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ABSTRACT 
In practice, torsional vibration plays an important role in degrading the safety and stability of 

structures under the effects of torsional torque such as machine shafts, turbine shafts, etc. 

However, the study on the design of a tuned mass damper (TMD) for shafts is very limited in the 

literature. In case of the shaft is excited by random excitation, there has been no study to reduce 

the torsional vibration of the shaft. This paper presents an analytical method to determine optimal 

parameters of the tuned mass damper (TMD), such as the ratio between natural frequency of TMD 

and the shaft (tuning ratio), the ratio of the viscous coefficient of TMD (damping ratio). Two novel 

findings of the present study are summarized as follows. First, the optimal parameters of TMD for 

the shafts are given by using the minimum quadratic torque method. Next, a numerical simulation 

is done for an example of the machine shaft to validate the effectiveness of the results obtained in 

this work.  

Keywords: Tuned mass damper, torsional vibration, pendulum, machine shaft, minimum 

quadratic torque, random excitation. 
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THIẾT KẾ TỐI ƯU BỘ HẤP THỤ DAO ĐỘNG ĐỂ GIẢM DAO ĐỘNG XOẮN 

CHO TRỤC MÁY CHỊU TÁC DỤNG CỦA LỰC KÍCH THÍCH NGẪU NHIÊN 
 

Nguyễn Duy Chinh 
Trường Đại học Sư phạm kỹ thuật Hưng Yên, Việt Nam 

 

TÓM TẮT 
Trong thực tế, dao động xoắn đóng vai trò quan trọng trong việc làm giảm sự an toàn và ổn định 

của các cơ cấu dưới tác động của mô-men xoắn, ví dụ như trục máy, trục tuabin,... Tuy nhiên, 

nghiên cứu về thiết kế bộ hấp thụ dao động (TMD) cho trục lại rất hạn chế trong các tài liệu. 

Trong trường hợp trục chịu tác dụng bởi lực kích thích ngẫu nhiên, chưa có nghiên cứu nào giảm 

dao động xoắn cho trục. Bài báo này trình bày một phương pháp phân tích để xác định các tham số 

tối ưu của bộ hấp thụ dao động (TMD), chẳng hạn như tỷ số giữa tần số tự nhiên của bộ TMD và 

trục (tỷ số điều chỉnh), tỷ số cản nhớt của TMD (tỷ lệ giảm chấn). Hai phát hiện mới của nghiên 

cứu này được tóm tắt như sau. Đầu tiên, các tham số tối ưu của TMD cho các trục được đưa ra 

bằng cách sử dụng phương pháp cực tiểu mô men bậc hai. Tiếp theo, một mô phỏng số được thực 

hiện cho một ví dụ về trục máy để xác nhận tính hiệu quả của các kết quả thu được trong nghiên 

cứu này. 

Từ khóa: Bộ hấp thụ dao động, dao động xoắn, con lắc, trục máy, cực tiểu mô men bậc hai, kích 

thích ngẫu nhiên 
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1. Introduction 

The study to reduction of shaft vibration is an 

important and timely task [1-15]. From the 

researches in [1-6], the author finds out that 

there are many studies on the reduction of 

torsional vibration with or without CPVA 

(centrifugal pendulum vibration absorber), 

CDR (centrifugal delay resonant) and DVA 

(dynamic vibration absorbers). But these 

studies just focus on the stability and motion 

control of oscillating absorber systems, and it 

has no research that uses the optimum 

arithmetic calculations to calculate the 

optimal parameters of absorbers for the main 

system under torsional vibration. There are 

some studies to reduce the torsional vibration 

of the shaft by setting an absorber in different 

forms. In these studies, authors also focused 

on determining optimal parameters for the 

DVA (or TMD) design. In  [7, 8] have 

determined the optimal parameters of the 

absorbers set in the form of expressions, 

reduce the torsional vibration for the shaft 

from the effects of different excitation. Vu et 

al. [7] have determined the optimal 

parameters of the dynamic vibration absorber 

(DVA) in case the shaft is subject to harmonic 

excitation, under the harmonic excitation, the 

fixed point method is used to determine the 

optimal parameters. In case the shaft is 

subject to impact excitation, Chinh [8] has 

determined the optimal parameters of the 

tuned mass damper (TMD) to reduce the 

torsional vibration of the shaft by using the 

principle of minimum kinetic energy. The 

results were given by 
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In case of the shaft is excited by random 

excitation. To the best knowledge of the 

author, there has been no study on the TMD 

using minimum quadratic torque method for 

the shaft. Perhaps a reason is that the 

calculations in this case is too complicated. 

