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Due to many reasons such as linear approximation, external noises,
modeling inaccuracies, measurement errors, and S0 on, uncertain
disturbances are usually unavoidable in real dynamical systems.
Convex polytopic uncertainties are one of a kind of these disturbances.
In this paper, we consider the problem of fractional exponential stability
for a class of Hopfield fractional-order neural networks (FONNSs)
subject to conformable derivative and convex polytopic uncertainties.
By using the fractional Lyapunov functional method combined with
some calculations on matrices, a new sufficient condition on fractional
exponential stability for conformable FONNSs is established via linear
matrix inequalities (LMIs), which therefore can be efficiently solved in
polynomial time by using the existing convex algorithms. The proposed
result is quite general and improves those given in the literature since
many factors such as conformable fractional derivative, convex
polytopic uncertainties, exponential stability, are considered. A
numerical example is provided to demonstrate the correctness of the
theoretical results.
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TU KHOA

Mang no ron Hopfiled phan thi
binh ly Lyapunov phén thu
Nhiéu t6 hop 16i

On dinh mii

Bit ddng thirc ma tran tuyén tinh

Nhiéu thuong xuyén xuat hién trong cac hé dong luc trong thuc té
boi nhidu nguyén nhan nhu qua trinh xap Xi tuyén tinh, 18i do do dac,
13i trong qué trinh mé hinh héa. Nhidu dang t6 hop 16i 13 mot trong
nhitng loai nhiéu nay. Trong bai bao nay, ching t6i nghién ctu tinh
6n dinh mii cho mot I6p mang no ron Hopfield phan thw pha hop véi
nhidu dang t6 hop 16i. Bang cach s dung phwong phap ham
Lyapunov cho hé phuong trinh vi phan phan thir két hop véi mot sé
phép bién dbi trén ma tran, mot diéu kién du cho tinh én dinh mii cua
mang no ron Hopfiled phan thir phil hop dugc thiét 1ap dudi dang bat
dang thac ma tran tuyén tinh. Diéu kién ndy c6 thé giai hiéu qua
trong thoi gian da thirc boi cac thuat toan téi wu 16i. Cac diéu kién
dugc dua ra ¢ day tong quat va cai tién so véi mot s6 két qua da co
boi vi mot s6 yéu té nhu dao ham phan thir phu hop, nhiéu dang to
hop 16i, tinh 6n dinh mii da dwgc xét dén. Mot vi du s6 dugc dua ra
dé minh hoa cho tinh chinh xac cua két qua ly thuyét thu dugc.
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1. Introduction

The interest in fractional-order neural networks (FONNSs) has grown rapidly due to their
successful applications in different areas such as mathematical modeling, pattern recognition, and
signal processing [1]-[4].

Investigating the stability analysis of FONNSs is one of the important problems and many
interesting results have been published in the literature [5]-[9]. With the help of the fractional-
order Lyapunov direct method, the authors in [5] derived stability conditions in terms of LMIs for
Caputo FONNSs. The results in [5] were extended to Caputo FONNSs with time delays by Y. Yang
et al. [6]. Using the S-procedure technique and fractional Razumikhin-type theorem, the authors
in [7] proposed an LMI-based stability condition for delayed Caputo FONNs. The problem of
stability analysis for some kinds of FONNs such as complex-valued projective FONNSs, and
neutral type memristor-based FONNSs have been considered in [8] and [9], respectively. It should
be noted that almost all of the existing results on the problem are focused on Caputo FONNs or
Riemann-Liouville FONNSs (see [5]-[9] and references therein), and very few works are devoted
to conformable FONNs [10], [11]. With the help of the Lyapunov functional method, the authors
in [10] considered existence, uniqueness, and exponential stability problems for Hopfield FONNs
subject to conformable fractional derivatives. Note that their results are in terms of matrices
elements, which cannot propose the condition in terms of the whole matrix. Recently, the authors
in [11] derived some conditions to guarantee stability analysis of Hopfield conformable FONNs
subject to time-varying parametric perturbations. The conditions are in terms LMIs that are
numerically tractable. It is worth noticing that the convex polytopic uncertainties are not
considered in the model of the paper [10], [11]. To the best of our knowledge, the problem of
fractional exponential stability for conformable FONNs with convex polytope uncertainties has
not yet been addressed in the literature.

In this paper, we present a novel approach to study the problem of fractional exponential
stability of Hopfield conformable FONNs with convex polytopic uncertainties. Our approach is
based on using conformable fractional-order Lyapunov theorem and LMIs techniques.
Consequently, a new criterion for the problem is established. Moreover, a numerical example is
given to show that our results are less conservative than the results in [11].

