, v, u)-g_{2}(x, v) & \text { in } \Omega \\ u=v=0 & \text { on } \partial \Omega\end{cases}
$$

[^0]where u, v are non-trivial non-negative unknown functions, $\Omega \subset \square^{N}(N \geq 2)$ is a bounded domain with a smooth boundary $\partial \Omega, \Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is the p-Laplacian with $1<p<N, \lambda>0$ is a real parameter and $f_{i}, g_{i}, i=1,2$ are the suitable functions.

In the special case, when

$$
f_{1}(x, u, v)=u+b(x) u v, f_{2}(x, u, v)=u+c(x) u v, g_{1}(x, u)=u^{2}, g_{2}(x, v)=v^{2}
$$

the Problem (1.1) is the symbolic Lotka - Volterra model with diffusion and transport effects and was studied in [3]. We refer the reader to the papers [4, 7] and to [3, 8] and references therein for more imformations on the logistic equations and logistic systems, respectively.

In [8], G. Y. Yang and M. X. Wang have extended the study in [3] and considered the system

$$
\begin{cases}-\Delta_{p} u=\lambda|u|^{p-2} u+b(x)|u|^{p-2} u v-f(u) & \text { in } \Omega, \tag{1.2}\\ -\Delta_{q} v=\mu|v|^{q-2} v+c(x)|v|^{q-2} v u-g(v) & \text { in } \Omega, \\ u=v=0 & \text { on } \partial \Omega,\end{cases}
$$

where $b(x), c(x)$ are positive continuous functions and $f, g \in C^{1}[0, \infty]$ satisfy the following restricted conditions
i. the functions $F(s)=\frac{f(s)}{s^{p-1}}, G(s)=\frac{g(s)}{s^{p-1}}$ are positive stricly increasing,
ii. there exist positive numbers k_{1}, k_{2}, M such that

$$
k_{1} s \leq F(s) \leq k_{1} s+M, k_{2} s \leq G(s) \leq k_{2} s+M .
$$

Thus, the functions in the right - hand side of our Problem (1.1) are more general than the functions in (1.2). On the other hand, our method of studying can be applies to the case, when the operator Δ_{p} and the parameter λ in second equation of the System (1.1) are replaced with Δ_{q} and μ, respectively.

In this paper, we consider only the case of $(p-1)$ - sublinear growth for the second variable in the functions $f_{i}, i=1,2$. The cases of $(p-1)$ - linear and $(p-1)$-superlinear growth will be considered in a future paper.

2. Preliminary results

2.1. Equations in ordered spaces

Let E be a Banach space ordered by the cone $K \subset E$, that is, K is a closed convex subset such that $\lambda K \subset K$ for all $\lambda \geq 0, K \cap(-K)=\{\theta\}$ and ordering in E is defined by $x \leq y$ iff $y-x \in K$.

If D is a bounded relatively open subset of K and $F: \bar{D} \rightarrow K$ is a compact operator such that $F(u) \neq u, \forall u \in \partial D$, then the fixed point index $i(F, D, K)$ of F on D with respect to K is well-defined. This fixed point index admits all usual properties of the Leray - Schauder degree (see e.g [6]). In particular, we have the following important results on computation of the index.
Proposition 2.1. Assume that D is a bounded relatively open subset of K and $F: \bar{D} \rightarrow K$ is a compact operator satisfying $F(u) \neq u, \forall u \in \partial D$. If there exits $u_{0} \in K,\{\theta\}$ such that
$u \neq F(u)+t u_{0}, \forall t>0, \forall u \in \partial D$,
then $i(F, D, K)=0$.
Proposition 2.2. Let (E, K) and $\left(E_{1}, K_{1}\right)$ be the ordered Banach spaces and $N: K \rightarrow K_{1}$ be a continuous, bounded operator, $P: K_{1} \rightarrow K$ be a compact operator, $P(\theta)=\theta$. Let $D \subset E$ be a bounded open subset containing θ. If
$u \neq P[t N(u)], \forall t \in[0,1], \forall u \in \partial D \cap K$,
then $i(P o N, D, K)=1$.
Here, we use the notation $i(\operatorname{PoN}, D, K)$ instead of $i(\operatorname{PoN}, D \cap K, K)$.

