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modeling inaccuracies, measurement errors, and so on, uncertain 

disturbances are usually unavoidable in real dynamical systems. 

Convex polytopic uncertainties are one of a kind of these disturbances. 

In this paper, we consider the problem of fractional exponential stability 

for a class of Hopfield fractional-order neural networks (FONNs) 

subject to conformable derivative and convex polytopic uncertainties. 

By using the fractional Lyapunov functional method combined with 

some calculations on matrices, a new sufficient condition on fractional 

exponential stability for conformable FONNs is established via linear 

matrix inequalities (LMIs), which therefore can be efficiently solved in 

polynomial time by using the existing convex algorithms. The proposed 

result is quite general and improves those given in the literature since 

many factors such as conformable fractional derivative, convex 

polytopic uncertainties, exponential stability, are considered. A 

numerical example is provided to demonstrate the correctness of the 

theoretical results. 
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Ngày nhận bài:  28/02/2022 Nhiễu thường xuyên xuất hiện trong các hệ động lực trong thực tế 

bởi nhiều nguyên nhân như quá trình xấp xỉ tuyến tính, lỗi do đo đạc, 

lỗi trong quá trình mô hình hóa. Nhiễu dạng tổ hợp lồi là một trong 

những loại nhiễu này. Trong bài báo này, chúng tôi nghiên cứu tính 

ổn định mũ cho một lớp mạng nơ ron Hopfield phân thứ phù hợp với 

nhiễu dạng tổ hợp lồi. Bằng cách sử dụng phương pháp hàm 

Lyapunov cho hệ phương trình vi phân phân thứ kết hợp với một số 

phép biến đổi trên ma trận, một điều kiện đủ cho tính ổn định mũ của 

mạng nơ ron Hopfiled phân thứ phù hợp được thiết lập dưới dạng bất 

đẳng thức ma trận tuyến tính. Điều kiện này có thể giải hiệu quả 

trong thời gian đa thức bởi các thuật toán tối ưu lồi. Các điều kiện 

được đưa ra ở đây tổng quát và cải tiến so với một số kết quả đã có 

bởi vì một số yếu tố như đạo hàm phân thứ phù hợp, nhiễu dạng tổ 

hợp lồi, tính ổn định mũ đã được xét đến. Một ví dụ số được đưa ra 

để minh họa cho tính chính xác của kết quả lý thuyết thu được. 
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1. Introduction 

The interest in fractional-order neural networks (FONNs) has grown rapidly due to their 

successful applications in different areas such as mathematical modeling, pattern recognition, and 

signal processing [1]-[4].  

Investigating the stability analysis of FONNs is one of the important problems and many 

interesting results have been published in the literature [5]-[9]. With the help of the fractional-

order Lyapunov direct method, the authors in [5] derived stability conditions in terms of LMIs for 

Caputo FONNs. The results in [5] were extended to Caputo FONNs with time delays by Y. Yang 

et al. [6]. Using the S-procedure technique and fractional Razumikhin-type theorem, the authors 

in [7] proposed an LMI-based stability condition for delayed Caputo FONNs. The problem of 

stability analysis for some kinds of FONNs such as complex-valued projective FONNs, and 

neutral type memristor‐based FONNs have been considered in [8] and [9], respectively. It should 

be noted that almost all of the existing results on the problem are focused on Caputo FONNs or 

Riemann-Liouville FONNs (see [5]-[9] and references therein), and very few works are devoted 

to conformable FONNs [10], [11]. With the help of the Lyapunov functional method, the authors 

in [10] considered existence, uniqueness, and exponential stability problems for Hopfield FONNs 

subject to conformable fractional derivatives. Note that their results are in terms of matrices 

elements, which cannot propose the condition in terms of the whole matrix. Recently, the authors 

in [11] derived some conditions to guarantee stability analysis of Hopfield conformable FONNs 

subject to time-varying parametric perturbations. The conditions are in terms LMIs that are 

numerically tractable. It is worth noticing that the convex polytopic uncertainties are not 

considered in the model of the paper [10], [11]. To the best of our knowledge, the problem of 

fractional exponential stability for conformable FONNs with convex polytope uncertainties has 

not yet been addressed in the literature. 