This paper presents minimization of quadratic 

torque to determine the optimal parameters of 

the passive mass-spring-pendulum-type tuned 

mass dampers (TMD) such as tuning ratio and 

damping ratio. The results indicate that the 

effectiveness in torsional vibration reduction 

in case of the shaft is excited by random 

excitation. The minimum quadratic torque 

method in Reference [9] is used for 

determining the optimal parameters of the 

TMD.   

2. Shaft modelling and equations of 

vibration 

Fig. 1  illustrates a pendulum type TMD 

attached to a shaft. The shaft has the torsion 

spring coefficient is tk . A pendulum type 

TMD has a concentrated mass 2m  at the top, 

spring constant mk  and damping constant c , 

the length of beam is 2L  and the length mass 

is 2 tm . The TMD is installed in the shaft 

through a mass rotor (the rotor is mounted 

rigidly to the shaft), with radius  , mass M . 

By considering the whole system, one can 

conclude that the system is completely 

determined if two coordinates 
1  and 

2  
are 

given. Thus, independent generalized 

coordinates are absolute angle of rotation of 

the rotor 
1  and relatively angel of rotation 

of the TMD to the rotor
 2 . 
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Figure 1. Shaft Model with Installed TMD 

By applying the second-order Lagrange 

equation, the differential equations for the 

vibration system in Fig. 1 is established as [8] 
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where:  1                                                                                                                             (3) 

In which: θ is torsional angle of the shaft,   is angular velocity of the shaft,   is angular 

acceleration of the shaft. 

Eq. (2) can be used in the design of the TMD 

3. Determine optimal parameters of the TMD 

The minimization of quadratic torque (MQT) applied to the impactor of the random excitation 

moment with white noise ( )M t  has the spectral density 
fS . 

We introduce [8] 
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In which, D is the natural frequency of the shaft, d and MQT respectively are the natural 

frequency and the viscous damping ratio of the TMD, µ is the TMD mass ratio, 
MQT

 is the 

tuning ratio of TMD,  is ratio between length of pendulum and radius of gyration of rotor. 

The matrix equations (1, 2) can be rewritten as 

MQT MQT MQT MQT
M q + C q + K q = F                                                                (5) 

Where           
 2

T
 q                                                                                               (6) 

The mass matrix, viscous matrix, stiffness matrix and excitation force vector can be derived as 
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From the oscillator equation in matrix form (5), the equation of state is constructed: 

          
( ) ( ) ( )ft t M t y By H                                                                                      (8) 

Where: y(t)  is the state vector corresponding to the response of the system and is defined as follows: 

 
 2 2

T

   y                                                                                               (9) 

The system matrix B  has the form 
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where E  is the matrix unit 

Hence the B  matrix can be obtained as 
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The matrix of excitation force is obtained as [12] 

        1

0
( )

( )MQT MQTf M t


 
  
 

H
M F

    
2

2

0

0

1

1

f
M

M





 
 
 
 

   
 
 
 
 

H                                        (12) 

The quadratic torque matrix P  is a solution of the Lyapunov equation [9] 

f f

T T

fSBP + PB + H H = 0                                          (13) 

Substituting Eqs. (11) and (12) into Eq.(13), The matrix P  can be determined as: 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

P P P P

P P P P

P P P P

P P P P

 
 
 
 
 
 

P                                                                          (14) 
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Minimum conditions are expressed as [9] 
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The optimal parameters of the TMD were determined by solving the Eqs. (15,22)   
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Table 1. The optimal parameters of the tuned mass damper for various mass ratios and ratio between the 

length of pendulum and radius of gyration of the rotor. 

    
MKE

opt  
MKE

opt  MQT

opt  
MQT

opt  

0.01 0.1 0.9998 0.0070 0.9981 0.0071 

0.02 0.2 0.9984 0.0196 0.9925 0.0200 

0.03 0.3 0.9946 0.0352 0.9836 0.0367 

0.04 0.4 0.9874 0.0525 0.9721 0.0563 

0.05 0.5 0.9756 0.0707 0.9583 0.0783 

0.06 0.6 0.9586 0.0891 0.9429 0.1023 

0.07 0.7 0.9358 0.1073 0.9262 0.1277 

0.08 0.8 0.9071 0.1249 0.9089 0.1542 

0.09 0.9 0.8728 0.1419 0.8914 0.1814 

0.10 1.0 0.8333 0.1581 0.8740 0.2087 

From equations (23, 24), we obtain the 

optimal parameters of the TMD to reduce the 

torsional vibration of the shaft by using the 

minimum quadratic torque method, which is 

different from the optimal parameters of the 

TMD to reduce the torsional vibration of the 

shaft by using the principle of minimum kinetic 

energy in the reference [8]. This asserts with a 

shaft model with installed TMD, but applying 

different methods to find optimal parameters 

gives different analytical results. 

