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VE SU TON TAI HAI NGHIEM KHONG TAM THUONG CHO BAI TOAN
DIRICHLET CHUA TOAN TU p-LAPLACE THU

Pham Thi Thiiy’, Vii Thanh Tuyét
Truong Pai hoc Sw pham — DH Thai Nguyén
TOM TAT

Bai bao nay, ching toi nghién ctru sy ton tai hai nghiém yéu cho bai toan bién Dirichlet chira toan
tor khong dia phuong

u

|

Lu = 7yf(z,u) trong Q
0 trongRN\Q’

P

Trong d6 y 1a mot tham so, Lk la toén tir khong dia phuong véi nhéan ki di K, Q 1a tdp mé bi chan
cua RA v6i bién Lipschitz, f 1a ham Carathéodory. Sir dung 1y thuyét Morse, chling t6i nhan duoc
su ton tai hai nghiém cua bai toan trén. Theo hiéu biét t6t nhat cua chung t6i, két qua trong bai bao
nay la méi.

Tir khéa: Toan tik vi tich phdn, todn tir p-Laplace thir, [y thuyét Morse
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ON EXISTENCE OF TWO NONTRIVIAL SO LUTIONS TO DIRICHLET
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ABSTRACT

The aim of this paper is to study the existence of solutions for Dirichlet problem
involving nonlocal p-fractional Laplacian

LYu =~f(z,u)in
u =0 nRM\Q’

. £e . . .
where y is a parameter, ~K is a non-local operator with singular kernel K, Q is an open

bounded subset of R with Lipschitz boundary 0Q, f is a Carathéodory function. By
using Morse theory, we get the existence of two solutions of above problem. In our best
knowledge, this result is new.
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1 Introduction and main result

Recently, a great attention has been focused on the study of the problem involving fractional
and nonlocal operators. This type of the problem arises in many different applications, such as,
continuum mechanics, phase transition phenomena, population dynamics and game theory, as they
are the type outcome of stochastically stabilization of Lévy processes [2, 4, 8] and reference therein.
The literature on nonlocal operators and their applications is very interesting and quite large, we
refer the interested reader to [1, 3, 5, 10, 16] and the references therein.

In this paper, we consdiered the existence of solution for Dirichlet problem involving fractional
p-Laplace as follows:

(1.1)

Lhu =~f(x,u)inQ,
u =0 iRV \ Q,

where v is a parameter, N > ps with s € (0,1), Q@ € RY is an open bounded set with Lipschitz
boundary 99, f is a Carathéodory function and £%. is a non-local operator defined as follows:

Liu(r) =2 / [u(z) — u(y)P~*(u(z) — u(y) K (z - y)dy
]RN

for z € RV, and K : RV \ {0} — R* is a measurable function with properties:
(K1) nK € LY(RY), where n(z) = min{|z|P, 1};

(K3) there exists ko > 0 such that K (z) > ko|xz|~V P for any x € RV \ {0};
(K3) K(z) = K(—x) for all x € RV \ {0}.

S

When K(x) = the operator L% becomes the fractional p-Laplace operator (—A)s.

EREE

In case p = 2, the problem (1.1) reduces to the fractional Laplace problem:

{(—A)Su = f(z,u) in Q,

1.2
u =0 in RN\ Q. (12)

The functional framework for problem (1.2) was introduced in [11, 13]. We refer to [7, 12] for further
details on the functional framework and its applications to the existence of solutions for the problem
(1.2).

We give some assumptions as follows:
p

(f1) |f(z,t)] < a(z)]t|? for all (x,t) € Q x R, where ¢ € (0,p) and @ > 0, a € LP — (), and
#(2,0) =0,

(f2) There exists 0 < 7 < 1 such that F(x,¢) > 01|t|P for all (z,t) € Q x [—n,n], where §; > 0 and
¢

F(z,t) = [ f(z,7)dr.
0

Let 0 < s <1 < p < oo be real numbers and the fractional critical exponent p} be defined as

Np
pi=4q N —ps
00 if sp > N.

ifsp< N



Now, we recall some basic results on the spaces W and Wy. In the sequel we set Q@ = R*V \ O,
where O = CQ x CQ Cc RV,

Let W be a linear space of Lebesgue measureable functions from RY to R such that restriction to
Q of any function u in W belongs to LP(€2) and

/ () — u()PK (& — y)dady < oo.
Q

The space W is endowed with the norm defined as

lollw = Nl + ( [ lot@) - s PG — p)aody) ™" 13)
Q

It is easily seen that ||.||w is a norm on W (see, for instance, |16] for a proof). We shall work in the
closes linear subspace
Wo={ucW:u(z)=0inRV\Q}.

The space Wy is endowed with norm
1/p
lollw, = ([ lote) = su)P K @ ~ y)dady) " (1.49)
R2N

and (Wo,||.||w,) is a uniformly convex Banach space (see [16], Lemma 2.4) and C5°(2) C Wy (see
[6] and [16], Lemma 2.1).