In this paper, we present a novel approach to study the problem of fractional exponential 

stability of Hopfield conformable FONNs with convex polytopic uncertainties. Our approach is 

based on using conformable fractional-order Lyapunov theorem and LMIs techniques. 

Consequently, a new criterion for the problem is established. Moreover, a numerical example is 

given to show that our results are less conservative than the results in [11]. 

Notations: A matrix P  is symmetric positive definite, write 0,P if ,T=P P and 

0,Ty y P for all , 0.ny y  min and max  denote the minimum and maximum eigenvalues 

respectively. Let S+
and S++

 stand for the set of symmetric semi-positive definite matrix and 

symmetric positive definite matrices in ,n n
 respectively.  

2. Preliminaries and Problem statement 

First, we recal definition of conformable fractional derivative [1].  

Definition 1 [12] Let a function  ): 0, ,g + →  the conformable fractional derivative of 

the function g of order ( )0,1   is defined by ( )
( ) ( )1

0
lim , 0.

g t t g t
T g t t











−

→

+ −
=    If 

( )T g t
 exists on ( )0, ,+ then ( ) ( )

0
0 lim .

t
T g T g t 

+→
=  If the conformable fractional 

derivative ( )g t  of order   exists on ( )0, ,+ then the function ( )g t  is said to be  −

differentiable on the interval ( )0, .+   
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For a vector function ( ) ( ) ( )( )1 , , ,
T n

nx t x t x t=   the conformable fractional derivative 

of ( )x t  is defined for each component as follows  

( ) ( ) ( )( )1: , , .
T

nT x t T x t T x t  =  

P1 [12]: For any scalars , ,a b and two functions  )1 2, : 0, ,f f + → we have 

( ) ( )( ) ( ) ( )1 2 1 2 , 0,0 1.T af t bf t aT f t bT f t t   + = +      

P2 [13]: Let  ): 0, ny + → such that ( )T y t
 exists on [0, ∞) and S .++R  Then, we 

have ( ) ( )TT y t y t
R  exists on [0, ∞) and  

( ) ( ) ( ) ( )2 , 0,0 1.T TT y t y t y t T y t t  =    R R  

Consider the following Hopfield conformable fractional order polytopic neural networks 

(NNs) 

( ) ( ) ( ) ( ) ( )( )

( ) 0

, 0

0 ,

T y t y t g y t t

y y

   = − + 


=

A W
 (1) 

 where ( 0,1  is the order of system (1), ( ) ( ) ( )( )1 , , n

ny t y t y t=  is the state vector, 

( )( ) ( )( ) ( )( )( )1 1 , , n

n ng y t g y t g y t=  stand for the neuron activation function of the 

networks, 0

ny   is the initial condition. The system matrices ( ) ( ) , A W  are belong to a 

polytope  given by  

 ( )  
1 1

, : , , 1, 0 ,
N N

i i i i i

i i

   
= =

 
 = = =  

 
 A W A W  

with vertices , ,i iA W where   ( )1 , , 0, 1, , , 1, ,i i n i

i n kdiag a a a k n i N=    = =A  

are given diagonal matrices, ( )1, ,n

i i N =W are given constant matrices, parameters 

( )1, ,i i N =  are time-invariant. The functions ( ).jg  are continuous, ( )0 0,jg =

( )1, , ,j n=  and Lipschitz condition on  with Lipschitz constants 0 :j   

( ) ( ) , , , 1, , .j j jg a g b a b a b j n−  −   =  (2) 

Definition 2 [13] System (1) is said to be fractional exponentially stable if  

( ) 0 , 0,0 1.
t

y t K y e t




 

−

      

Let us recall the following useful well-known lemma. 

