
TNU Journal of Science and Technology 227(07): 79 - 87 

 

http://jst.tnu.edu.vn                                                        79                                             Email: jst@tnu.edu.vn 

SYNTHESIS OF ADAPTIVE SLIDING MODE CONTROL SYSTEMS FOR  

CONTINUOUS MIXING TECHNOLOGIES 
 

Le Van Chuong1, Ngo Tri Nam Cuong2* 
1Vinh University, 2Systemtec JSC 
 

ARTICLE INFO ABSTRACT 

Received:  17/3/2022 This paper presents a controller synthesis method for continuous 

mixing technology commonly encountered in industry. The kinematic 

model of the control object is described in the form of a system of 
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Luật điều khiển cho hệ thống được xây dựng trên cơ sở lý thuyết điều 

khiển thích nghi, mạng nơron RBF và phương pháp điều khiển trượt. 
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thích nghi và kháng nhiễu tốt. Kết quả nghiên cứu được mô phỏng 
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hiệu quả của phương pháp mà bài báo đề xuất. 
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1. Introduction 

Continuous mixing technology plays an essential role in many industrial fields such as 

chemical, food, pharmaceutical, etc. In the face of increasing requirements for product quality, 

the research on synthesizing high-quality control algorithms for the above plant continues to be 

an urgent issue. The studies [1], [2] used a classical PID controller; the system is stable when the 

uncertainty components vary in a small range. In the articles [3], [4], using a PID controller 

combined with fuzzy logic, however, the quality of the fuzzy controller depends on expert 

knowledge, so the application area is limited. The adaptive control method using a neural 

network is presented in [5], [6]. The multilayer feedforward neural network approximates the 

unknown nonlinear functions; the neural network's weights are updated by the gradient descent 

method to minimize the objective function. However, the gradient method has some limitations, 

such as the local minima problem and the algorithm's convergence speed. In addition, the studies 

mentioned above have not mentioned the impact of disturbance. The articles [7]-[9] synthesized a 

control system based on the sliding mode control principle. The system ensures stability when the 

nonlinear characteristics and the impact of disturbance change within a specific range. The 

existence of this approach is that chattering causes disadvantages to the system, especially in the 

case the control plant contains uncertain nonlinear characteristics and unmeasured disturbances. 

This paper presents a synthesizing adaptive sliding mode control system for continuous mixing 

technology to overcome some of the remaining problems mentioned above. The control plant has 

nonlinear characteristics and is affected by unmeasured external disturbances and changes 

unpredictably over time. 

2. Mathematical modeling of continuous mixing technology 

There will be a mathematical model describing different plants in continuous mixing 

technology, depending on technology requirements, production scale, and specific conditions. In 

this section, the paper presents the kinetics of the technology of continuous mixing of two input 

streams with first-order reactions under isothermal conditions [10], [11] with the diagram 

described in Fig. 1. 

M1P 2P

3P

1c 1q 2q 2c

h

V

3c
3q

 
Fig 1. Schematic diagram of the technology of continuous mixing of two components 

Two input streams of concentration 
1c  and 

2c  with flow 
1q  and 

2q  are put into the mixing 

tank through valves 
1P  and 

2P , respectively. Product solution with concentration 
3c  is led out of 

the tank with flow 
3q  through valve 

3P ; V  and h  are the volume of liquid and is the liquid level 

in the tank. The stirring process is carried out by the electric motor M with a constant speed. 

This process can be considered a multivariable system with two control inputs denoted as 
1q  

and 
2q  and two control outputs denoted as h  and 

3c . The control system is expected to set the 

liquid level in the tank h , and the product concentration extracted at the bottom of the tank 
3c , to 

the desired reference values. The final concentration 
3c  is obtained by mixing two input streams 
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1q  (with concentration 
1c ) and 

2q  (with concentration 
2c ). It is also assumed that the liquid level 

determines the output flow rate 
3q  in the tank. 

