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ABSTRACT 
Let R = K[x 1,...,x d] be the polynomial ring in d variables over K, G = (V(G),E(G)) a graph 

associated with variables {x 1,...,x d } and IG an edge ideal. In this paper, we describe the structure 

of irreducible decompositions of square of edge ideals IG2 of the polynomial ring via corner 

elements and coclique sets. 
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PHÂN TÍCH BẤT KHẢ QUY CỦA BÌNH PHƯƠNG IĐÊAN CẠNH 

 

Nguyễn Thị Dung  

Trường Đại học Nông Lâm – ĐH Thái Nguyên 

 

TÓM TẮT 
Cho R = K[x 1,...,xd] là vành đa thức d biến trên trường K, G = (V(G),E(G)) là đồ thị liên kết với 

các biến {x 1,...,xd } và IG là iđêan cạnh. Trong bài báo này, chúng tôi mô tả cấu trúc của phân tích 

bất khả quy của bình phương của iđêan cạnh IG2 của vành đa thức thông qua các phần tử góc và 

các tập coclique. 
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1. Introduction

Let K be a field, R = K[x1, ..., xd] the

polynomial ring in d variables over K. We

say that an ideal I ⊂ R is irreducible if I

cannot be written as the intersection of two

larger ideals of R. When I is a monomial

ideal, the set Irr(I) of irreducible monomial

ideals appearing in such expression depends

only on I. It is well known that through the

structure of irreducible decompositions of Ik,

we can study the asymptotic behavior of the

associated primes, the depth, or the socle of

Ik for k > 2. This problem has been stud-

ied by many authors (see [1] [2], [3], [4], [5],

[6],...) Note that the structure of irreducible

decompositions of Ik, for small values of k,

can also be very complicated even for edge

ideals. In this paper, we are interested in

studying the structure of irreducible decom-

positions of square of edge ideals IkG of the

polynomial ring in the case k = 2 via corner

elements and coclique sets.

In the section 2, we will recall some results

about irreducible decompositions, corner el-

ements and coclique sets. In the section 3,

we prove the main resut of the paper which

describles irreducible component of powers of

edge ideals I2G (see Theorem 3.1) and give an

example (see Example 3.2).

2. Preliminaries

In this section, we recall some terminolo-

gies that will be used in the rest of the pa-

per. Let R = K[x1, . . . , xd] be a polynomial

ring with d variables over the field K and

[[R]] the set of all monomials of R. For a

non-zero vector a = (a1, . . . , ad) ∈ Nd, we set

a + 1 = (a1+1, . . . , ad+1) ∈ Nd, ma := (xaii |
i = 1, . . . , d, ai > 0), xa = xa11 . . . xadd and

Supp(a) = Supp(xa) := {xi ∈ V (G) | ai 6=
0}.

Definition 2.1. A non-zero monomial ideal

I of R is called irreducible, if I is of the form

mb for some non-zero vector b ∈ Nd. An

ideal I is called m-irreducible monomial ideal

if I is an irreducible ideal and
√
I = m. An

irreducible decomposition of a monomial ideal

I is an expression of the form I = mb1 ∩ . . .∩
mbr , for some non-zero vectors b1, . . . ,br ∈
Nn and it is irredundant, if none of the ideals

mb1 , ...,mbr can be dropped from the right

hand side.

It is well known that if I is a monomial

ideal then I has a unique irredundant irre-

ducible decomposition I = ∩ri=1m
bi , the set

{mb1 , . . . ,mbr} is denoted by Irr(I). We also

denote by Irrm(I) the set of m-irreducible

monomial ideals which appear in the irredun-

dant irreducible decomposition of I.

Let J ⊂ R be a monomial ideal and µ(J)

the number of minimal generators of J .

Definition 2.2. A monomial z ∈ [[R]] is a J-

corner element if z /∈ J but x1z, . . . , xdz ∈ J.
The set of corner elements of J in [[R]] is

denoted by CR(J).

Note that if rad(J) = m, then it is well

known that t(R/J) = card(CR(J)) is the

type of the ring R/J . Now we need some

results from [7].

Theorem 2.3. Let J ⊂ R be a monomial

ideal.