Table 1 presents the optimal parameters 

obtained by the two methods according to the 

various mass ratios and ratio between the 

length of pendulum and radius of gyration of 

the rotor. We see that the tuning ratio of TMD is 

approximately 1, indicating that the optimized 

TMD has the natural frequency is 

approximately the natural frequency of the 

shaft. With the design of this TMD will reduce 

the vibration of the shaft in the best way. 

From table 1, we again assert that the same 

shaft model with installed TMD is the same 

with the values of the various mass ratios and 

ratio between the length of pendulum and 

radius of gyration of rotor, the optimal 

parameter is obtained by two methods of the 

principle of minimum kinetic energy and the 

minimum quadratic torque method is different. 

Therefore, when applying the optimum 

parameters to reduce the vibration of the shaft, 

we must see the machine shaft is subject to the 

force of any excitation to apply the method of 

optimal parameters for the appropriate.  
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4. Numerical simulation study 

In this section, numerical simulation is 

employed for the system by using the 

achieved optimal parameters of the TMD, as 

shown in Eq. (23) and Eq. (24). To 

demonstrate the above analysis, computations 

will be performed for a system with 

parameters given in Table 2 [8]. 

Table 2. The input parameters for shaft and TMD 

Parameters M  kt mt M L 

Value 500kg 1.0 m 10
5
Nm/rad 15kg 10kg 0.9m 

The dimensionless parameters can be calculated and shown in Table 3 

Table 3. Value of the dimensionless parameters 

Parameters μ  
   Value 0.03 0.9 

Table 4 shows the optimization results calculated by the present method. 

Table 4.  The optimal parameters of the TMD 

Optimal Parameters MQT

opt  

MQT

opt  
c km 

   Value 0.965 0.108 44.34 Ns/m 4527.35Nm/rad 

* Simulation Results 

Numerical simulations for torsional vibration of the machine shaft using the Maple are 

implemented in different operating conditions in case of the shaft is excited by random excitation 
2

2

1 ( )

2
8 2e

( ) 15.10

t a

b

M t
b




 (N); a = 10
11

; b = 10
10 

                                                    (25) 

Table 5 shows the different operating conditions of the machine shaft. In the case 1, simulation is 

implemented with initial torsional angle of 
0 = 0.002(rad) . Secondly, simulation results of initial 

torsional angle 
0 0.0( )rad   and initial angular velocity of 

0 0.05( / )rad s   is shown. Finally, 

simulation study presents the simulation with initial torsional angle 
0 = 0.002(rad)  and initial 

angular velocity of 
0 0.05(rad / s)  . 

 

Figure 2. Vibration of the machine shaft with 0 = 210
-3

 (rad) in the case of random excitation M(t) 

Table 5.  The different operating conditions of the machine shaft 
Cases 1 2 3 

0  32 10 ( )rad  0.0( )rad  32 10 ( )rad  

0  0.0( / )rad s  25 10 ( / )rad s  25 10 ( / )rad s  
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Figure 3. The vibration of the TMD with 0 = 210
-3

(rad) and 2

0 5 10 ( / )rad s   in the case of random 

excitation M(t) 

 
Figure 4. The vibration of the machine shaft with 0 = 210

-3
(rad) and 2

0 5 10 ( / )rad s   in the case of 

random excitation M(t) 

The responses of the shart are shown in Figs 

2, 3 and 4. The results show that the TMD can 

reduce the torsional vibration of the shaft in 

all case. 

5. Conclusions 

In this paper, the minimization of quadratic 

torque (MQT) has been examined for a shaft 

model. The same procedure as in the 

conventional MQT theory has been used to 

derive the optimum tuning and damping ratios 

of the device. It was found that the optimum 

tuning and damping ratios have an analytical 

form. Research results are verified by 

numerical simulation with high reliability. 

The optimal parameters were determined in 

analytical form and furthermore lead to the 

simple explicit formulas in Eqs. (23, 24). 

Paper has studied, analyzed and evaluated the 
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effect of reducing the vibration of the shaft in 

the case of without and with TMD is mounted 

oscillating with the optimal analysis solution 

found the TMD. From the simulation of the 

vibration amplitude over time in case of the 

shaft is excited by random excitation, it was 

found that the torsional vibration amplitude of 

the machine shaft when the TMD was 

installed according to the optimal parameters 

found by equations (23, 24) was effective in 

reducing vibration for the machine shaft. 
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