2.2. A reduction to the fixed point equations

Let $\Omega \subset \square^{N}$ be a bounded domain with smooth boundary, $1<p<N$. We denote the norms in the spaces $W_{0}^{1, p}(\Omega)$ and $L^{t}(\Omega)$ by $\|$.$\| and \|$. $\|$ respectively. In these spaces, we consider the order cone of nonnegative functions. In order to reduce the boundary value Problem (1.1) to a fixed point equation in an ordered Banach space, we need the following result [7].
Theorem 2.3. Assume that the Caratheodory function $g: \Omega \times \square \rightarrow \square$ satisfies the following conditions
(g1) $g(x, 0)=0$, and $g(x, u)$ is an increasing function with respect to the variable u for a.e $x \in \Omega$,
(g2) there exist $a \in \square^{+}, 0<\beta<p^{*}-1$ and $b \in L^{(\beta+1)^{\prime}}(\Omega)$ such that $|g(x, u)|,, a|u|^{\beta}+b(x)$ for $(x, u) \in \Omega \times \square$.

Then, for any $h \in W^{-1, p^{\prime}}(\Omega)$, there exists a unique function $u \in W_{0}^{1, p}(\Omega)$ such that $g(x, u) \in L^{\left(p^{*}\right)}(\Omega)$ and
$\int_{\Omega}|\nabla u|^{p-2} \nabla u . \nabla \varphi+\int_{\Omega} g(x, u) \varphi=\langle h, \varphi\rangle, \quad \forall \varphi \in W_{0}^{1, p}(\Omega)$
where $\langle\cdot, \cdot\rangle$ denotes the duality pairing between $W^{-1, p^{\prime}}(\Omega)$ and $W_{0}^{1, p}(\Omega)$.

Definition 2.4. Let $f_{i}: \Omega \times \square \times \square \rightarrow \square$ be a Caratheodory function, that is, $f_{i}(\cdot, u, v)$ is measurable for all $(u, v) \in \square \times \square$ and $f_{i}(x, \cdot$,$) is continuous for a.e x \in \Omega$. We say that the pair $(u, v) \in W_{0}^{1, p}(\Omega) \times W_{0}^{1, p}(\Omega)$ is a weak solution of the system

$$
\begin{cases}-\Delta_{p} u=f_{1}(x, u, v) & \text { in } \Omega, \\ -\Delta_{p} v=f_{2}(x, v, u) & \text { in } \Omega, \\ u=v=0 & \text { on } \partial \Omega\end{cases}
$$

if $f_{1}(x, u, v), f_{2}(x, v, u) \in L^{\left(p^{*}\right)^{\prime}}(\Omega)$ and

$$
\left\{\begin{array}{l}
\int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla \varphi=\int_{\Omega} f_{1}(x, u, v) \varphi \\
\left.\int_{\Omega} \nabla v\right|^{p-2} \nabla v \cdot \nabla \phi=\int_{\Omega} f_{2}(x, v, u) \phi,
\end{array} \forall \varphi, \phi \in W_{0}^{1, p}(\Omega)\right.
$$

Let the operator $A: W_{0}^{1, p}(\Omega) \rightarrow W^{-1, p^{\prime}}(\Omega)$ be defined by

$$
\langle A u, \varphi\rangle=\left.\int_{\Omega} \nabla u\right|^{p-2} \nabla u . \nabla \varphi, \forall u, \varphi \in W_{0}^{1, p}(\Omega) .
$$

Then we have the following results (see [2,5]).

Proposition 2.5.

1. The mapping $A: W_{0}^{1, p}(\Omega) \rightarrow W^{-1, p^{\prime}}(\Omega)$ is continuous and of type S^{+}, that is, for every sequence $\left\{u_{n}\right\} \subset W_{0}^{1, p}(\Omega)$ such that
$u_{n} \rightarrow u$ weakly, and $\lim \sup \left\langle A u_{n}, u_{n}-u\right\rangle \leq 0$,
we have $u_{n} \rightarrow u$ strongly.
2. If $u, v \in W_{0}^{1, p}(\Omega)$ satisfying $\left\langle A u-A v,(u-v)^{+}\right\rangle \leq 0$, then $u \leq v$ a.e. in Ω. Here, $u^{+}=\max \{u, \theta\}$.
3. The inverse operator A^{-1} is compact from $L^{\infty}(\Omega)$ into $C_{0}^{1}(\bar{\Omega})$.

Proposition 2.6. (see [7]) The operator $P: W^{-1, p^{\prime}}(\Omega) \rightarrow W_{0}^{1, p}(\Omega)$ that assigns each $h \in W^{-1, p^{\prime}}(\Omega)$ the unique solution of problem (2.3) has the following properties:

1. P is increasing in the sense that $h_{1} \leq h_{2}$ implies $P\left(h_{1}\right) \leq P\left(h_{2}\right)$. Here, $h_{1} \leq h_{2}$ means that $\left\langle h_{2}-h_{1}, u\right\rangle \geq 0, \forall u \in W_{0}^{1, p}(\Omega), u \geq 0$.
2. P is continuous and $P(M)$ is bounded if M is bounded (we also say that P is a bounded operator).
3. If $\delta>\left(p^{*}\right)^{\prime}$, then P is compact from $L^{\delta}(\Omega)$ into $W_{0}^{1, p}(\Omega)$.