(i) Assume that rad(J) = m. Let

CR(J) = {xbj | bj ∈ Nd, j = 1, . . . , t(R/J)}

be the set of corner elements of J . Then

J = ∩t(R/J)
j=1 mbj+1 is the unique irredundant

irreducible decomposition of J .

(ii) Assume that rad(J) 6= m and

J = (xbj | bj ∈ Nd, j = 1, . . . , µ(J))R.

Let m be an integer bigger or equal than any

of the coordinates of the vectors bj. Set J
′ :=

J + (xm+1
1 , . . . , xm+1

d )R and CR(J ′) = {xcj |
cj ∈ Nd, j = 1, . . . , t(R/J ′)} be the set of cor-

ner elements of J ′. Then J = ∩t(R/J ′)
j=1 m̃cj+1
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is the unique irredundant irreducible decom-

position of J , where m̃cj+1 is obtained from

mcj+1 by deleting all monomials of the type

xm+1
1 , . . . , xm+1

d from its generators.

From now on, let G = (V (G), E(G))

be a graph with the vertex set V (G) =

{x1, . . . , xd}. Recall that the edge ideal IG
associated to G is the ideal generated by

the edges of G. Note that the edge ideal IG
is a square-free monomial ideal. For each

s 6 d ∈ N, we set S = {x1, . . . , xs} ⊂ V (G)

and Z = V (G) \ S = {z1, . . . , zt}.

Corollary 2.4. Let k,m ∈ N and m ≥ k.

Then the ideal (xa1+1
1 , . . . , xas+1

s )R belongs to

Irr(IkG)R if and only if

(xa1+1
1 , . . . , xas+1

s , zm+1
1 , . . . , zm+1

t )

belongs to Irr(IkG+mb), where b = (m+1,m+

1, . . . ,m+ 1) ∈ Nd.

Note that in terms of corner elements,

it is equivalent to say that the monomial

xa11 . . . xass z
m
1 . . . zmt is a corner element of

IkG + mb. That is

(1) xa11 . . . xass z
m
1 . . . zmt /∈ IkG + mb but

(2) uxa11 . . . xass z
m
1 . . . zmt ∈ IkG + mb for

every u ∈ V (G).

It is clear that the second condition is im-

mediate for u ∈ Z. The first condition im-

plies that for any zi 6= zj ∈ Z, we have

zizj /∈ IG.

Definition 2.5. [8] A set C ⊂ V (G) is a

cover of G if for any edge xy ∈ E(G) we

have either x ∈ C or y ∈ C. A set S ⊂ V (G)

is a clique of G if the induced subgraph G[S]

is a complete graph and it is a coclique of G

if the induced subgraph G[S] has no edges.

A coclique set of G is also called indepen-

dent set. The family of cocliques sets of G is

a simplicial complex called independent com-

plex of G and denoted by ∆(G).

For a set S ⊂ V (G) we denote by N(S)

the set of vertices adjacent to some element

in S and ∆S(G) the family of cocliques sets

of G such that N(S) ∩ Z = ∅. Note that S

may be not a subset of N(S) and ∆S(G) is a

simplicial complex.

Remark 2.6. (i) A set C ⊂ V (G) is a cover

of G if and only if V (G)\C is coclique and C

is a minimal cover of G if and only if V (G)\C
is a maximal coclique.

(ii) A set Z ⊂ V (G) is coclique if and only

if N(Z) ∩ Z = ∅ and Z is maximal coclique

if and only if V (G) = N(Z) ∪ Z.

Example 2.7. (i) The set Z in Corollary 2.4

is a coclique. Indeed, if there is indices i 6=
j such zizj is an edge in G then we would

have xa11 . . . xass z
k
1 . . . z

k
t ∈ IkG + mb, which is

a contradiction.

(ii) As an application of the above result,

let us compute the irreducible decomposition

of IG. Since it is a square free ideal, any ideal

in Irr(IG) is of the type ma for some nonzero

vector a ∈ Nd such that 0 ≤ ai ≤ 1 for every

i = 1, . . . , d. Let S = Supp(a), Z = V (G) \
S = {z1, . . . , zt}. Then z1 . . . zt is a corner

element of IG +m(2,2,...,2), which implies that

Z is a coclique. Moreover, it is a maximal

coclique set in V (G), since for every u ∈ S we

have uz1 . . . zt ∈ IG+m(2,2,...,2), which implies

that there exists some i such that uzi is an

edge in G.