Notations: A matrix P is symmetric positive definite, write P >0,if P=P", and
y'Py>0,forall yeR",y=0. 1 and A denote the minimum and maximum eigenvalues
respectively. Let S'and S™ stand for the set of symmetric semi-positive definite matrix and
symmetric positive definite matrices in R™", respectively.

2. Preliminaries and Problem statement

First, we recal definition of conformable fractional derivative [1].
Definition 1 [12] Let a function ¢ :[0, +oo)—>R, the conformable fractional derivative of

t+et™)-g(t
the function g of order a €(0,1) is defined by T“g(t)=lim g( d ) 9(Y)

-0 £

T*g(t) exists on (0,+),then T“g(O):IirpT“g(t). If the conformable fractional
t—0"

V>0, If

derivative g(t) of order & exists on (0,+w), then the function g(t) is said to be -

differentiable on the interval (0, +oo).
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For a vector function x(t)= (xl(t) X (t))T e R", the conformable fractional derivative

ceey A

of x(t) is defined for each component as follows

Tox(t):=(T% (£),..., T“%, (1)) .

P1 [12]: For any scalars a,b € R, and two functions f, f,: [0, +oo) — R, we have

T (af,(t)+bf,(t))=aT“f (t)+bT“f,(t),vt20,0<a <l

P2 [13]: Let y:[0,+0)— RR" such that T”y(t) exists on [0, ) and R eS™. Then, we
have T“y' (t) Ry (t) exists on [0, ) and

Ty (t)Ry(t)=2y" (t)RTy(t),vt>0,0<a <1,

Consider the following Hopfield conformable fractional order polytopic neural networks
(NNs)

{T“y(t)=A(é)y(t>+W<5>g(y(t>),t>0 "
y(0)=y,,

where o € (0,1] is the order of system (1), y(t)= (yl (t)seean ¥, (t)) e R" is the state vector,
g(y(t))= (g1 (v,(t))s-- 90 (Vs (t))) e R"stand for the neuron activation function of the
networks, Y, € R" is the initial condition. The system matrices {A (&), W(&)} are belong to a
polytope Q given by

QZ{[A,W](f)ZZié [Ai’vvi]viNzlgi =1¢ 20}’

with vertices{A;, W,}, where A, = diag {ai'ar']} eR”(af< >0, vk =1....ni=1..., N)
are given diagonal matrices, W, e R" (i =1...,N ) are given constant matrices, parameters
&(i=1...,N) are time-invariant. The functions 9, (.) are continuous, of (0)=0,
(j=1,...,n), and Lipschitz condition on R with Lipschitz constants x;>0:

‘gj(a)—gj(b)‘skj|a—b|,Va,beR,j:1,...,n. (2)

Definition 2 [13] System (1) is said to be fractional exponentially stable if

ly(t)|< K||y0||e*ﬂt?,Vt >0,0<a<1.

Let us recall the following useful well-known lemma.
Lemma 1 [13] The system (1) is fractional exponentially stable if there exist

6, >0(k=12,3),and a continuous function V:R"xR"—R such that the following
conditions hold

(el <v(ty)<élyl,
(ii)V (t, y(t)) is & —differentiable on the interval (0, +),
(i) TV (t, y) < -6,]ly["-

3. Main Results
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Let SeS",P, eS™ (i=1,...,N),we denote L =diag {x,,...,x,},
N S 0
P(&)=Y ¢P,S = ,
©-Fers o o]

—AiTP- -P.A, +el'L P.W,
\Pi(Ai'VVi'Pj>= g : ,

W/ P; —¢l
where «; (i=1,...,n)are Lipschitz constants, other scalars and matrices are defined as in

Section 2.
Theorem 1 The system (1) is fractional exponentially stable if there exist

SeS", P, eS™(i=1,...,N), andascalar & > 0such that the following conditions hold:
¥, (ALW,P)<-S,i=12,...,N, 3)

2 <. .
lPi(Ai,V\/i,Pj)+\Pj(Aj,wj,Pi)<N [Si=Lo N-Lj=i+L.,N. 4)