For the mixing tank, the volume balance equation takes the form: 

1 2 3

dV dh
q q q S

dt dt
+ − = = , (1) 

where S  is the cross sectional area of the tank and is a constant. 

The instantaneous flow of output stream: 
3 vq C gh= , (2) 

where 
vC  is the valve constant;   is the density of the liquid inside the tank (assumed 

constant here); g  is the acceleration of the gravity of earth. 

Substitute (2) into (1): 
1 2 v

dh
q q C gh S

dt
+ − = . (3) 

Thus, the problem of stabilizing the product flow 
3q  is transferred to stabilizing the liquid 

level h  in the mixing tank. Without any loss of generality, the scientific papers which study the 

control of continuous mixing technology often use the following simplified equation instead of 

(3) [10], [11]: 

1 2 1

dh
q q k h

dt
= + − , (4) 

where again 
1k  is roughly called the valve constant. 

Similarly, the mole balance equation is generally in the form of [10], [11]: 

   
( )

3 2 31 2

1 3 2 3 2

31

dc k cq q
c c c c

dt h h c
= − + − −

+
, (5) 

where 
2k is a kinetic constant. 

From (4) and (5), we obtain a model of two-component continuous mixing technology: 

   
( )

1 2 1

3 2 31 2

1 3 2 3 2

31

dh
q q k h

dt

dc k cq q
c c c c

dt h h c


= + −



 = − + − −
 +

, (6) 

We set:  1 2,
T

x x=x ,  1 2,
T

u u=u , where 
1x h= , 

2 3x c= , 
1 1u q= , 

2 2u q= . The system of 

equations (6) is reduced to the form: 

( ),=x ψ x u , (7) 

Perform Taylor expansion of equation (7) at the equilibrium point ( )0 0, =x u  

   ( )0 30 10 20, , ,
T T

h c q q , we have [12]-[14]: 

( )= + +x Ax Bu f x , (8) 

where A , B  are Jacobian matrices: 

( )0 0,


=
 x u

ψ
A

x
;   (9)  

( )0 0,


=
 x u

ψ
B

u
; (10) 

( )  1 2,
T

f f=f x  is a higher order terms of the Taylor expansion. 

Continuous mixing technology may be affected by external disturbance during operation, 

which is unknown and may change over time. Therefore, equation (8) can be rewritten as: 

( ) ( )t= + + +x Ax Bu f x d , (11) 

where ( )  1 2,
T

t d d=d  is unmeasured external disturbance vector, changes unpredictably over time. 

Thus, the continuous mixing technology (11) has a nonlinear kinetic model and is affected by 
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unmeasured external disturbance. The following section presents a synthetic solution of the 

control system for the plant (11).  

3. Synthesis of a control system of continuous mixing technology 

The control structure diagram of the continuous mixing technology system proposed by the 

article is shown in Fig. 2. In which: The plant is a continuous mixing technology system; 

Reference Model is the identification model; Adaptive Mechanism is the adaptive control block; 

Compensation is the reciprocal block that compensates for uncertain components; SMC is a 

sliding mode controller. 

Plant

Adaptation 

Mechanism

Reference

Model
Compensation

SMC
d

x
smcu u

( )td

mx

e

x

( )ˆ td( )f̂ x

adu

 
Fig. 2.  The control structure diagram of the continuous mixing technology system 

Plant with the model (11) will follow the desired signal vector 
dx  if the control law u  is 

selected in the form: 

smc ad= +u u u , (12) 

where 
smcu  is the sliding mode control law; 

adu is an adaptive control law. 

3.1. Synthesis of the adaptive control law 

We rewrite equation (11) as: 

= + +x Ax Bu If , (13) 

where ( ) ( ) 1 2,
T

t f f  = + =   f f x d ; I  is identity matrix. Substitute (12) into (13): 

smc ad = + + +x Ax Bu Bu If . (14) 

From (14), we can see that uncertain elements will be compensated with the condition: 

0ad + =Bu If . (15) 

To satisfy equation (15), we choose: 
ad = −u Hf , (16) 

where 
1

T T
−

 =  H B BB  is the gain matrix; ( )det 0T BB . 