Proposition 2.7. Let $f: \Omega \times \square \times \square \times \square$ be a Caratheodory function and let N_{f} be the associated Nemytskii operator defined by $N_{f}(u, v)(x)=f(x, u(x), v(x))$ for all $u, v \in W_{0}^{1, p}(\Omega)$.

1. Assume that

$$
|f(x, u, v)|,, g(x,|u|,|v|)
$$

where $g: \Omega \times \square^{+} \times \square^{+} \rightarrow \square$ is a Caratheodory function which is nondecreasing with respect to the second and the third variables, and satisfies the following condition

$$
\begin{equation*}
u, v \in L^{p^{*}}(\Omega), u, v \geq \theta \Rightarrow g(\cdot, u, v) \in L^{\delta}(\Omega) \tag{1.4}
\end{equation*}
$$

for some $\delta \in(1, \infty)$. Then, the Nemytskii operator N_{f} is continuous from $W_{0}^{1, p}(\Omega) \times W_{0}^{1, p}(\Omega)$ into $L^{\delta}(\Omega)$.
2. Assume that the function f satisfies

$$
|f(x, u, v)|, m(x)|u|^{\alpha}+n(x)|v|^{\gamma}, \quad(f)
$$

where $\alpha, \gamma<p^{*}-1$ and $m \in L^{q}(\Omega), n \in L^{r}(\Omega)$ with $q>\left(\frac{p^{*}}{1+\alpha}\right)^{\prime}, r>\left(\frac{p^{*}}{1+\gamma}\right)^{\prime}$
Then the Nemytskii operator N_{f} is continuous and bounded from $W_{0}^{1, p}(\Omega) \times W_{0}^{1, p}(\Omega)$ into $L^{\delta}(\Omega)$ with $\delta=\min \left\{\frac{q p^{*}}{q \alpha+p^{*}}, \frac{r p^{*}}{r \gamma+p^{*}}\right\}>\left(p^{*}\right)^{\prime}$.
Proof 1. Assume that $u_{n} \rightarrow u_{0}, v_{n} \rightarrow v_{0}$ in $W_{0}^{1, p}(\Omega)$, we shall prove that some subsequence of $N_{f}\left(u_{n}, v_{n}\right)$ converges to $N_{f}\left(u_{0}, v_{0}\right)$.

Passing to a subsequence if necessary, we may assume $u_{n} \rightarrow u_{0}, v_{n} \rightarrow v_{0}$ a.e in Ω and and there exist $u, v \in L^{p^{*}}(\Omega)$ such that

$$
\left|u_{n}(x)\right|,, u(x),\left|v_{n}(x)\right|,, v(x) \text { a.e. in } \Omega .
$$

Then we have $N_{f}\left(u_{n}, v_{n}\right) \rightarrow N_{f}\left(u_{0}, v_{0}\right) \quad$ a.e. in $\Omega \quad$ and $\left|N_{f}\left(u_{n}, v_{n}\right)\right|,, g(x, u(x), v(x)) \in L^{\delta}(\Omega)$. This along with the Dominated Convergence Theorem yields $N_{f}\left(u_{n}, v_{n}\right) \rightarrow N_{f}\left(u_{0}, v_{0}\right)$ in $L^{\delta}(\Omega)$.
2. For $u, v \in L^{p^{*}}(\Omega), u, v \geq 0$, we have $m(x) u^{\alpha} \in L^{\frac{q p^{*}}{q+p^{*}}}(\Omega), n(x) v^{\gamma} \in L^{\frac{r p^{*}}{\gamma+p^{*}}}(\Omega)$ which implies $m(x) u^{\alpha}+n(x) v^{\gamma} \in L^{\delta}(\Omega)$. Therefore, N_{f} is continuous by the first assertion. The boundedness of the operator N_{f} follows from

$$
\left\|N_{f}(u, v)\right\|_{\delta} \leq c\left(\|m\|_{g}\left\|_{u}\right\|_{b q^{\prime}}^{k}+\|n\|,\left\|_{v}\right\|_{r^{\prime}}\right) \leq c\left(\|m\|_{g}\left\|_{u}\right\|^{x}+\|n\|_{.}\left\|_{v}\right\|\right)
$$

Corollary 2.8. If the Caratheodory functions $g: \Omega \times \square^{+} \rightarrow \square^{+}, f: \Omega \times \square^{+} \times \square^{+} \rightarrow \square^{+}$ satisfy conditions $(g 1),(g 2),(f)$, then the operator $P_{f} N_{f}$ is compact from $W_{0}^{1, p}(\Omega) \times W_{0}^{1, p}(\Omega)$ into $W_{0}^{1, p}(\Omega)$.

