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1. Introduction

Nowadays, eddy current losses are one of the main parts of the total power losses in electrical
devices. It seems to be appeared in any conduction regions of all types of electrical apparatus,
cores of transformers and rotating electrical machines, which are subjected to a time-varying
magnetic field variation. This leads to an increase of losses and a decrease of efficiency for
electrical devices [1], [2]. In order to reduce joule power losses due to the eddy currents, many
authors have recently used finite element technique to calculate the eddy currents already in the
design phase of transformers [3]. This paper is developed based on a two steps to compute eddy
current losses and magnetic flux distribution for 2D model. In [4], the H-conformal formulations
are proposed with edge elements via a subproblem method for solving magnetodynamic
problems. Or in [5], authors have used a technique to couple finite element method (FEM) and
scalar boundary element method formulations to calculate eddy current losses.

In this research, an expended FEM is presented for computing local fields, such eddy current
losses and magnetic flux distributions appearing in electromagnetic problems. The method is
herein performed with the weak magnetic vector potential formulations (A), where a magnetic
flux density (B) is in terms of A. The method allows to solve directly local fields without taking a
magnetic scalar potential quantiy into account as pointed out in [4]. The develoment of method is
also validated on a practical problem with the frequency domain.

2. Magnetodynamic finite element problems
2.1. Maxwell’s equations

A model of a canonical magnetodynamic problem with a simple connected domain Q (with
boundary dQ) =T =T\ UTe) is shown in Figure 1. Where Q, is the non conducting region,
parameters | and o are the permeability and conductivity, respectively. The excitation magnetic
field is generated by the fixed current Js in stranded inductors.

J— Foo

Qo, Uo

Figure 1. Eddy current problems

The Maxwell’s equations considered in the frequency domain and behavior laws are written in
Euclidean space R3[6], [7].
curl H=J,,curlE=—jw B, divB = 0. (1a-b-c)
B =uH, J =0E, (2a-b)
where B is magnetic flux density (T), H is the magnetic field (A/m), E is the electric field (V/m),
J< is the current density (A/m2), 1 and o are respectively the relative permeability and electric
conductivity (S/m).
The boundary conditions (BCs) defined on T are expressed as
nXH|r, =js, n-B|r, = by, (3a-b)
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where n is the unit normal exterior to Q, with Q = Q. U Q¢. Where domains Q. and Q¢ are
respectively the conducting non-conducting regions. The equations (1 a) and (1 b) are solved
with BCs taken the tangential component of H in (3 a) and the normal component of B in (3 b)
into account.

The fields H, B, E, J are defined to satisfy Tonti’s diagram [9]. This means that H €
Hy, (curl; Q), E € H, (curl; Q), J € H (div; Q) and B € H, (div; ), where H;, (curl; Q) and
H. (div; Q) are function spaces containing BCs and the fields defined on I}, and T, of studied
domain Q.

The fields of j; and by in (3a-b) are generally equal zero for classical homogeneous BCs. The
field B in (1 ) is obtained a vector potential A such that [8], [9].

B = curl A. 4

By substituting (4) into (1 b), one has curl (E + d;A) = 0, this leads to the definition of an
electric scalar potential v such that

E = —0;A—gradv. (5)

2.2. Magnetic vector potential weak formulations

The magnetic vector potential A is of great use and applicability when dealing with two or
three- dimensional problems. Based on the weak form of Ampere’s law (1 a), the weak
formulations in study domain Q is presented as [6], [7].

1
17§ (B- curlw)dQ —o ff; (E- curlw)dQ, + 3€ (nxH) -wdl = jg(] -w)dQs,,
Q Q. r Qg
vw e Hd(curl, Q). (6)

By introducting the definition of the vector potential (B = curl A) given in (4) and the
electrical field E in (5) into the equation (6), one has

1
; f (curl A- curlw)dQ —o _(f (0:A- curlw)dQ, + o _(f (grad v - curl w)dQ, + ff (nxH)
Q Qc ‘QC r

~wdl = ¢ (J-w)dQ
]

vwe H(curl, Q), (7)
where H(curl, Q) is a function space containing the interpolation functions for A as well as for
the shape function w. The term T, is surface integral term considering as a natural BC. This is
the case for a homogeneous Neumann BC, e.g. imposing a symmetry condition of “zero crossing
current”, i.e.

nxH|p, =0=>n-B|, =0 & n-]J|, =0. (8)

2.3. Computation of Joule power losses via a post-processing

After solving the weak formulation (7), the magnetic vector potential A is obtained in the
study domain Q, which makes possible the calculation of the eddy currents with:
] = 0E = —jwJA. 9)
Thus, the Joules losses are computed with:
bf

dQ, (10)

Piosses =

N| —
Q=

http://jst.tnu.edu.vn 38 Email: jst@tnu.edu.vn


http://jst.tnu.edu.vn/
mailto:jst@tnu.edu.vn

TNU Journal of Science and Technology 227(07): 36 - 41

where j is the conjugate of J. An alternative to the volume integration is to use the Poynting
theorem associated to the surface integral term of degrees of freedom of A and v located on the
border

1 _ o) _
Plosses = ERe %‘(n X H)-EdI' | = Re —%ff (nxHg —n x grad v).Adr |, (11D
r
where E and A denotes the complex conjugate of electric field E and magnetic vector A
respectively.

3. Numerical validation

In order to validate the developed method, the practical test problem based on the IEEE of Japan
[10] is introduced (Fig. 2). It consists of two aluminium plates, with the conductivity of 3x215.10’
S/m. A relative permeability of the ferrite core is 3000. An alternating current value of the excitation
coil is 1000A, and frequency of 50Hz. The problem at hand is considered in 3D case.

z

Exciting coil

S [ (mml =)
M Ferrite core \/ Emo X : : 60 : : W0 x
B |
v

A

Figure 2. Practical problem prosoed by IEEE [8]
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Figure 3. Magnetic flux denisty distributions

The magnetic flux density distribution due to “B = curl A"is presented in Figure 3. It can be
seen that the fields almost focus on the edges of the ferrite core region due to the skin effect with
properties of the conductivity and permeability. Significant magnetic fields along the two
alumimum plates (top and bottom) are pointed in Figure 4, with effects of different properties.
The skin-depth () is equal to 12.5 mm with f= 50Hz, for u, = 1, o = 3,215x10" S/m.
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Figure 4. Distributions of magnetic flux density in both the aluminum plates (top and botom)

Significant eddy current values along the border of a top plate with effects of u- = 1, o =
3.215x10” MS/m and f = 50 Hz, are shown in Figure 5. It mainly focuses on the surface of the
plate near edges and corner. It can reach 2.8x10° A/m2 along the x-axis, at the position of y = 0
and z =65 mm, and for 2x10° A/m2 along x-axis at position of z =0 and z =65 mm.
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Figure 5. Distributions of eddy current density on the border of the top aluminum plate
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4, Conclusions

The proposed method has been successfully presented with the weak magnetic vector
potential formulations. The extended formulations allow to compute and simulate local fields
(magnetic fields, magnetic flux density and eddy current losses) due to the alternating current
following in the coil with effects of different properties. The obtained results have been shown
that there is a very good validation of the development formulations in the computation of local
fields taking skin effects into account. In particular, the validation of the presented method has
been also successfully applied to the practical test problem.
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