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A SHRINKING PROJECTION METHOD FOR SOLVING THE
SPLIT COMMON FIXED POINT PROBLEM IN HILBERT SPACES

Mai Thi Ngoc Ha
University of Agriculture and Forestry — TNU

ABSTRACT

We study the split common fixed point problem in two Hilbert spaes. Let H; and H, be two real
Hilbert spaces. Let S; : H; — Hy, and S, : H, — H,, be two nonexpansive mappings on H; and H,,
respectively. Consider the following problem: find an element xT € H; such that

xt € Q :=Fix(S1) N T-1( Fix(S2)) # 0,
where T : H; — H,is a given bounded linear operator from H; to H,.
Using the shrinking projection method, we propose a new algorithm for solving this problem and
establish a strong convergence theorem for that algorithm.
Key words: Hilbert space, metric projection, monotone operator, nonexpansive mapping, split
common fixed point problem

Received: 12/6/2019; Revised: 22/8/2019; Published: 30/8/2019

PHUONG PHAP CHIEU THU HEP GIAI BAI TOAN PIEM BAT PONG CHUNG
TACH TRONG KHONG GIAN HILBERT

Mai Thi Ngoc Ha
Truong Pai hoc Nog Lam — PDH Thai Nguyén

TOM TAT
Trong bai bao nay, chung t6i nghién ciru bai toan diém bat dong chung tach trong 2 khong gian
Hilbert. Cho H; va H, 1a hai khong gian Hilbert thuc. Cho S;: H; — Hy, va Sy: H, — Hy, 1a hai &nh
xa khong gidn trén khong gian H; va H, tuong mg. Bai toan dat ra la: tim mot phan tir xt € H; sao
cho:

xt € Q= Fix(S;) N T-1( Fix(S,)) # @,

Khi T : H; — H,1a mdt anh Xa tuyén tinh bi chan cho trude tir H; vao H,. Su dung phuong phap
chiéu thu hep, chung t6i d& xut mot thuat toan méi (Thuat toan 3.1) dé giai bai toan nay va thiét
1ap mot dinh 1y hoi thy manh cho thuat toan (Pinh 1y 3.3).
T khoa: Khong gian Hilbert, phép chiéu metric, todn tir don diéu, dnh xa khéng gidn, bai todn
diém bat dong chung tach
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1. INTRODUCTION

Let K and @) be nonempty, closed and
convex subsets of two real Hilbert spaces H
and Ho, respectively. Let T': Hy — Ho
be a bounded linear operator and let T™ :
Hy — Hy be its adjoint. The split conver
feasibility problem (SCFP) is formulated as
follows:

(1.1)

Find an element z* € K such that Tz* € Q.

The SCFP was first introduced by Y. Cen-

sor and T. Elfving [1] for modeling certain
inverse problems. It plays an important role
in medical image reconstruction and in sig-
nal processing (see [2,3]). Several iterative
algorithms for solving (1.1) were presented
and analyzed in [2-14], and in references
therein.

It is known that the SCFP is a special
case of the split common fixed point problem
(SCFPP), which is formulated as follows.
Let51: H1—>H1and52: Hy — Ho
be two nonexpansive mappings and let T :
H, — H, be a bounded linear operator
such that Q = Fix(S1) N T~ (Fix(Sy)) # 0.
The SCFPP is to find an element z* € ().

In this paper, by combining the prox-
imal point algorithm with the shrinking
projection method, we introduce and an-
alyze a new iterative method for solving
the SCFPP in Hilbert spaces. Using these
methods, we also remove the assumptions
imposed on the norm ||| (see Section 3
below).

2. PRELIMINARIES

Let C be a nonempty, closed and convex
subset of a real Hilbert space H. It is well
known that for each x € H, there is unique
point PCI? x € C such that

2.1 — PHy| = inf ||z — ul|.
(2.1) |z — P&zl chHw ull

The mapping PCI? : H — C defined by
(2.1) is called the metric projection of H
onto C'. Moreover, we have (see, for exam-
ple, Section 3 in [15])

(2.2)

(x — PHa,y— PHa) <0 VzecH, yeC.