Now, we reduce the Problem 1.1 to the fixed point problem. Denote by $N_{f_{i}}$ the Nemytskii operators associated to $f_{i}, i=1,2$ and by P_{i} the operators defined in Proposition 2.3 for $g_{i}, i=1,2$. It is clearly that if $f_{i}, g_{i}, i=1,2$ satisfy conditions $\left(g_{1}\right),\left(g_{2}\right),(f)$ then the mappings $P_{i} o N_{f_{i}}, i=1,2$ are compact from $W_{0}^{1, p}(\Omega) \times W_{0}^{1, p}(\Omega)$ into $W_{0}^{1, p}(\Omega)$. Let $N(u, v)=\left(N_{f_{1}}(u, v), N_{f_{2}}(u, v)\right)$ and $P o N:=\left(P_{1} o N_{f_{1}}, P_{2} o N_{f_{2}}\right)$ then PoN is also compact from $W_{0}^{1, p}(\Omega) \times W_{0}^{1, p}(\Omega)$ into itself and $(u, v) \in W_{0}^{1, p}(\Omega) \times W_{0}^{1, p}(\Omega)$ is a solution of Problem (1.1) if and only if $(u, v)=\operatorname{Po\lambda N}(u, v)$.

3. The main results

Throughout this section, we always use C to denote a positive constant that is independent of the main parameters involved but whose values may differ from line to line. We consider the cone $K=\left\{(u, v) \in W_{0}^{1, p}(\Omega) \times W_{0}^{1, p}(\Omega): u, v \geq \theta\right\}$ and by $\|(u, v)\|\|u\|_{+}\left\|_{v}\right\| \quad\|(u, v)\|_{p}=\|u\|_{p}+\|v\|_{p} \quad$ we denote the norms in $W_{0}^{1, p}(\Omega) \times W_{0}^{1, p}(\Omega)$ and $L^{p}(\Omega) \times L^{p}(\Omega)$ respectively. Noting that, for any $t>0$, one has

$$
\frac{1}{2}\left(\|u\|+\left\|_{v}\right\|\right) \leq\left(\|u\|_{+}\left\|_{v}\right\|^{t} \leq 2^{t}\left(\|u\|^{t}\left\|_{v}\right\|\right) .(1.5)\right.
$$

Theorem 3.1. Assume that the Caratheodory function $g_{i}: \Omega \times \square^{+} \rightarrow \square^{+}, i=1,2$ satisfies conditions ($g 1$), ($g 2$) in Section 2, and the Caratheodory function $f_{i}: \Omega \times \square^{+} \times \square^{N} \rightarrow \square$, $i=1,2$ satisfies:
(H1) (a) $0 \leq f_{i}(x, z, t) \leq m_{i}(x) z^{\alpha}+n_{i}(x) t^{\gamma}$, where $\alpha<p-1, m_{i}(x) \in L^{q}(\Omega)$, with $q>\left(\frac{p^{*}}{1+\alpha}\right)^{\prime}, i=1,2$
(b) $f_{i}(x, z, 0)=0, \forall(x, z) \in \Omega \times \square^{+}, i=1,2$.
(H2) At least one of the following conditions holds
(a) $\gamma<p-1, n_{i}(x) \in L^{r}(\Omega), r>\max \left\{(p-\gamma)^{\prime},\left(\frac{p p^{*}}{\gamma p+p^{*}}\right)\right\}, i=1,2$;
(b) $\gamma<\frac{(\beta+1)(p-1)}{p}, g_{i}(x, t) \geq a_{i} t^{\beta}-b_{i}(x)$, where β and $b_{i}(x)$ are as in condition (g2), $i=1,2$ and $n_{i}(x) \in L^{r}(\Omega), r>\left(\frac{p(\beta+1)}{\gamma p+\beta+1}\right)^{\prime}$.
(H3) There exist an open subset $\Omega_{0} Đ \Omega$, and positive numbers $\delta<\alpha, \varepsilon, m_{0}, n_{0}, l_{0}$ such that
$f_{i}(x, z, t) \geq m_{0} z^{\alpha-\delta} t^{\delta}, g_{i}(x, z) \leq n_{0} u^{\alpha+\varepsilon}, \forall(x, z, t) \in \Omega_{0} \times\left[0, l_{0}\right] \times \square, i=1,2$.
Then, for all $\lambda>0$ the Equation (1.1) has a non-negative solution (u, v) satisfying $u, v \geq \theta$ and $u \neq \theta, v \neq \theta$.
Proof. For the sake of simplicity, we shall put $\lambda=1$ and write $N(u, v)$ instead of $\lambda N(u, v)$. We split the proof into several steps.
Step 1. We shall prove that there is a sufficiently large number R such that