Lemma 1 [13] The system (1) is fractional exponentially stable if there exist 

( )0 1,2,3 ,k k  = and a continuous function : nV +  →  such that the following 

conditions hold 

( ) ( )
2 2

1 2, ,i y V t y y    

( ) ( )( ),ii V t y t  is  − differentiable on the interval ( )0, ,+  

( ) ( )
2

3, .iii T V t y y  −  

3. Main Results 

http://jst.tnu.edu.vn/
mailto:jst@tnu.edu.vn


TNU Journal of Science and Technology 227(07): 49 - 55 

 

http://jst.tnu.edu.vn                                                        52                                             Email: jst@tnu.edu.vn 

Let ( )+ ++S , S 1, , ,i i N  =S P we denote  1, , ,ndiag  =L  

( )

( )

1

, ,

, , ,

N

i

i

T T

i j j i j i

i i i j T

i j

S 





=

 
= =  

 

 − − +
 =  

−  

 i

S 0
P P

0 0

A P P A L L P W
A W P

W P I

 

where  ( )1, ,i i n = are Lipschitz constants, other scalars and matrices are defined as in 

Section 2.  

Theorem 1 The system (1) is fractional exponentially stable if there exist 

( )+ ++S , S 1, , ,i i N  =S P  and a scalar 0  such that the following conditions hold: 

( ), , , 1,2, , ,i i i i S i N  − =A W P  (3) 

( ) ( )
2

, , , , , 1, , 1, 1, , .
1

i i i j j j j i i N j i N
N

 +  = − = +
−

A W P A W P S  (4) 

Proof. Let us consider the following Lyapunov function 

( ) ( )( ) ( ) ( ) ( ), , 0.TV t V t y t y t y t t= = P  

It is clear that  

( ) ( )( ) ( )
2 2

1 2, , 0,y t V t y t y t t       

where ( )  ( ) 1 min 2 max
1, , 1, ,
min , max .i i

i N i N
 

= =
 =  =P P  So condition (i) in Lemma 1 is 

guaranteed. Using property P2, we calculate the  − order conformable derivative of ( )V t  along 

the trajectories of the system (1) as follows: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

2

2 .

T

T T

T

T V t y t T y t

y t y t

y t g y t

 

   

 

=

 = − − 

+

P

P A A P

P W

 (5) 

With the help of Cauchy matrix inequality and condition (2), we obtain 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

1

2

.

T

T T T

T T T T

y t g y t

y t y t g y t g y t

y t y t y t y t

 

     

     

−

−

 +

 +

P W

P W W P

P W W P L L

 (6) 

From (5) and (6), we have   

( ) ( ) ( ) ( ) ,TT V t y t y t    

where  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 .T T T          − = − − + +P A A P P W W P L L  

Hence  

( ) ( )( ) ( )
2

max , 0.T V t y t t       (7) 

Using Schur Complement Lemma [14], ( ) 0,  if  
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( )
( ) ( ) ( )

( ) ( )
11

0,
T

H
H

  


  

 
=  

− 

P W

W P I
 

where ( ) ( ) ( ) ( ) ( )11 .TH     = − −P A A P  

Since ( ) ( ) ( )
1 1 1 1

, , , 1, 0,
N N N N

i i i i i i i i

i i i i

       
= = = =

= = = =    P P A A W W  we have  

( ) ( ) ( ) ( )
1

2

1 1 1

, , , , , , .
N N N

i i i i i i j i i i j j j j i

i i j i

H    
−

= = = +

 =  +  +
  A W P A W P A W P  

It follows from (3) and (4) that  

( )
1 1

2 2

1 1 1 1 1 1

2 2
.