Recall that a mapping T': C' — (' is said
to be nonexpansive if ||Tz — Tyl < ||z — y||
for all z,y € C. We denote the set
of fixed points of T by Fix(T), that is,
Fix(T):={x € C: Tz =ux}.

The following lemma is used in the se-
quel in the proofs of the main result of this
paper.

From (2.2), we have the following

Lemma.

Lemma 2.1. Let H be a real Hilbert space
and let C be a nonempty, closed and convex
subset of H. Then for allx € H andy € C,
we have

oz — Pl x|+ ly — P | < ||z — yl*.
3. MAIN RESULTS

Let Hy and Hs be two real Hilbert spaces.
Let S1: Hy — Hy, and Sy : Hy — Ho,
be two nonexpansive mappings on H; and
Hs, respectively. Consider the following
problem: find an element ! € H; such that
(3.1)

z! € Q= Fix(S)) N T~ (Fix(Sy)) # 0,

where T': H; — Hy is a given bounded
linear operator from Hy to Ho.

Using the shrinking projection method,
we introduce in this section a new algorithm
for solving Problem (3.1).

Algorithm 3.1. For any initial guess xg =
r € Hy, Cy = Dy = Hi, define the sequence
{2n} by

Yn = S1 (In)a

Zn = S (Tyn)a

Cryr={2€Cpn: lyn — 2| < llzn — 2|},



Dny1={2€Dy: ||zo—Tz| < Ty, — Tz|},

Tpal = ngﬂmDonO’ n > 0.
The following theorem yields the strong
convergence of the sequence generated by

Algorithm 3.1.

Theorem 3.1. The sequence {x,} gener-
ated by Algorithm 3.1 converges strongly to
Pgl Zo-

Proof. We divide the proof of this theorem

into four steps.

Step 1. The sequence {z,} is well defined.
First, we claim that C,, and D,, are closed

and convex subsets of H; for all n > 0. To

see this, we rewrite, for each integer n > 0,

the subsets C,,11 and D,, 11 in the following

forms:

Cpy1 = Cp N {z € Hi : (xn — yn,2) <

Szl = )},

Dy :Dnﬂ{z € Hy: (Ty, — z,,Tz) <

1
STyl = l12a11%)},

= D, N {z € Hy : (T*"(Tyn — 2zn),2) <

(ITyall? = l12al®) },

respectively. Now, using induction and
the fact that Cy = Dy = Hy, we see that
C,, and D,, are indeed closed and convex

N =

subsets of Hq for all n > 0, as claimed.
Next, we show that Q C C,, N D,, for all
n > 0. It is clear that Q € CyN Dy = H;.
Suppose that Q c C,, N D,, for some n > 0.
Taking any point p € Q, we have S1(p) =p
and So(Tp) = Tp. Therefore, the nonex-
pansivity of S7 and Sy implies that
lyn —pll = [1S1(zn) — S1(P)|| < llzn — p|
llzn — Tpl| = [|S2(T'yn) — S2(Tp)|| < [[Tyn — Tp].
Hence the definitions of Cj,4+1, Dyp41 and
the fact that Q@ C C, N D, imply that
Q C Cy41 N Dyqq. Hence, by induction, we

obtain that Q ¢ C,, N D, for all n > 0 and
hence that C,, N D,, is a nonempty, closed

and convex subset of H;y for each integers
n > 0. This implies that the sequence {z,}
is indeed well defined, as asserted.

Step 2. ||zp41 — x| — 0 as n — oo.

We first show that the sequence {z,}
is bounded. Indeed, let zf = Pozg. It
follows from the fact that Q C C, N D,,
zf € C, N D, for all n > 0. Thus, using
xn = Pc,np, o, we obtain that

(3.2)
2o — 2| < ||xo — xT|| for all n > 0.