$$
(u, v) \neq P[t N(u, v)], \forall t \in[0,1], \forall u, v \ldots \theta, \|(u, v) \nVdash R .
$$

Assume in the contrary that there exist sequences $\left\{t_{n}\right\} \subset[0,1]$, and $u_{n}, v_{n} \ldots \theta,\left\|\left(u_{n}, v_{n}\right)\right\| \rightarrow \infty$ such that $\left(u_{n}, v_{n}\right)=P\left[t_{n} N\left(u_{n}, v_{n}\right)\right]$, or equivalently, one has

$$
\left\{\begin{array}{l}
\left\langle A u_{n}, \varphi\right\rangle+\int_{\Omega} g_{1}\left(x, u_{n}\right) \varphi=\int_{\Omega} t_{n} f_{1}\left(x, u_{n}, v_{n}\right) \varphi \tag{1.6}\\
\left\langle A v_{n}, \phi\right\rangle+\int_{\Omega} g_{2}\left(x, v_{n}\right) \phi=\int_{\Omega} t_{n} f_{2}\left(x, v_{n}, u_{n}\right) \phi
\end{array} \quad \forall \varphi, \phi \in W_{0}^{1, p}(\Omega) .\right.
$$

Choosing $\varphi=u_{n}, \phi=v_{n}$ in (1.6) and using (H1) we obtain

$$
\left\{\begin{array}{l}
\left\|u_{n}\right\|+\int_{\Omega} g_{1}\left(x, u_{n}\right) u_{n}, \int_{\Omega} m_{1}(x) u_{n}^{1+\alpha}+\int_{\Omega} n_{1}(x) v_{n}^{\gamma} u_{n} \tag{1.7}\\
\left\|v_{n}\right\|+\int_{\Omega} g_{2}\left(x, v_{n}\right) v_{n}, \int_{\Omega} m_{2}(x) v_{n}^{1+\alpha}+\int_{\Omega} n_{2}(x) u_{n}^{\gamma} v_{n}
\end{array}\right.
$$

In the case that condition (a) in (H1) holds, by adding sides by sides of the inequalities in (1.7), we have

$$
\begin{equation*}
\text { C. }\left\|\left(u_{n}, v_{n}\right)\right\|^{p} \leq \int_{\Omega} m_{1}(x) u_{n}^{1+\alpha}+\int_{\Omega} m_{2}(x) v_{n}^{1+\alpha}+\int_{\Omega} n_{1}(x) v_{n}^{\gamma} u_{n}+\int_{\Omega} n_{2}(x) u_{n}^{\gamma} v_{n} \text {. } \tag{1.8}
\end{equation*}
$$

By Holder's inequality, Young's inequality and some simple computations we obtain

$$
\begin{align*}
\left\|\left(u_{n}, v_{n}\right)\right\|_{,}, & C\left(\left\|m_{1}\right\|_{q}+\left\|m_{2}\right\|_{q}\right)\left\|\left(u_{n}, v_{n}\right)\right\|_{1+\alpha) q^{\prime}}^{+\alpha}+ \\
& C\left(\left\|n_{1}\right\|_{\cdot}+\left\|n_{2}\right\|\right)\left[\varepsilon\left\|\left(u_{n}, v_{n}\right)\right\|_{p}^{/ r^{\prime}}+C(\varepsilon)\left\|\left(u_{n}, v_{n}\right)\right\|_{k^{\prime r^{\prime}}}\right] \tag{1.9}
\end{align*}
$$

here $s=\gamma\left(\frac{p}{r^{\prime}}\right)^{\prime} \cdot r^{\prime}$ and we have used the inequality $(a+b)^{\theta}<a^{\theta}+b^{\theta}, \forall a, b>0, \forall \theta \in(0,1)$.

