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IRREDUCIBLE DECOMPOSITION OF SQUARE OF EDGE IDEALS
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ABSTRACT
Let R = K[X 1,...,x d] be the polynomial ring in d variables over K, G = (V(G),E(G)) a graph
associated with variables {x 1,....x d } and I an edge ideal. In this paper, we describe the structure
of irreducible decompositions of square of edge ideals lec2 of the polynomial ring via corner
elements and coclique sets.
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PHAN TiCH BAT KHA QUY CUA BINH PHUONG IPEAN CANH

Nguyén Thi Dung
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TOM TAT
Cho R = K[x 1,...,xd] 1a vanh da thirc d bién trén truong K, G = (V(G),E(G)) 1a db thj lién két véi
céc bién {x 1,...,xd } va IG 1a idéan canh. Trong bai bdo nay, chiing t6i mé ta cau tric cta phén tich
bét kha quy ciia binh phuong ctia idéan canh 1G2 cua vanh da thirc thong qua cac phan tir goc va
cac tap coclique.
Key words: Dai 56 giao hoan; Idéan don thurc; Idéan canh; Phdn tich bét kha quy; Phan tir goc;
Tap Coclique.

Ngay nhdn bai: 12/7/2019; Ngay hoan thién: 16/9/2019; Ngay ding: 26/9/2019

Email: nguyenthidung@tuaf.edu.vn
https://doi.org/10.34238/tnu-jst.2019.10.1804

http://jst.tnu.edu.vn; Email: jst@tnu.edu.vn 37


http://jst.tnu.edu.vn/
mailto:jst@tnu.edu.vn
mailto:nguyenthidung@tuaf.edu.vn
https://doi.org/10.34238/tnu-jst.2019.10.1804

1. INTRODUCTION

Let K be a field, R = Klx1,...,z4] the
polynomial ring in d variables over K. We
say that an ideal I C R is irreducible if [
cannot be written as the intersection of two
larger ideals of R. When [ is a monomial
ideal, the set Irr([) of irreducible monomial
ideals appearing in such expression depends
only on I. It is well known that through the
structure of irreducible decompositions of I*,
we can study the asymptotic behavior of the
associated primes, the depth, or the socle of
I* for k > 2. This problem has been stud-
ied by many authors (see [1] [2], [3], [4], [5],
[6],...) Note that the structure of irreducible
decompositions of I*, for small values of k,
can also be very complicated even for edge
ideals. In this paper, we are interested in
studying the structure of irreducible decom-
positions of square of edge ideals Ié of the
polynomial ring in the case k = 2 via corner
elements and coclique sets.

In the section 2, we will recall some results
about irreducible decompositions, corner el-
ements and coclique sets. In the section 3,
we prove the main resut of the paper which
describles irreducible component of powers of
edge ideals 1% (see Theorem 3.1) and give an
example (see Example 3.2).

2. PRELIMINARIES

In this section, we recall some terminolo-
gies that will be used in the rest of the pa-
per. Let R = K[x1,...,x4] be a polynomial
ring with d variables over the field K and
[[R]] the set of all monomials of R. For a
non-zero vector a = (a1, ..., aq) € N%, we set
a+1=(a1+1,...,a4+1) € N¥, m? := (2} |
i=1,...,d, a; > 0), x* = 2" ...z and
Supp(a) = Supp(x?) := {z; € V(G) | a; #
0}.

Definition 2.1. A non-zero monomial ideal
I of R is called irreducible, if I is of the form

mP for some non-zero vector b € N¢. An
ideal [ is called m-irreducible monomial ideal
if I is an irreducible ideal and VI = m. An
wrreducible decomposition of a monomial ideal
I is an expression of the form I = mP1n...N
., by €
N" and it is irredundant, if none of the ideals
mP1, .. mPr can be dropped from the right
hand side.

mPr, for some non-zero vectors by, ..

