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ABSTRACT 
We study the split common fixed point problem in two Hilbert spaes. Let H1 and H2 be two real 

Hilbert spaces. Let S1 : H1 → H1, and S2 : H2 → H2, be two nonexpansive mappings on H1 and H2, 

respectively. Consider the following problem: find an element x† ∈ H1 such that  

x† ∈ Ω := Fix(S1) ∩ T−1( Fix(S2)) ≠ ∅, 

where T : H1 → H2 is a given bounded linear operator from H1 to H2.  

Using the shrinking projection method, we propose a new algorithm for solving this problem and 

establish a strong convergence theorem for that algorithm. 
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PHƯƠNG PHÁP CHIẾU THU HẸP GIẢI BÀI TOÁN ĐIỂM BẤT ĐỘNG CHUNG 

TÁCH TRONG KHÔNG GIAN HILBERT 
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Trường Đại học Nôg Lâm – ĐH Thái Nguyên 
 

TÓM TẮT  
Trong bài báo này, chúng tôi nghiên cứu bài toán điểm bất động chung tách trong 2 không gian 

Hilbert. Cho H1 và H2 là hai không gian Hilbert thực. Cho S1: H1 → H1, và S2: H2 → H2, là hai ánh 

xạ không giãn trên không gian H1 và H2 tương ứng. Bài toán đặt ra là: tìm một phần tử x† ∈ H1 sao 

cho: 

 x† ∈ Ω := Fix(S1) ∩ T−1( Fix(S2)) ≠ ∅, 

Khi T : H1 → H2 là một ánh xạ tuyến tính bị chặn cho trước từ H1 vào H2. Sử dụng phương pháp 

chiếu thu hẹp, chúng tôi đề xuất một thuật toán mới (Thuật toán 3.1) để giải bài toán này và thiết 

lập một định lý hội thụ mạnh cho thuật toán (Định lý 3.3). 

Từ khóa: Không gian Hilbert, phép chiếu metric, toán tử đơn điệu, ánh xạ không giãn, bài toán 

điểm bất động chung tách 
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1. Introduction

Let K and Q be nonempty, closed and

convex subsets of two real Hilbert spacesH1

and H2, respectively. Let T : H1 −→ H2

be a bounded linear operator and let T ∗ :

H2 −→ H1 be its adjoint. The split convex

feasibility problem (SCFP) is formulated as

follows:

Find an element x∗ ∈ K such that Tx∗ ∈ Q.

(1.1)

The SCFP was first introduced by Y. Cen-

sor and T. Elfving [1] for modeling certain

inverse problems. It plays an important role

in medical image reconstruction and in sig-

nal processing (see [2, 3]). Several iterative

algorithms for solving (1.1) were presented

and analyzed in [2–14], and in references

therein.

It is known that the SCFP is a special

case of the split common fixed point problem

(SCFPP), which is formulated as follows.

Let S1 : H1 −→ H1 and S2 : H2 −→ H2

be two nonexpansive mappings and let T :

H1 −→ H2 be a bounded linear operator

such that Ω = Fix(S1) ∩ T−1(Fix(S2)) 6= ∅.
The SCFPP is to find an element x∗ ∈ Ω.

In this paper, by combining the prox-

imal point algorithm with the shrinking

projection method, we introduce and an-

alyze a new iterative method for solving

the SCFPP in Hilbert spaces. Using these

methods, we also remove the assumptions

imposed on the norm ‖T‖ (see Section 3

below).

2. Preliminaries

Let C be a nonempty, closed and convex

subset of a real Hilbert space H. It is well

known that for each x ∈ H, there is unique

point PH
C
x ∈ C such that

(2.1) ‖x− PH
C x‖ = inf

u∈C
‖x− u‖.

The mapping PH
C

: H −→ C defined by

(2.1) is called the metric projection of H

onto C. Moreover, we have (see, for exam-

ple, Section 3 in [15])

(2.2)

〈x− PH
C x, y − PH

C x〉 ≤ 0 ∀x ∈ H, y ∈ C.

Recall that a mapping T : C −→ C is said

to be nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖
for all x, y ∈ C. We denote the set

of fixed points of T by Fix(T ), that is,

Fix(T ) :=
{

x ∈ C : Tx = x
}

.

The following lemma is used in the se-

quel in the proofs of the main result of this

paper.

From (2.2), we have the following

Lemma.