It follows from $(1+\alpha) q^{\prime}, s<p^{*}$ and (1.9) that

$$
\|\left(u_{n}, v_{n}\right) \mathbb{P}_{,,} C\left(\left\|\left(u_{n}, v_{n}\right)\right\|^{+\alpha}+\left\|\left(u_{n}, v_{n}\right)\right\|^{/ r^{\prime}}\right)
$$

which contradicts to $\|\left(u_{n}, v_{n}\right) \xrightarrow{\prime} \rightarrow \infty$ and $1+\alpha<p, \frac{s}{r^{\prime}}<p$.
Next we consider the case (b) in (H1). Adding sides by sides of the inequalities in (1.7), we deduce

$$
\begin{align*}
&\left\|\left(u_{n}, v_{n}\right)\right\|+C\left\|\left.\left(u_{n}, v_{n}\right)\right|_{\beta+1} ^{\beta+1} \leq C\left(\left\|m_{1}\right\|_{q}+\left\|m_{2}\right\|_{q}\right)\right\|\left(u_{n}, v_{n}\right) \|_{1+\alpha) q^{\prime}}^{+\alpha} \\
&+\int_{\Omega}\left[n_{1}(x) v_{n}^{\gamma} u_{n}+n_{2}(x) u_{n}^{\gamma} v_{n}\right]+\int_{\Omega}\left[b_{1}(x) u_{n}+b_{2}(x) v_{n}\right] \tag{1.10}
\end{align*}
$$

By the Holder's and Young's inequalities we have

$$
\begin{align*}
& \int_{\Omega}\left[\mathrm{b}_{1}(x) u_{n}+b_{2}(x) v_{n}\right] \leq C \varepsilon\left\|\left(u_{n}, v_{n}\right)\right\|_{\beta+1}^{\beta+1}+C(\varepsilon) \int_{\Omega}\left[\left(b_{1}(x)\right)^{(\beta+1)^{\prime}}+\left(b_{2}(x)\right)^{(\beta+1)^{\prime}}\right], \tag{1.11}\\
& \int_{\Omega}\left[n_{1}(x) u_{n}^{\gamma} v_{n}+n_{2}(x) v_{n}^{\gamma} u_{n}\right] \leq C\left[\left\|n_{1}\right\|+\left\|n_{2}\right\| .\right]\left[\varepsilon\left\|\left.\left(u_{n}, v_{n}\right)\right|_{p} ^{r^{\prime}}+C(\varepsilon)\right\|\left(u_{n}, v_{n}\right) \|^{r^{\prime}}\right] \tag{1.12}
\end{align*}
$$

where $s=\gamma\left(\frac{p}{r^{\prime}}\right)^{\prime} r^{\prime}$.
From (1.10), (1.11), (1.12) it follows that

$$
\begin{equation*}
\left.\left\|\left(u_{n}, v_{n}\right) \mathbb{P}^{2}+\right\|\left(u_{n}, v_{n}\right)\right|_{\beta+1} ^{\beta+1} \leq C\left(\left\|\left(u_{n}, v_{n}\right)\right\|_{1+\alpha) q^{\prime}}^{+\alpha}+\left\|\left(u_{n}, v_{n}\right)\right\|_{b^{\prime \prime}}^{\left(r^{\prime}\right.}+1\right) . \tag{1.13}
\end{equation*}
$$

Since $(1+\alpha) q^{\prime}<p^{*}, 1+\alpha<p$, (1.13) implies

$$
\begin{equation*}
\left\|\left(u_{n}, v_{n}\right) \mathbb{P}+\right\|\left(u_{n}, v_{n}\right)\left\|_{\beta+1}^{\beta+1} \leq C\right\|\left(u_{n}, v_{n}\right) \|_{\|^{\prime \prime} r^{\prime}} . \tag{1.14}
\end{equation*}
$$

Since $s<\beta+1$ we deduce from (1.14) that

$$
\left\|\left(u_{n}, v_{n}\right)\right\|+\left.\left\|\left.\left(u_{n}, v_{n}\right)\right|_{\beta+1} ^{\beta+1} \leq C\right\|\left(u_{n}, v_{n}\right)\right|_{\beta+1} ^{\prime / r^{\prime}}
$$

which yields that $\left\|\left(u_{n}, v_{n}\right)\right\|_{\beta+1} \rightarrow \infty$ and that is a contradiction because $\frac{s}{r^{\prime}}<\beta+1$.
Step 2. We claim that there exists a sufficiently small number $r>0$ such that

$$
\begin{equation*}
(u, v) \neq P[N(u, v)]+t\left(u_{0}, u_{0}\right), \forall t>0, \forall u, v \geq \theta,\|(u, v)\| r, \tag{1.15}
\end{equation*}
$$

where the functions u_{0} is given as follows. Let \bar{u} be the positive eigenfunction corresponding to the principal eigenvalue λ_{0} of the problem

$$
-\Delta_{p} u(x)=\lambda|u|^{p-2} u \text { in } \Omega_{0}, u(x)=0, \text { on } \partial \Omega_{0} .
$$