In order to synthesize the control law (16), it is necessary to identify the nonlinear components 

( )f x and the external disturbance ( )td  present in 
f .  

The identification model for uncertain parameters in (11) can be written: 

( ) ( )ˆ ˆ
m t= + + +x Ax Bu f x d , (17) 

where  1 2,
T

m m mx x=x  is state vector of the model; ( ) ( ) ( )1 2
ˆ ˆˆ ,

T

f f =
 

f x x x  is the estimated 

vector of ( )f x ; ( ) ( ) ( )1 2
ˆ ˆˆ ,

T

t d t d t =
 

d  is the estimated vector of ( )td . 

From (11) and (17), we have: ( ) ( )t= + +e Ae f x d , (18) 

where:  
m= −e x x , (19) ( ) ( ) ( )ˆ= −f x f x f x  (20) ( ) ( ) ( )ˆt t t= −d d d  (21) 
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Identification progress will be converging when ( ) 0→f x , ( ) 0t →d . With the assumption A  

is a Hurwitz matrix, so 0→e , and (18) is stability. 

With ( )f x  is a smooth function vector, by using a RBF neural network for the approximation 

[15]. The elements of  ( )f x  can be written: 

( ) ( )*

1

L

i ij ij i

j

f w  
=

= +x x , (22) 

1,2i = ; 1,j L=  where L  is number of basis function with a large enough number to guarantee 

the error m

i i  , m

i const = ; *

ijw const=  is the ideal weights. The basis functions are selected by 

the following form: 

( ) ( )2
2exp 2ij ij ij = −x x c , 1,2i = , 1,j L= , (23) 

where 
ijc  are the position of the center of the basis functions ( )ij x , and 

ij  are the standard 

deviation of the basis functions. 

The estimated vector ( )f̂ x  is defined by (23) with adjusted weights ˆ
ijw : 

( ) ( )
1

ˆ ˆ
L

i ij ij

j

f w 
=

=x x , 1,2i = , 1,j L= . (24) 

Training of the RBF neural network is implemented by adjustment of the weights ˆ
ijw  in 

comparison with the ideal weights *

ijw : 
* ˆ

ij ij ijw w w= − . (25) 

From (22), (24), with attention to (25), we have: 

( ) ( )ˆ
i i if f = +x x      →      ( )

1

( )
L

ij ij i

j

f w  
=

= +x x . (26) 

For equations (18), the Lyapunov function is selected as follows: 
2 2

2 2

1 1 1

L
T

ij i

i j i

V w d
= = =

= + + e Pe . (27) 

where P  is a positive definite symmetric matrix. The equations (18) will be stable if the 

derivative (27) 0V  . Take the derivative of both sides of (27): 
2 2

1 1 1

2 2
L

T

ij ij i i

i j i

V w w d d
= = =

= + + + ePe e Pe . (28) 

Substitute (18) into (28): 

( ) ( ) ( )
2 2

1 1 1

2 2 2 2 .
L

T T T T

ij ij i i

i j i

V t w w d d
= = =

= + + + + + e A P PA e e Pf x e Pd  (29) 

From (29) and (26), we have: 

( )
( )

( )
( )

1
2 2

1

1 1 1

2

1

2 2 2 2 .

L

j ij
L

jT T T T T

ij ij i iL
i j i

j ij

j

w

V w w t d d

w





=

= = =

=

  
  

   = + + + + + +     
   

  


 



x

e A P PA e e Pε e P e Pd

x

 (30) 

The condition for 0V   is as follows: 

( ) 2 0T T T+ + e A P PA e e Pε ; (31) 
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( )

( )

1
2

1

1 1

2

1

2 0

L

j ij
L

jT

ij ijL
i j

j ij

j

w

w w

w





=

= =

=

  
  
   + =
  
   

  






x

e P

x

 (32) 

( )
2

1

2 2 0T

i i

i

t d d
=

 
+ = 

 
e Pd  (33) 

Transform the left side of the inequality (31): 
2

1

2 0T

i i

i


=

− + e Qe Pe , (34) 

( )T= − +Q A P PA , 
iP  is the i -th row of the matrix P . 