Definition 1. We say that v € Wy is a weak solution of problem (1.1) if
/ / () — u(y)P~(u(x) — u(y))(@(x) — o(y) K (x — y)dzdy = / f(,u(z))o(a)dz
R2N RN

for any ¢ € Wj.

Theorem 2. Assume that (f1), (f2) hold. Then there exists o > 0 such that problem (1.1) has two
nontrivial solutions in Wy for all v > ~q.

In Theorem 2, when K(z) = we get immediately the result as following:

|x|N+p8’

Corollary 1. Assume that (f1),(f2) hold. Then there exists o > 0 such that problem

(~Au =yflau) in,
u =0 in RN\ Q,

has two nontrivial solutions in Wy for all v > ~p.

2 Lemma

The following result due to Xiang-Zhang-Ferrara which give the characteristic for embedding from
Wy into L (Q),v € [1, p¥].



Lemma 1. [16] Let K : RN\ {0} — (0, 4+00) be a function satisfying (K1)-(K3). Then, the following
assertions hold true:

a) the embedding Wy — L¥(Q) is continuous for any v € [1, pl];

b) the embedding Wy — L¥ () is compact for all v € [1,p%).

From Lemma 1, we have embedding Wy — L*(RY) is continuous for all v € [1,p%]. Then there
exists the best constant
— P
)~
RN xRN (K(.’E - y))

SV - V%/n 0 p/v
(] Je@))de)
RN

(2.1)

We recall the well-know Palais-Smale condition (see, for instance, [14, 15] and references therein),
which in our framework reads as follows:

Palais-Smale condition. Let ® is a function in C*(Wy,R). The functional ® satisfies the Palais-
Smale compactness condition at level ¢ € R if any sequence {u;}jen in Wy such that ®(u;) — ¢
and supj|, |, =1 | < ®'(u;),¢ >| — 0, admits a strongly convergent subsequence in Wy.

In order to study the existence of solution for problem (1.1), we consider the energy function on
Wy as follows:

J(u) = %/|u(az) —u(y)|PK(z — y)dzdy — /F(m,u)dx. (2.2)
Q Q

Then from (f1), we have J € C' (W, R). Furthermore, we get

<J(u),p>= / [u(z) — u(y)["~>(u(@) — uly))((z) = ¢y)) K (v — y)dzdy

Q
—v/f@w@Dﬂ@M
Q

for all u, p € Wy. Certainly, the solution of problem (1.1) is a critical point of the energy function
J.

Let E be a real Banach space, let ¢ € C*(E,R) and let K = {u € E : ¢/(u) = 0}. Then, the ith
critical group of ¢ at an isolated critical point u € K with ¢(u) = c is defined by

Cl((rba u) = Hl(¢c N U7 ¢c nu \ {u})a

i € N:={0,1,2,...}, where ¢ = {u € FE : ¢(u) < ¢}, U is neighborhood of u, containing the
unique critical point and H, is the singular relative homology with coefficient in an Abelian group
G.

We say that u € E is a homological nontrivial critical of ¢ if at least one of its critical groups is
nontrivial.

Lemma 2. [9] Assume that ¢ has a critical point uw = 0 with ¢(0) = 0. Suppose that ¢ has a local
linking at 0 with respect to E =V @ W, k = dimV < oo, that is, there exists p > 0 small such that
(1) p(u) <0, u eV, [[ul| < p;

(i1) ¢(u) >0, u € W, |[[u| < p.

Then Cy(¢,0) Z 0, hence 0 is a homological nontrivial critical point of ¢.



Lemma 3. [9] Let E be a real Banach space and let ¢ € C1(E,R) satisfies the (PS) condition and
be bounded from below. If ¢ has a critical point that is homological nontrivial and is not a minimizer
of ¢, then ¢ has at least three critical points.

3 Proof of Theorem 2

We know that C§°(€2) is a dense subspace of Wy [6]. Since C§°(€2) is a separable space, then Wy
is also separable space. Furthermore, Wy is a reflexive space. Then there exist {e;}2; € W and
{ef}2, C W{ such that

Wy =span{e; : i =1,2,...}

and

Wo" =spanfef :i=1,2,...},

where ef(e;) = d;;. For any k € N, we put
Yy :=span{ey, ..., e}

and

Zy, = span{eg, g1, - .- }.
Lemma 4. Let 1 < g < p and p is small, for any k € N, let
Br+1 = sup{|[ul|La(q) 1 v € Zgyr, ||ullw, < p}.
Then limg_, o Brr+1 = 0.
Proof. Indeed, suppose that this is not true, then there exist and ¢y > 0 and {u;} C Wy with u;

is in Zy, 41 such that ||u]| = 1, |[wi]|pe) > €0, where k; — 00 as ¢ — oco. For any v* € W, there
exists w; € Y}! such that w; — v* as i — oo. Hence,

v (wi)| = [(v* = wi)(ws)| < Juillwy|lv* = willwy — 0
as ¢ — oo. Then u; — 0 weakly in Wy. By Lemma 1, we get u; — 0 in L9(Q2), which contradicts

with ||us|[fa() > €0 > 0 for all i. Thus, we must have Bry; — 0 as k — oo. O

Proof. From (f2) and apply Lemma 2 for E = Wy and ¢ = J, V = Yy, W = Zp41, Then Wy =
Y @D Zi41. We have