Then we put $u_{0}=c \bar{u}$ in $\Omega_{0}, u_{0}=0$ in Ω, Ω_{0} where c is sufficiently small number. It is proved in [1] that

$$
\begin{equation*}
\left\langle A u_{0}, \varphi\right\rangle \leq \int_{\Omega} u_{0}^{\alpha} \varphi, \forall \varphi \in W_{0}^{1, p}(\Omega), \varphi \geq 0 \tag{1.16}
\end{equation*}
$$

Before proving (1.15) we need some preliminary results. We define the function k by setting

$$
k(x, u, v)= \begin{cases}m_{0} u^{\alpha-\delta} v^{\delta} & \text { if } x \in \Omega_{0}, \tag{1.17}\\ 0 & \text { if } x \in \Omega, \Omega_{0}\end{cases}
$$

Denote by N_{1} the Nemytskii operator corresponding to k. We will show that for a sufficiently small $t>0$ and for a number σ such that $1>\sigma>\max \left\{\frac{\alpha}{p-1} ; \frac{\alpha}{\alpha+\varepsilon}\right\}$ one has

$$
\begin{equation*}
P_{1} o N_{f_{1}}\left(t u_{0}, t u_{0}\right) \geq\left(P_{1} o N_{1}\left(t u_{0}, t u_{0}\right) \geq t^{\sigma} u_{0}\right. \tag{1.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\left.P_{2} o N_{f_{2}}\left(t u_{0}, t u_{0}\right)\right) \geq P_{2} o N_{1}\left(t u_{0}, t u_{0}\right)\right) \geq t^{\sigma} u_{0} . \tag{1.19}
\end{equation*}
$$

We will only prove (1.18), assertion (1.19) is proved similarly. Putting $w=P_{1} o N_{1}\left(t u_{0}, t u_{0}\right)$, we have by definition of P_{1} that

$$
\begin{equation*}
\langle A w, \varphi\rangle=\int_{\Omega}\left[k\left(x, t u_{0}, t u_{0}\right)-g_{1}(x, w)\right] \varphi, \forall \varphi \in W_{0}^{1, p} \tag{1.20}
\end{equation*}
$$

Taking $\varphi=\left(t^{\sigma} u_{0}-w\right)^{+}$in (1.16), (1.20) we easily deduce that

$$
\begin{align*}
\left\langle A\left(t^{\sigma} u_{0}\right)-A w,\left(t^{\sigma} u_{0}-w\right)^{+}\right\rangle & \leq \int_{\Omega_{1}}\left[\lambda_{0} t^{\sigma(p-1)} u_{0}^{\alpha}+g_{1}(x, w)-k\left(x, t u_{0}, t v_{0}\right)\right]\left(t^{\sigma} u_{0}-w\right) \\
& =\int_{\Omega_{1}}\left[\lambda_{0} t^{\sigma(p-1)} u_{0}^{\alpha}+g_{1}(x, w)-m_{0}\left(t u_{0}\right)^{\alpha}\right]\left(t^{\sigma} u_{0}-w\right):=\int_{\Omega_{1}} h \tag{1.21}
\end{align*}
$$

where $\Omega_{1}=\left\{t^{\sigma} u_{0} \geq w\right\}$.
It is easy to see that $h \leq 0$ in Ω_{0}, Ω_{1}. On the other hand, in $\Omega_{0} \cap \Omega_{1}$ we have

$$
\begin{aligned}
h & \leq\left[\lambda_{0} t^{\sigma(p-1)} u_{0}^{\alpha}-m_{0}\left(t u_{0}\right)^{\alpha}+n_{0}\left(t^{\sigma} u_{0}\right)^{\alpha+\varepsilon}\right]\left(t^{\sigma} u_{0}-v\right) \\
& =\left(t u_{0}\right)^{\alpha}\left[\lambda_{0} t^{\sigma(p-1)-\alpha}-m_{0}+n_{0} t^{\sigma(\alpha+\varepsilon)-\alpha} u_{0}^{\varepsilon}\right]\left(t^{\sigma} u_{0}-v\right)
\end{aligned}
$$

Therefore, by the bounded-ness of u_{0}, we have $h \leq 0$ in Ω_{1} provided that t is sufficiently small.