It is well known that if I is a monomial
ideal then I has a unique irredundant irre-
ducible decomposition I = ﬁlembi, the set
{mP1 . mPr} is denoted by Irr(1). We also
denote by Irry(I) the set of m-irreducible
monomial ideals which appear in the irredun-
dant irreducible decomposition of I.

Let J C R be a monomial ideal and u(J)
the number of minimal generators of J.

Definition 2.2. A monomial z € [[R]] is a J-
corner element if z ¢ J but x12,...,xq92z € J.
The set of corner elements of J in [[R]] is

denoted by Cg(J).

Note that if rad(J) = m, then it is well
known that t(R/J) = card(Cr(J)) is the
type of the ring R/J. Now we need some
results from [7].

Theorem 2.3. Let J C R be a monomial
ideal.

(i) Assume that rad(J) = m. Let
Cr(J) ={x"|bj e N j=1,....t(R/J)}

be the set of corner elements of J. Then
J = ﬁz(fél/ Db+l s the unique irredundant

irreducible decomposition of J.
(ii) Assume that rad(J) # m and
J=xP|b;eNj=1,...,u(J)R.

Let m be an integer bigger or equal than any
of the coordinates of the vectors by. Set J' :=
J+ (@ 2R and Cr(J') = {x% |
c; eNYj=1,...,¢t(R/J)} be the set of cor-

ner elements of J'. Then J = ﬂ;(fl/f)mcﬁl
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is the unique irredundant irreducible decom-

position of J, where mS+L is obtained from
m%tL by deleting all monomials of the type
a:’lnﬂ, - ,:ch'l from its generators.

From now on, let G = (V(G),E(G))
be a graph with the vertex set V(G) =
{z1,...,24}. Recall that the edge ideal I
associated to G is the ideal generated by
the edges of G. Note that the edge ideal Ig
is a square-free monomial ideal. For each
s<deN, weset S ={z,...,2s} C V(G)
and Z =V (G)\ S ={z1,..., 2}

Corollary 2.4. Let k,m € N and m > k.
Then the ideal (:E‘f1+1, o, 2% )R belongs to
Irr([é)R if and only if

a;+1 as+1 _m+1
I e I

m—+1

i)
belongs to Irr(1E+mP), where b = (m+1, m+
1,...,m+1) € N

Note that in terms of corner elements,
it is equivalent to say that the monomial
it oox% 2. 2" is a corner element of
Ié +mP. That is

(1) af' .. .x%2m ... 2" ¢ IE + mP but
(2) uz{'...x%2" ... 2" € IE + mP for
every u € V(G).

It is clear that the second condition is im-
mediate for v € Z. The first condition im-
plies that for any z; # z; € Z, we have
ZiZg ¢ IG.

Definition 2.5. [8] A set C C V(G) is a
cover of G if for any edge zy € E(G) we
have either z € C ory € C. A set S C V(G)
is a clique of G if the induced subgraph G[5]
is a complete graph and it is a coclique of G
if the induced subgraph G[S] has no edges.
A coclique set of G is also called indepen-
dent set. The family of cocliques sets of G is
a simplicial complex called independent com-

plex of G and denoted by A(G).

For a set S C V(G) we denote by N(S5)
the set of vertices adjacent to some element

in S and Ag(G) the family of cocliques sets
of G such that N(S)N Z = (. Note that S

may be not a subset of N(5) and Ag(G) is a
simplicial complex.

Remark 2.6. (i) A set C C V(G) is a cover
of G if and only if V(G)\ C is coclique and C
is a minimal cover of G if and only if V(G)\C
is a maximal coclique.

(ii) A set Z C V(G) is coclique if and only
if N(Z)NZ = 0 and Z is maximal coclique
if and only if V(G) = N(Z)U Z.

Example 2.7. (i) The set Z in Corollary 2.4
is a coclique. Indeed, if there is indices ¢ #
J such z;z; is an edge in G then we would
have 2! ...x%2F ... 2F € I} + mP, which is
a contradiction.