This proves that the irreducible (prime)

ideals in Irr(IG) are of the type ma for some

nonzero vector a ∈ Nd with 0 ≤ ai ≤ 1 such

that V (G)\Supp(a) is a maximal coclique in

V (G). This also shows that IG is the Stanley-

Reisner ideal associated to ∆(G). Note that

the set Irr(IG) is also the set of minimal as-

sociated primes of IkG, for any k ≥ 1.

3. Irreducible components of I2G

We start by recalling some definitions in

[9]. A matching M of a graph G is a subset

of E such that any two edges of M have no

vertices in common. A maximum matching of



G is a matching that contains the largest pos-

sible number of edges. The matching number

of a graph G, denoted by ν(G), is the number

of edges in a maximum matching of G.

It is well known that if M,N are mono-

mials without common variables and L is a

list of monomials then (MN,L) = (M,L) ∩
(N,L). As a consequence of this fact, every

irreducible component J of I2G can be writ-

ten J = (y1, . . . , yk, x
2
1, . . . , x

2
l )R, for some

vertices y1, . . . , yk, x1, . . . , xl in V (G). Now

put the sets S := {x1, . . . , xl}, Z = V (G) \
{y1, . . . , yk, x1, . . . , xl} := {z1, . . . , zm}.

Theorem 3.1. Let J be an irreducible com-

ponent of I2G and the sets S,Z as above. Then

we have either

(i) N(S)∩Z = ∅. In this case card(S) = 3,

G[S] is a triangle and Z is a maximal coclique

subset of V (G) \N(S).

(ii) N(S)∩Z 6= ∅. In this case card(S) = 1

and Z is a maximal coclique subset of V (G).

Proof. Let J = (y1, . . . , yk, x
2
1, . . . , x

2
l )R be

an irreducible component of I2G. Then we

have by Corollary 2.4 that J is an irre-

ducible component of I2G if and only if J +

(z31 , . . . , z
3
m)R is an irreducible component

of I2G + (y31, . . . , y
3
k, x

3
1, . . . , x

3
l , z

3
1 , . . . , z

3
m).

Therefore by term of corner elements we

have x1 . . . xlz
2
1 . . . z

2
m is a corner element of

I2G + (y31, . . . , y
3
k, x

3
1, . . . , x

3
l , z

3
1 , . . . , z

3
m)R, i.e.

x1 . . . xlz
2
1 . . . z

2
m /∈ I2G+(y31, . . . , y

3
k, x

3
1, . . . , x

3
l ,

z31 , . . . , z
3
m)R(1) and ux1 . . . xlz

2
1 . . . z

2
m ∈

I2G + (y31, . . . , y
3
k, x

3
1, . . . , x

3
l , z

3
1 , . . . , z

3
m)R(2)

for every vertex u. We have two following

assertions:

(a) If m ≥ 2 then for every 1 ≤ i < j ≤ m
we have zizj /∈ IG.

(b) For every u /∈ Z, the condition (2)

implies that ux1 . . . xlz
2
1 . . . z

2
m ∈ I2G. It fol-

lows that l ≥ 1 and x1 . . . xlz
2
1 . . . z

2
m ∈ IG.

In terms of matching number that means

ν(S ∪ Z) = 1 and ν(S) ≤ 1. Now we prove

the theorem.

(i) If N(S) ∩ Z = ∅ then since

x1 . . . xlz
2
1 . . . z

2
m ∈ IG and the assertion (a),

we have x1 . . . xl ∈ IG, i.e. ν(S) = 1.

For u = x1, we have x1x1 . . . xlz
2
1 . . . z

2
m ∈

I2G. But since N(S) ∩ Z = ∅, we have

x1x1 . . . xl ∈ I2G. Then there exist two edges

xi1xi2 , xi3xi4 ∈ IG and they must have a com-

mon vertex, otherwise x1 . . . xl ∈ I2G, a con-

tradiction. Hence there exists i1, i2 such that

x1xi1 , x1xi2 ∈ IG.