Proof. Let us consider the following Lyapunov function
V(H)=V(Ly(1) =y ()P(£)y(t).t>0
It is clear that
Ly v (ty®) <ty vzo
where T, = min {Ain (P} T, = max {Zmsx (P,)}. S0 condition (i) in Lemma 1 is
guaranteed. Using property P2, we calculate the « —order conformable derivative of V (t) along
the trajectories of the system (1) as follows:
TV (t)=2y" (t)P(&)T y(t)
=y (O)[-P(5)A(E)-AT(£)P(£) ]y (1) (5)
+2y" (P(5)W(£)g(y(b)).
With the help of Cauchy matrix inequality and condition (2), we obtain
2y" (t)P(E)W(£)a(y (1))
<&y (DP(EW(EW (E)P(£)y()+2a" (y(1)a(y(1)) ©)
<e 7y ()P(W(EW' (S)P(S)y(t)+ey (HLLy(b).
From (5) and (6), we have
TV () <y (H)Q(s)y (1),
where
Q) =-P(S)A(S)-AT(E)P(£)+& P(S)W(SW' ()P($)+sL'L.
Hence
TV (1) £ 2 ()Y (O vt 20 ©
Using Schur Complement Lemma [14], (&) <0, if
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Hi(6)  PEW(E)
1Ol et |

where H,, (&) =—P(&)A(E)-AT (E)P(E).
Since P(f):ZN:fiPi,A(f):ZN:;Ai,W(f) Z Z_;g =1,& >0, we have

i=1 i=1

:%:gf\p (A, W,P) +§ZN_:;§J.[ W (ALWLP )+ (AL WP |

i=1 j=i+l

It follows from (3) and (4) that

H é)s—_NZléfs NEDINIELLE {Zs 2 Nzigﬂ

- Ile—l

i=1 i=1 j=i+l
From the relation

(N-1)Y &2 -2) Y &6=2 D (4-4) 20
we have _ o o
et bes]seo

which implies that ©(&) < 0 provided the conditions (3) and (4) hold. Since (&) <0, there

exists a scalar & >0 such that T“V < <9Hy H Vvt > 0. Therefore, the conditions (ii) and

(iii) in Lemma 1 are satisfied. Therefore, system (1) is fractional exponentially stable by Lemma 1.

Remark 1 Noted here that almost all of the existing results on exponential stability problems
of dynamic systems with convex polytopic uncertainties are focused on integer-order systems
[15]-[18], and few works are considered fractional-order systems subject to Caputo fractional
derivative [19]-[21], not deal with fractional-order systems with conformable derivative.
Theorem 1 has solved the problem for Hopfield FONNs subject to conformable fractional
derivative and convex polytopic uncertainties for the first time.

When N =1, we have the following systems

{T“y(t) =—Ay(t)+Wg(y(t)),t>0
Y(O) =Yo-
According to Theorem 1, the following result is obtained.
Corollary 1 The system (8) is fractional exponentially stable if there exist SeS",P eS™,
and a scalar ¢ > 0 such that the following LMIs hold
~A'P-PA" +¢L'L+S PW <0
W'P —el |
Remark 2 The authors in [10] derived a stability condition in terms of matrix elements for
system (8). In this paper, the stability condition in Corollary 1 is established in the form of LMIs.

We give a humerical example to show the less conservatism of our results.
Example 1 Consider the following Hopfield conformable FONNs with ring structure [22].

(8)
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Ty (t)=—Ay(t)+Wg(y(t)).t=0
9)
Y(O):yo’
wherear €(0,2], y(t) =(y, (), ¥, (t), y;(t)) e R®,and
500 3 1 -25
A=diag{a,a,a}=0 4 0| W=[w| =| -1 15 2
0065 25 2 -1

We choose the activation function as follows

g(y(t)):(tanh(yl(t)),tanh(y2 (t)).tanh(y, (t)))T eR®.
Noted that the function g(y(t)) satisfies the condition (2) with L = diag {1,1,1}.With the

help of LMI Control Toolbox in MATLAB [15], we can find a solution of the condition in
Corollary 1 as follows ¢ = 378.8181, and

90.0484 14.2159 4.0217 114.2390 114.4621 33.6395
P=| 142159 118.2542 -7.6620 |,S =|114.4621 188.1833 -63.1433|.
4.0217 -7.6620 96.9751 33.6395 -63.1433 174.1761

Therefor, system (8) is fractional exponentially stable for all & € (0,1] by Corollary 1. However, the
result in [10] cannot be handed in Example 1. Using some simple computation, we obtain

3 3 3
a, =5 K |w|=65a,=4, x|w,|=45a,=5) & |w,|=55.%
1=1 1=1 1=1

3 3
Dk |wy|>a,(i=1,2,3) fails to satisfy the condition »_ &, |w, | <a;(i=1,2,3) of Theorem 2 in
= =

[10].
4. Conclusion

We have solved fractional exponential stability problem for Hopfield neural networks subject
to conformable derivative and convex polytopic uncertainties in this paper. By using the
fractional Lyapunov theorem combined with LMIs techniques, a new sufficient condition for
exponential stability has been derived. An example was given to show that our results are less
conservative than those in the existing work. In the future works, we will investigate stability
analysis of delayed neural networks with conformable fractional derivative.
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