1 1

N N N N N N

i i j i i j

i i j i i i j i

H S S S
N N

      
− −

= = = + = = = +

 
 − + = − + 

− − 
     

From the relation  

( ) ( )
1 1

2
2

1 1 1 1 1

1 2 0,
N N N N N

i i j i j

i i j i i j i

N     
− −

= = = + = = +

− − = −     

we have  
1

2

1 1 1

2
0,

1

N N N

i i j

i i j i

S
N

  
−

= = = +

 
− +  

− 
   

which implies that ( ) 0  provided the conditions (3) and (4) hold. Since ( ) 0,  there 

exists a scalar 0   such that  ( ) ( )
2

, 0.T V t y t t  −   Therefore, the conditions (ii) and 

(iii) in Lemma 1 are satisfied. Therefore, system (1) is fractional exponentially stable by Lemma 1.   

Remark 1 Noted here that almost all of the existing results on exponential stability problems 

of dynamic systems with convex polytopic uncertainties are focused on integer-order systems 

[15]-[18], and few works are considered fractional-order systems subject to Caputo fractional 

derivative [19]-[21], not deal with fractional-order systems with conformable derivative. 

Theorem 1 has solved the problem for Hopfield FONNs subject to conformable fractional 

derivative and convex polytopic uncertainties for the first time. 

When 1,N =  we have the following systems 

( ) ( ) ( )( )

( ) 0

, 0

0 .

T y t y t g y t t

y y

 = − + 


=

A W
 (8) 

According to Theorem 1, the following result is obtained. 

Corollary 1 The system (8) is fractional exponentially stable if there exist 
+ ++S , S , S P  

and a scalar 0  such that the following LMIs hold 

0.
T T T

T





 − − + +
 

− 

A P PA L L S PW

W P I
 

Remark 2 The authors in [10] derived a stability condition in terms of matrix elements for 

system (8). In this paper, the stability condition in Corollary 1 is established in the form of LMIs. 

We give a numerical example to show the less conservatism of our results.  

Example 1 Consider the following Hopfield conformable FONNs with ring structure [22]. 
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( ) ( ) ( )( )

( ) 0

, 0

0 ,

T y t y t g y t t

y y

 = − + 


=

A W
 (9) 

where (  ( ) ( ) ( ) ( )( ) 3

1 2 30,1 , , , ,y t y t y t y t  =  and 

 1 2 3 3 3

5 0 0 3 1 2.5

, , 0 4 0 , 1 1.5 2 .

0 0 5 2.5 2 1

ijdiag a a a w


−   
    = = = = −    
   − −   

A W  

We choose the activation function as follows 

( )( ) ( )( ) ( )( ) ( )( )( ) 3

1 2 3tanh , tanh , tanh .
T

g y t y t y t y t=   

Noted that the function ( )( )g y t  satisfies the condition (2) with  1,1,1 .diag=L With the 

help of LMI Control Toolbox in MATLAB [15], we can find a solution of the condition in 

Corollary 1 as follows  378.8181, = and  

 90.0484 14.2159 4.0217 114.2390 114.4621 33.6395

 14.2159 118.2542 -7.6620 , 114.4621 188.1833 -63.1433 .

4.0217 -7.6620  96.9751  33.6395 -63.1433 174.1761

P S

   
   

= =
   
      

 

Therefor, system (8) is fractional exponentially stable for all ( 0,1  by Corollary 1. However, the 

result in [10] cannot be handed in Example 1. Using some simple computation, we obtain 
3 3 3

1 1 2 2 3 3

1 1 1

5, 6.5, 4, 4.5, 5, 5.5.l l l l l l

l l l

a w a w a w  
= = =

= = = = = =   So 

( )
3

1

1, 2,3l il i

l

w a i
=

 =  fails to satisfy the condition ( )
3

1

1, 2,3l il i

l

w a i
=

 =  of Theorem 2 in 

[10].  

4. Conclusion 

We have solved fractional exponential stability problem for Hopfield neural networks subject 

to conformable derivative and convex polytopic uncertainties in this paper. By using the 

fractional Lyapunov theorem combined with LMIs techniques, a new sufficient condition for 

exponential stability has been derived. An example was given to show that our results are less 

conservative than those in the existing work. In the future works, we will investigate stability 

analysis of delayed neural networks with conformable fractional derivative. 
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