Using inequality transformations [16], the equation (31) can be written: 
2 2

2

min

1 1

2 ( ) 2 0T

i i i i

i i

r 
= =

− +  − +  e Qe Pe Q e P e , (35) 

min ( )r Q  is the smallest eigenvalue of the matrix Q . 

Thus, to satisfy the inequality (31) from (35), we must have: 
2

min

1

2 / ( )i i

i

r
=

 e P Q . (36) 

Solving equations (32), (33), we have: 

( )ij i ijw = −Pe x , 1,2i = , 1,...j L= ; (37) 

i id = −Pe , 1,2i = . (38) 

If simultaneous (36-38) is satisfied, then 0V  , so the system (18) is stable. The stability 

domain of (18) defined at (36) is the entire state space except the neighborhood of the origin. The 

stability domain of (18) defined at (36) is the entire state space except for the neighborhood of 

the origin. The radius of this region depends on the approximate error of the RBF neural network, 

where 
i  is arbitrarily tiny and can be ignored. Thus, the stability domain is the entire state space 

except for the origin region with a radius close to zero. 

With the identification results (24), (37), (38), we replace 
f  with ˆ

f  as follows: 

( ) ( ) 1 2
ˆ ˆˆ ˆ ˆ ,

T

t f f  
 = + =
 

f f x d . (39) 

The control law  
adu  (16) is rewritten as follows:  ˆ

ad = −u Hf , (40) 

then (14) becomes:                                                 
smc= +x Ax Bu . (41) 

For (41), the control law is synthesized using the sliding mode control method. 

3.2. Synthesis of the sliding mode control law 

The error vector between the state vector x  and the desired state vector 
dx : 

d d= − → = −x x x x x x . (42) 

Substitute (42) into (41): 
smc d d= + + −x Ax Bu Ax x . (43) 

For (43), the hyper sliding surface is chosen as follows [17]: =s Cx , (44) 

where C  is the parameter matrix of hyper sliding surface, det( ) 0CB ,  1 2,
T

s s=s . 

The next problem is defining 
smcu , which ensures system (43) movement towards the hyper 

sliding surface (44) and keeps it there.     

The control signal 
smcu   can be written by: 

0

0

s

smc

eq

khi

khi


= 

=

u s
u

u s
, (45) 
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su  is the control signal that moves the system (43) towards the hyper sliding surface (44); 
equ  

is the equivalent control signal that keeps the system (43) on the hyper sliding surface (44).  

The equation (45) can be rewritten as: 
smc eq s= +u u u . (46) 

equ  is defined in [17]:                      0= =s Cx . (47) 

From (43) and (47), we have:           
1

eq d d

−
= − + −u CB CAx CAx Cx . (48) 

Next, we define the control signal 
su  that moves the system (43) towards the hyper sliding 

surface (44). For the hyper sliding surface (44), the Lyapunov function can be selected by: 

1

2

TV = s s . (49) 

Condition for the existence of slip mode can be written: 0TV = s s . (50) 

Substitute (43) and (46) into (50), with attention to (47), (48), we have: 

( ) 0T

smc d d sV = + + − +   s C Ax Bu Ax x CBu . (51) 

The inequality (51) is equivalent to:   0T

s s CBu . (52) 

To satisfy (50) from (52), we have:   ( ) ( )
1

1 2sgn , sgn
T

s s s 
−

= −   u CB , (53) 

  is a small positive coefficient. 