Lemma 2.1. Let H be a real Hilbert space

and let C be a nonempty, closed and convex

subset of H. Then for all x ∈ H and y ∈ C,

we have

‖x− PH
C x‖2 + ‖y − PH

C x‖2 ≤ ‖x− y‖2.

3. Main results

LetH1 andH2 be two real Hilbert spaces.

Let S1 : H1 −→ H1, and S2 : H2 −→ H2,

be two nonexpansive mappings on H1 and

H2, respectively. Consider the following

problem: find an element x† ∈ H1 such that

(3.1)

x† ∈ Ω := Fix(S1) ∩ T−1(Fix(S2)) 6= ∅,

where T : H1 −→ H2 is a given bounded

linear operator from H1 to H2.

Using the shrinking projection method,

we introduce in this section a new algorithm

for solving Problem (3.1).

Algorithm 3.1. For any initial guess x0 =

x ∈ H1, C0 = D0 = H1, define the sequence

{xn} by

yn = S1(xn),

zn = S2(Tyn),

Cn+1 =
{

z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖
}

,



Dn+1 =
{

z ∈ Dn : ‖zn − Tz‖ ≤ ‖Tyn − Tz‖
}

,

xn+1 = PH1

Cn+1∩Dn+1
x0, n ≥ 0.

The following theorem yields the strong

convergence of the sequence generated by

Algorithm 3.1.

Theorem 3.1. The sequence {xn} gener-

ated by Algorithm 3.1 converges strongly to

PH1

Ω
x0.

Proof. We divide the proof of this theorem

into four steps.

Step 1. The sequence {xn} is well defined.

First, we claim that Cn andDn are closed

and convex subsets of H1 for all n ≥ 0. To

see this, we rewrite, for each integer n ≥ 0,

the subsets Cn+1 and Dn+1 in the following

forms:

Cn+1 = Cn ∩
{

z ∈ H1 : 〈xn − yn, z〉 ≤

1

2
(‖xn‖

2 − ‖yn‖
2)
}

,

Dn+1 = Dn ∩
{

z ∈ H1 : 〈Tyn − zn, T z〉 ≤

1

2
(‖Tyn‖

2 − ‖zn‖
2)
}

,

= Dn ∩
{

z ∈ H1 : 〈T ∗(Tyn − zn), z〉 ≤

1

2
(‖Tyn‖

2 − ‖zn‖
2)
}

,

respectively. Now, using induction and

the fact that C0 = D0 = H1, we see that

Cn and Dn are indeed closed and convex

subsets of H1 for all n ≥ 0, as claimed.

Next, we show that Ω ⊂ Cn ∩Dn for all

n ≥ 0. It is clear that Ω ⊂ C0 ∩D0 = H1.

Suppose that Ω ⊂ Cn ∩Dn for some n ≥ 0.

Taking any point p ∈ Ω, we have S1(p) = p

and S2(Tp) = Tp. Therefore, the nonex-

pansivity of S1 and S2 implies that

‖yn − p‖ = ‖S1(xn)− S1(p)‖ ≤ ‖xn − p‖

‖zn − Tp‖ = ‖S2(Tyn)− S2(Tp)‖ ≤ ‖Tyn − Tp‖.

Hence the definitions of Cn+1, Dn+1 and

the fact that Ω ⊂ Cn ∩ Dn imply that

Ω ⊂ Cn+1 ∩Dn+1. Hence, by induction, we

obtain that Ω ⊂ Cn ∩Dn for all n ≥ 0 and

hence that Cn ∩ Dn is a nonempty, closed

and convex subset of H1 for each integers

n ≥ 0. This implies that the sequence {xn}
is indeed well defined, as asserted.

Step 2. ‖xn+1 − xn‖ → 0 as n → ∞.

We first show that the sequence {xn}
is bounded. Indeed, let x† = PΩx0. It

follows from the fact that Ω ⊂ Cn ∩ Dn,

x† ∈ Cn ∩ Dn for all n ≥ 0. Thus, using

xn = PCn∩Dn
x0, we obtain that

‖x0 − xn‖ ≤ ‖x0 − x†‖ for all n ≥ 0.

(3.2)

Hence the sequence {xn} is bounded.

Next, using xn+1 = PCn+1∩Dn+1
x0 ∈

Cn ∩Dn, xn = PCn∩Dn
x0 and Lemma 2.1,

we obtain that

‖xn − x0‖
2 ≤ ‖xn+1 − x0‖

2 − ‖xn+1 − xn‖
2

≤ ‖xn+1 − x0‖
2.