Consequently, $\left\langle A\left(t^{\sigma} u_{0}\right)-A w,\left(t^{\sigma} u_{0}-w\right)^{+}\right\rangle \leq 0$ which implies $t^{\sigma} u_{0} \leq w$. The first inequality in (1.18) holds by the increasingly of the operator P_{1}. Hence, (1.18) is proved.

We now prove that (1.15) holds. Assume by contradiction that we can find $t_{n}>0$, $u_{n}, v_{n} \geq \theta, \quad\left\|\left(u_{n}, v_{n}\right)\right\| \rightarrow 0$ such that

$$
\begin{equation*}
\left(u_{n}, v_{n}\right)=\operatorname{PoN}\left(u_{n}, v_{n}\right)+t_{n}\left(u_{0}, u_{0}\right) . \tag{1.22}
\end{equation*}
$$

Then we have $\left(u_{n}, v_{n}\right) \geq t_{n}\left(u_{0}, u_{0}\right)$, and we denote by s_{n} the maximal number such that $\left(u_{n}, v_{n}\right) \geq s_{n}\left(u_{0}, u_{0}\right)$. We have $s_{n}>0$ and $s_{n} \rightarrow 0$ (note $s_{n} \geq t_{n}$, and $C\left\|\left(u_{n}, v_{n}\right)\right\| \geq$ $\left.\left\|\left(u_{n}, v_{n}\right)\right\|_{p^{*}} \geq s_{n}\left\|\left(u_{0}, u_{0}\right)\right\|_{p^{*}}\right)$.

From (1.18), (1.19), (1.22) it follows that

$$
\begin{aligned}
\left(u_{n}, v_{n}\right) \geq P\left[N\left(u_{n}, v_{n}\right)\right] & \geq\left(P_{1} o N_{1}\left(u_{n}, v_{n}\right), P_{2} o N_{1}\left(u_{n}, v_{n}\right)\right) \\
& \geq\left(P_{1} o N_{1}\left(s_{n}\left(u_{0}, u_{0}\right)\right), P_{2} o N_{1}\left(s_{n}\left(u_{0}, u_{0}\right)\right) \geq s_{n}^{\sigma}\left(u_{0}, u_{0}\right) .\right.
\end{aligned}
$$

This, by definition of s_{n}, yields $s_{n}^{\sigma} \leq s_{n}$ which is a contradiction to that $\sigma<1, s_{n} \rightarrow 0$ Step 3. From Steps 1, 2 and Propositions 2.1, 2.2 we get
$i(\operatorname{PoN}, B((\theta, \theta), R), K)=1$, for large R,
and
$i(\operatorname{PoN}, B((\theta, \theta), r), K)=0$, as r is small.
Therefore, there exists $(u, v) \geq(\theta, \theta)$ such that $r \leq\|(u, v)\| \leq R$ and $(u, v)=\operatorname{PoN}(u, v)$. This means that the Problem (1.1) has a positive solution.

Finally, we prove that this solution (u, v) satisfies $u \equiv \theta$ and $v \neq \theta$. Indeed, if $u \equiv \theta$ then by assumption $f_{2}(x, v, 0)=0$ we have

$$
-\Delta_{p} v+g_{2}(x, v)=\theta
$$

which implies that $v \equiv \theta$, a contradiction.

REFERENCES

[1] L. Boccardo and L. Orsina, "Sublinear equations in L^{s}," Houston J. Math 20, pp.99-114, 1994.
[2] S. Carl, V. K. Le and D. Montreanu, "Nonsmooth Variational Problems and Their Inequalities," Springer, New York, 2007.
[3] M. Delgado, J. L. Gomez, A. Suarez, "On the symbolic Lotka - Volterra model with diffusion and transport effects," J. Diff. Eq, 160, pp.175-262, 2000.
[4] P. Drabek and J. Hernandez, "Existence and uniqueness of positive solutions for some quasilinear elliptic problems," Nonlinear Anal. 44, pp.189-204, 2001.
[5] P. Drabek, A. Kufner and F. Nicolosi, "Quasilinear Elliptic Equations with Degenerations and Singularities," De Gruyter, Berlin, New York, 1997.
[6] L. Gasinski and N. S. Papageorgiou, "Nonlinear Analysis, Chapman and Hall," Boca Raton, 2005.
[7] Nguyen Bich Huy, Bui The Quan, Nguyen Huu Khanh, "Existence and multiplicity results for generalized logistic equations," Nonlinear Anal., 144, pp.77-92, 2016.
[8] G. Y. Yang, M. X. Wang, "Structure of coexistence states for a class of quasilinear elliptic systems," Acta Mathematica Sinica, 23, pp.1649-1662, 2007.

[^0]: * Email: huynb@hcmup.edu.vn