Substitute (48) and (53) into (45), we have: 

  ( ) ( )

   

1

1 2

1

sgn , sgn 0

0

T

smc

d d

s s khi

khi

 
−

−

−    
= 

− + − =

CB s
u

CB CAx CAx Cx s

. (54) 

Finally, the control signals (40) and (54) are used for (11). Thus, the paper has synthesized the 

control law for continuous mixing technology. 

4. Results and discussion 

Continuous mixing technology is described in (6) with parameters shown in Table 1 [10], [11]. 

Table 1. Continuous mixing technology parameters and nominal values [10] 

Parameter Meaning Nominal Value 

1c  Concentration in the inlet flow 
1q  24.9 kmol/m3 

2c  Concentration in the inlet flow 
2q  0.1 kmol/m3 

1k  Valve constant 0.2 m1/2/s 

2k  Kinetic constant 1.0 mol2/m6s 

Perform Taylor expansion of equation (6) at the equilibrium point ( )0 0, =x u  

   ( )0 30 10 20, , ,
T T

h c q q  with 
0 1.0h =  m, 

30 12.15c =  kmol/m3, 
10 0.1q =  m/s, 

20 0.1q =  m/s. The 

matrices (9), (10) are obtained as follows: 

0.1 0

0.07 0.195

− 
=  

− − 
A , (55)    

1 1

12.75 12.05

 
=  

− 
B . (56) 

Nonlinear function vectors and disturbance vectors in (11) are defined as follows: 

( )
2 3

1 1

2

1 1 2

0.025 0.0125

0,2 0,001

x x

x x x

 −
=  

+ 
f x ,    (57)     ( )

( )

0

0,2sin 0.05 0,25cos(0,03 )
t

t t

 
=  

+ 
d . (58) 

Simulations are implemented on the Matlab environment for the plant (11) using the 

controller (12). The results of the identification of nonlinear components and external disturbance 

( ) ( ) 1 2,
T

t f f  = + =   f f x d  using algorithms (24), (37), (38) are shown in Fig. 3. 
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Fig 3. The identification vectors ˆ
f . 

The simulation results in Fig. 3 show that the algorithm to identify the components of change 

in plant kinematics has worked properly. 

The results of the control law 
adu  (40) to compensate for the nonlinear component and the 

external disturbance are expressed through the error  1 2,
T

c ce e=
c

e  between the actual plant (11) 

and the linear kinematic (41). The simulation results are shown in Fig. 4. 

  

Fig 4. The error between (11) and linear model (41) 

The simulation results in Fig. 4 show that the control law 
adu  (40) has compensated for the 

nonlinear components and external disturbance in the plant kinematics with the offset error 

asymptotically zero. 

The results of tracking the state vectors of the system with the desired signal vector 

 1.0 12.15
T

d =x  using the sliding mode control law (54) are shown in Fig. 5. 

  

Fig 5. Responses of the system for the desired signals  1.0 12.15
T

d =x . 

From Fig. 5, it is shown that the system's response has to track to the desired signal 
0 1.0h =  m 

and 
30 12.15c = kmol/m3. Thus, with the controller (12), the continuous mixing technology control 

system has created a desired concentration and volume solution with guaranteed control quality. 

The simulation results have proved the correctness and effectiveness of the article's proposed 

control law. 

5. Conclusion 

The article has synthesized the adaptive sliding mode control law for continuous mixing 

technology. The law for identifying vectors of nonlinear functions and external disturbance has 
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been built. From the identification results, building a compensation structure for their influence 

on the system, the compensation error depends on the approximate error of the RBF neural 

network. On the other hand, the RBF neural network can approximate with arbitrarily small 

precision so that this error can be ignored. The control law of continuous mixing technology is 

built on the principle of sliding mode control. When the adaptive algorithm converges, the 

uncertainty elements are compensated so that the chattering effect in the sliding mode control law 

is reduced to a minimum, which overcomes the limitation of the classical sliding mode control 

method. The control system proposed by this paper is adaptable, resistant to interference, and has 

good control quality. The simulation results once again proved the correctness and effectiveness 

of the proposed method. 
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