(ii) As an application of the above result,
let us compute the irreducible decomposition
of I. Since it is a square free ideal, any ideal
in Irr(I¢) is of the type m® for some nonzero
vector a € N? such that 0 < a; < 1 for every
i=1,...,d. Let S = Supp(a),Z = V(G) \
S = {z1,...,2z}. Then z;...2 is a corner
element of I; + m(22-2) | which implies that
Z is a coclique. Moreover, it is a maximal
coclique set in V (G), since for every u € S we
have uzi ...z € Ig+m®2-2) which implies
that there exists some ¢ such that uz; is an
edge in G.

This proves that the irreducible (prime)
ideals in Irr(Ig) are of the type m? for some
nonzero vector a € N% with 0 < a; < 1 such
that V(G) \ Supp(a) is a maximal coclique in
V(G). This also shows that I is the Stanley-
Reisner ideal associated to A(G). Note that
the set Irr(I) is also the set of minimal as-
sociated primes of I’é, for any k£ > 1.

3. IRREDUCIBLE COMPONENTS OF Ig;

We start by recalling some definitions in
[9]. A matching M of a graph G is a subset
of E such that any two edges of M have no
vertices in common. A mazimum matching of



G is a matching that contains the largest pos-
sible number of edges. The matching number
of a graph G, denoted by v(G), is the number
of edges in a maximum matching of G.

It is well known that if M, N are mono-
mials without common variables and L is a
list of monomials then (MN,L) = (M,L)N
(N,L). As a consequence of this fact, every
irreducible component J of Ié can be writ-
ten J = (Y1,..., Yk, T3, ... ,le)R, for some
vertices yi,...,Yk, T1,-..,2; in V(G). Now
put the sets S := {z1,...,11},Z = V(G) \
{y1, - yk, 21, -} = {21, ., Z2m }-

Theorem 3.1. Let J be an irreducible com-
ponent oflcz; and the sets S, Z as above. Then
we have either

(i) N(S)NZ = 0. In this case card(S) = 3,
G[S] is a triangle and Z is a mazximal coclique
subset of V(G) \ N(S).

(ii) N(S)NZ # 0. In this case card(S) =1

and Z is a mazimal coclique subset of V(G).

Proof. Let J = (y1,...., Yk, 2%, ...,27)R be
an irreducible component of Ié. Then we
have by Corollary 2.4 that J is an irre-

ducible component of I(Q; if and only if J +

(23,...,23)R is an irreducible component

’rm
2 3 3 .3 3 .3 3
of I& + (YD, U@L,y T3 20,y 2)-

’Tm
Therefore by term of corner elements we

have x1...312%...22, is a corner element of
Ié—l—(y%,...,yz,x:{’,...,m?,zij’,...,zgl)R, ie.
Ty...m2 L 22 g’éIé—i—(y%,...,y%,x?,...,w?,
2, 28 )R(1) and wxy...;2 .22 €
Ié + (y%,...,yi,x%,...,x?,z%,...,z%)R(2)

for every vertex u. We have two following
assertions:

(a) If m > 2 then for every 1 <i < j<m
we have z;z; ¢ Ig.

(b) For every u ¢ Z, the condition (2)
implies that uxy...z27... 22 € I4. It fol-
lows that { > 1 and :1;1...3;12%...27271 e Ig.
In terms of matching number that means
v(SUZ) =1 and v(S) < 1. Now we prove

the theorem.

(i) f N(S) N Z = 1 then since
Ty...22% ... 22, € I and the assertion (a),
we have x1...x; € Ig, i.e. v(S) = 1.

For uw = x1, we have xz11 :Blz%z?n €
I2. But since N(S) N Z = 0, we have
121 ...2] € Ié. Then there exist two edges
Ti, Tiy, TisTiy, € Ig and they must have a com-
mon vertex, otherwise x;...x; € Ig,, a con-
tradiction. Hence there exists 1, 79 such that
T1Ti,, 1%, € Ig.