1
7w = Sllull, 7 / F(z,u)dz < f||u|| S / fulPde. (3.1)
Q

for u € Yj. Since Y}, is finite-dimensional, all norms on Y} are equivalent. Therefore, there exist two
positive constants C}, , and C}, 4, depending on £, ¢, such that for any v € Y},

Croallullwy < lullLe@) < Chqllullw, (3.2)

for any ¢ € [1, p]. From (3.2), we have

/|u|de > CP l[ullly. (3.3)
Q



Combine (3.1) and (3.3), there exist vy = such that

1
p51C',f,p
1
T < (=6, lullfy, <0

for all u € Yg, ||ullw, <n and v € [yg, +00).
From (f1), we have
1
I = Sllully, = [ at)luds (3.4
)

Using Holder inequality and (2.1), we get

/a(w)\ulqdw < (/(a(w))l&d@?(/|u|pdx)q”’
Q

Q Q
=llall p  Mullloq <llall 2 Syl (3.5)
LP = %@ 12— 4

From (3.4) and (3.5), we get

1 -
Jw) = Cllully, —allall _p S Y ul [y, (36)
LP— 4

Then, we get Limjjy(|,, —-+oo J(u) = +oo since g € (0,p). Therefore, J is coercive. It implies J is
bounded below.

U
[l

From (3.5) and note that has norm p for all u € Z;11,0 < p <1, we have

T [ul [Ty,
ullw, 276 pa

1
) = lulliy, —llall_p
P — 4o

I pq
P — 4o

1 _ _
= Il (lulli? = vlall _p E0n7) (3.7)

1 [l 5y;
> ];IIUH%O =lall p B .

LP — 9o
Since limy 00 Bk4+1 = 0, then when k is large enough, we get
_ 1 _
Mall p  Biap™ < %\lull%q,
LP — 4o

1
thus J(u) > 2—||u|\€VO > 0 for all 0 < ||u||w, < p. Hence J satisfies Lemma 2.

p

Since J is coercive, then every (PS) sequence of J is bounded. Let {u,} is a (PS) sequence of J.
Then there exists u € Wy such that u,, — u weak in W;,. By Lemma 1, we can assume that u,, — u
strong in LP(Q).



Now, we check J satisfy the (PS) condition. Note that

| [ ) = | < [ 1) )l
Q Q
<l p M= ullfyg) =0
P~ 49
as n — 0o, since u,, — u strong in LP()). Similarly, we also have

/f(ac,u)(un —u)dx — 0

Q

as n — oo. Thus, we get

lim [ (f(z,un) — f(z,u)(up —u)dz = 0. (3.8)

n—00
Q

For each ¢ € Wy, we denote B, the linear functional on Wy as follows
/ [o(a) = W *(¢l0) - 9(0))(0l0) ~ oKz~ y)dady.

Clearly, by Holder inequality, B, is a continuous linearly mapping on W, and
|Bo ()] < llellfy, ollw, for all v € Wo.
Obiviously, < J'(u;) — J'(u), u; —u >— 0 since u; — u weak in Wy and J'(u;) — 0. Therefore, we
get
o(1) =< J'(uj) = J'(u), u; — u>= (Bu, (u; — u) = Bu(u; — u))
o [ (Fews) = Flau))u; — wds = B (ay — 0) = Bulu; —w) + 1) (39)

Q

It is well-know that the Simion inequalities

€= vf? < ey (€% — [ 2)(§ — v), for p > 2,
2-p
€ = V7 < Gyl %€ — [P 20) (€ — v)P2(IElP + ) 2 forl<p <2

and for all £,v € RY, where c,,C, are positive constants depending only on p. Using Simion
inequality, we get

/ Juj (@) = ui ()P (g () = u (1)) (s () = u(@) = u;(y) +uly)) K (z — y)dady > 0.

Fr ) and (3.8), we have

/ oty () = 1y () P2 (15 () — 03 () () = () — 5 () + () K (« — y)dady — 0



as j — oo. Thus, ||u; — ul|lw, — 0. Hence u; — u strong in Wy. Therefore, J satisfies the (P.S)
condition.

Combine Lemma 2 and Lemma 3, we obtain J has two nontrivial criticals which are solutions of
problem (1.1). O
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