This implies that the sequence
{

‖xn−x0‖
}

is increasing. The boundedness of {xn} now

implies that the limit of {‖xn − x0‖} exists

and is finite.

Next, we show that sequence {xn} con-

verges strongly to some point p ∈ H1. In-

deed, for all m ≥ n, we have Cm ∩ Dm ⊂
Cn ∩Dn. Thus, xm ∈ Cn ∩Dn. By Lemma

2.1, we have

‖xm − xn‖
2 ≤ ‖xm − x0‖

2 − ‖xn − x0‖
2 → 0

as m,n → ∞.

So, {xn} is Cauchy sequence. Hence there

exists the limit limn→∞ xn = q. Thus we

have

‖xn+1 − xn‖ ≤ ‖xn+1 − q‖+ ‖xn − q‖ → 0,

which implies that ‖xn+1 − xn‖ → 0 as

n → ∞, as claimed.

Step 3. ‖xn−yn‖ → 0 and ‖zn−Tyn‖ → 0

as n → ∞.

From xn+1 = PH1

Cn∩Dn

x0 ∈ Cn and the

definition of Cn, we have

‖xn+1 − yn‖ ≤ ‖xn+1 − xn‖.



So, from limn→∞ ‖xn+1 − xn‖ = 0, we ob-

tain that

‖xn+1 − yn‖ → 0.(3.3)

Since

‖xn − yn‖ ≤ ‖xn+1 − yn‖+ ‖xn+1 − xn‖,

it follows that

‖xn − yn‖ → 0.(3.4)

From xn+1 = PCn∩Dn
x0 ∈ Dn and the

definition of Dn we have

‖zn − Txn+1‖ ≤ ‖Tyn − Txn+1‖

≤ ‖T‖‖xn+1 − yn‖.

It now follows from (3.3) that

‖zn − Txn+1‖ → 0.(3.5)

So, using (3.3) and the estimate

‖zn − Tyn‖ ≤ ‖zn − Txn+1‖+ ‖Txn+1 − Tyn‖

≤ ‖zn − Txn+1‖+ ‖T‖‖xn+1 − yn‖,

we obtain

‖zn − Tyn‖ → 0.(3.6)

Step 4. xn → x† = PΩx0 as n → ∞.

Since xn → q and T is bounded linear

operator, Txn → Tq. It follows from (3.4),

(3.6), the continuity S1 and S2 that q ∈ Ω.

Letting n → ∞ in (3.2), we get that

‖x0 − p‖ ≤ ‖x0 − x†‖

and the uniqueness of x† yields the equality

p = x†.

This completes the proof. �

The following result which concerns find-

ing a fixed point of a nonexpansive mapping

in a real Hilbert space.

Corollary 3.2. Let H be a real Hilbert

space and let S : H −→ H be a nonex-

pansive mapping such that Ω = Fix(S) 6=
∅. Then the sequence {xn} is generated by

x0 = x ∈ H, C0 = H1 and

yn = S(xn),

Cn+1 =
{

z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖
}

,

xn+1 = PCn+1
x0, n ≥ 0,

converges strongly to x† = PH1

Ω
x0.

Proof. We obtain this result by applying

Theorem 3.1 with H1 = H2 = H, S =

S1, S2 = IH and T = IH , the identity op-

erator on H. �

We now have the following result for solv-

ing the SCFP in Hilbert sapces.

LetH1 andH2 be two real Hilbert spaces,

and let K and Q, be two closed and convex

subsets of H1 and H2, respectively. Letting

T : H1 −→ H2 be a bounded linear opera-

tor such that Ω = K ∩T−1(Q) 6= ∅, we now

consider the following problem:

Find an element x† ∈ Ω.(3.7)

Using Theorem 3.1, we obtain the follow-

ing result concerning Problem (3.7).

Theorem 3.3. The sequence {xn} gener-

ated by x0 ∈ H1, C0 = D0 = H1 and

yn = PH1

K xn,

zn = PH2

Q Tyn,

Cn+1 =
{

z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖
}

,

Dn+1 =
{

z ∈ Dn : ‖zn − Tz‖ ≤ ‖Tyn − Tz‖
}

,

xn+1 = PH1

Cn+1∩Dn+1
x0, n ≥ 0,

converges strongly to x† = PH1

Ω
x0.
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