Suppose that { > 4. Let z;, distinct
from x1,x;,,xi,. By using the same argu-
ment as the above, then there exists iq4, 15
such that z;,x;,, ;25 € Ig. We have ei-
ther z;, # 1 or x;, # x1. Suppose x;, # x1
and if z;, = x;, then zix;,,x; ;, implies
v(S) > 1, a contradiction to (b), if x;, = =i,
then zyzi,, xi,xi, also implies v(S) > 1, a
contradiction to (b). By similar argument for
the case x;; # x1 and x;, = x4, Or Ty, = Tj,.
Sol=3.

Moreover, since x;,212;, Ty 25 . .. 22, € IZ,
it implies x;, £124, 4, € 1, é, and consequently
xi, Ti, € Ig. Hence S is a triangle.

Finally, let v be a vertex such that Z U
{u} is coclique then uzy...m2}... 22 € I,
implies u € N(.9), this proves the maximality
of Z inside V(G) \ N(5).

(ii) Assume that N(S)NZ # 0. Let 21 €
N(S)N Z and suppose that z121 € Ig. Then
we have the following claims:

(1) o ... I QIG

(2) N(S)N Z # z;. Indeed, if there exists
i # 1 such that x121, z;2; are two edges then
T1... 2% ... 22 € 13, a contradiction.

(3) S has only one element. Indeed,
if there exists w € S such that u #
x1 then by (2) we have u ¢ N(Z).
Since wxy...z2}...2% € 1%, there ex-

m
ists v € S such that wv € Ig and
Ty 0.mR 22 € I v #£

then wvzriz1 € Ig;, which implies that

2 ¢ Ié, a contradiction. If

a:l...a;lz%...zm



v = x1 then we have azg...xlz%...z?n € Ilg,
a contradiction to (1). Thus card(S) = 1.
(4) Let u ¢ Z, we have uz1z7 ... 22 € IZ+
(y3,...,y8,23,23,...,23). Clearly, u must
belong to N(Z), otherwise uzi2?...z2, ¢
2+ (y3,...,up,23,23,...,23), a contradic-
tion. Hence Z is maximal coclique subset of

V(G).

Example 3.2. In the figure 1 we have a
graph G with v(G) = 4. We have twenty
two maximal cocliques sets

{a,d, h,j,k},{a,d,g,i},{b,d, h,j,k},
{b,d,qg,i},{c,d, h,j,k},{c,d,i},
{a,e,h,j,k},{a,e q,i},{b,e, h,j Kk},
{be.9.i},{c,e.h,j, k}, {c.e,i}, {a, f,h, j, k},
{a, f, 1}, {0, £, h, . k3 AD, fo i} e, £ b g, K
{c, f,i}.{a,d,g,5,k},{b,d, g, ], k},
{a,e.9,5,k},{b,e, 9,7, k}.

FiGUuRrE 1

Hence Is has 22 irreducible components.
In this example, we have two triangles I} =
{a,b,c}, F» = {d,e, f}.
ample the set Fi, there are exactly six co-
clique sets Z C V(G) \ N(Fi) that are
maximal subset of V(G) \ N(Fy). Namely,
Zy = {d,h,j,k},Zo = {e h,jk},Zs =
{fu h,j, k}7Z4 = {d,i},Z5 = {€7i}726 =
{f,i}. This shows that
(a?,b?, 2 e, f,g,1), (a®, 0, c2,d, f, g,1),

(a27 b2’ 027 d? e? g? i)? (a27 b27 627 e? f7 g? h’j’ k)’

Consider for ex-

(a27b27027d? f7g7 h?j? k)? (a27b27c27d7 e7g7 h?j? k)

are embedded irreducible components of Ié.
Similarly, for F5 there are also exactly six co-
clique sets. As a consequence there are ex-
actly 12 embedded irreducible components of
Ig;. We can describe them completely.
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