Suppose that l ≥ 4. Let xi3 distinct

from x1, xi1 , xi2 . By using the same argu-

ment as the above, then there exists i4, i5
such that xi3xi4 , xi3xi5 ∈ IG. We have ei-

ther xi4 6= x1 or xi5 6= x1. Suppose xi4 6= x1
and if xi4 = xi1 then x1xi2 , xi1xi3 implies

ν(S) > 1, a contradiction to (b), if xi4 = xi2
then x1xi2 , xi2xi3 also implies ν(S) > 1, a

contradiction to (b). By similar argument for

the case xi5 6= x1 and xi5 = xi1 or xi5 = xi2 .

So l = 3.

Moreover, since xi1x1xi1xi2z
2
1 . . . z

2
m ∈ I2G,

it implies xi1x1xi1xi2 ∈ I2G, and consequently

xi1xi2 ∈ IG. Hence S is a triangle.

Finally, let u be a vertex such that Z ∪
{u} is coclique then ux1 . . . xlz

2
1 . . . z

2
m ∈ I2G,

implies u ∈ N(S), this proves the maximality

of Z inside V (G) \N(S).

(ii) Assume that N(S) ∩ Z 6= ∅. Let z1 ∈
N(S)∩Z and suppose that x1z1 ∈ IG. Then

we have the following claims:

(1) x2 . . . xl 6∈ IG.
(2) N(S) ∩ Z 6= x1. Indeed, if there exists

i 6= 1 such that x1z1, xizj are two edges then

x1 . . . xlz
2
1 . . . z

2
m ∈ I2G, a contradiction.

(3) S has only one element. Indeed,

if there exists u ∈ S such that u 6=
x1 then by (2) we have u /∈ N(Z).

Since ux1 . . . xlz
2
1 . . . z

2
m ∈ I2G, there ex-

ists v ∈ S such that uv ∈ IG and

x1 . . . v̂ . . . xlz
2
1 . . . z

2
m ∈ IG. If v 6= x1

then uvx1z1 ∈ I2G, which implies that

x1 . . . xlz
2
1 . . . z

2
m ∈ I2G, a contradiction. If



v = x1 then we have x2 . . . xlz
2
1 . . . z

2
m ∈ IG,

a contradiction to (1). Thus card(S) = 1.

(4) Let u /∈ Z, we have ux1z
2
1 . . . z

2
m ∈ I2G+

(y31, . . . , y
3
k, x

3
1, z

3
1 , . . . , z

3
m). Clearly, u must

belong to N(Z), otherwise ux1z
2
1 . . . z

2
m /∈

I2G + (y31, . . . , y
3
k, x

3
1, z

3
1 , . . . , z

3
m), a contradic-

tion. Hence Z is maximal coclique subset of

V (G).

Example 3.2. In the figure 1 we have a

graph G with ν(G) = 4. We have twenty

two maximal cocliques sets

{a, d, h, j, k}, {a, d, g, i}, {b, d, h, j, k},
{b, d, g, i}, {c, d, h, j, k}, {c, d, i},
{a, e, h, j, k}, {a, e, g, i}, {b, e, h, j, k},
{b, e, g, i}, {c, e, h, j, k}, {c, e, i}, {a, f, h, j, k},
{a, f, i}, {b, f, h, j, k}, {b, f, i}, {c, f, h, j, k},
{c, f, i}, {a, d, g, j, k}, {b, d, g, j, k},
{a, e, g, j, k}, {b, e, g, j, k}.

Figure 1

Hence IG has 22 irreducible components.

In this example, we have two triangles F1 =

{a, b, c}, F2 = {d, e, f}. Consider for ex-

ample the set F1, there are exactly six co-

clique sets Z ⊂ V (G) \ N(F1) that are

maximal subset of V (G) \ N(F1). Namely,

Z1 = {d, h, j, k}, Z2 = {e, h, j, k}, Z3 =

{f, h, j, k}, Z4 = {d, i}, Z5 = {e, i}, Z6 =

{f, i}. This shows that

(a2, b2, c2, e, f, g, i), (a2, b2, c2, d, f, g, i),

(a2, b2, c2, d, e, g, i), (a2, b2, c2, e, f, g, h, j, k),

(a2, b2, c2, d, f, g, h, j, k), (a2, b2, c2, d, e, g, h, j, k)

are embedded irreducible components of I2G.

Similarly, for F2 there are also exactly six co-

clique sets. As a consequence there are ex-

actly 12 embedded irreducible components of

I2G. We can describe them completely.
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