Hence the sequence {x,} is bounded.
Next, using z,11 PCn+1ﬂDn+1x0 €
C,ND,, x, = Pco,np,*o and Lemma 2.1,

we obtain that

1z = zol|* < ll@ns1 = 2ol® = l|lzns1 — za®

< lns1 — ol

This implies that the sequence {||z,, — zol|}
is increasing. The boundedness of {x,, } now
implies that the limit of {||z, — x|} exists
and is finite.

Next, we show that sequence {z,} con-
verges strongly to some point p € H;. In-
deed, for all m > n, we have C,, N D,,, C
C,ND,. Thus, z,, € C,,ND,. By Lemma
2.1, we have

zm = @nll® < llzm = zoll* = |2n — ol* — 0

as  m,n — oo.

So, {z,} is Cauchy sequence. Hence there
exists the limit lim, .., x, = ¢. Thus we
have

[2n41 = @nll < l2nt1 = gll + [l2n — gll = 0,

which implies that ||z,11 — z,]| — 0 as
n — 0o, as claimed.
Step 3. |[zn—ynll — 0 and [z —Tyn| — 0
as n — oo.

From x4y = Pgnlmano € (), and the

definition of C},, we have

[Znt1 = ynll < llTnta = 2.



So, from lim,, o ||Tn+1 — 25| = 0, we ob-
tain that

(3.3)

Since

”xn—i-l - ynH — 0.

|2n = Ynll < |Tng1 = Ynll + [|Zns1 — 20l
it follows that
(3.4)

From z,+1 = Po,np,x0 € D, and the

2 — ynll — 0.

definition of D,, we have
2n = Tn1ll < (| TYn — TTn4a]]
< | T#n+1 = ynll-
It now follows from (3.3) that
(3.5)
So, using (3.3) and the estimate

llzn — Txpt1| — O.

lzn = Tynll < ll2n — Topq1ll + [ T2p41 — Tynl|
<llen = Tzpp1ll + 1Tl lzn+1 — yalls
we obtain

(3.6) 20 — Tyl — 0.

Step 4. z, — z' = Pozg as n — .

Since x, — ¢ and T is bounded linear
operator, Tx,, — Tq. It follows from (3.4),
(3.6), the continuity S7 and Ss that g € Q.

Letting n — oo in (3.2), we get that

lzo = pll < [lzo — 27|
and the uniqueness of z' yields the equality
p=at.
This completes the proof. O
The following result which concerns find-

ing a fixed point of a nonexpansive mapping
in a real Hilbert space.

Corollary 3.2. Let H be a real Hilbert
space and let S : H — H be a nonez-
pansive mapping such that Q = Fix(S) #
(). Then the sequence {x,} is generated by
ro=x € H, Cy = Hi and

Yn :S(xn)a
Crr1=1{2€Cpn: |lyn— 2| <z — 2|},

xn—i—l - Pcn+1x07 n Z 07

converges strongly to xf = Pglajo.

Proof. We obtain this result by applying
Theorem 3.1 with Hy = Hy = H, S =
S1, So =TI and T = I, the identity op-
erator on H. O

We now have the following result for solv-
ing the SCFP in Hilbert sapces.

Let Hy and Hs be two real Hilbert spaces,
and let K and @, be two closed and convex
subsets of H; and Hs, respectively. Letting
T : Hy — Hs be a bounded linear opera-
tor such that Q = K NT~4Q) # ), we now
consider the following problem:

(3.7) Find an element z € Q.

Using Theorem 3.1, we obtain the follow-
ing result concerning Problem (3.7).

Theorem 3.3. The sequence {x,} gener-
ated by xg € Hy, Cy = Dy = Hy and

Yn = PR ap,

Zn = Pg2Tyn,

Cosr1=1{2€Cnt |lyn — 2| < ll2n — 2[I},
Dypi1={2€Dy: |lzn —Tz| < ||Tyn — Tz||},

_ pH:
Tn+1 _PCn+1ﬂDn+1:C0’ n >0,

converges strongly to xf = Pglajo.
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