TNU Journal of Science and Technology 227(07): 102 - 113

ON THE REED-SOLOMON CODES

Nguyen Thi Lan Huong, Luu Thi Hiep?', Le Le Hang?, Nguyen Thi Nhung*, Nguyen Ngo Cong Thanh®
ITNU - University of Economics and Business Admistration, 2Thu Dau Mot university

3Economics - Technology Industries University

4TNU - University of Information and Communication Technology, >Deakin University, Australia

ARTICLE INFO

ABSTRACT

Received: 04/4/2022
Revised: 29/5/2022
Published: 30/5/2022

KEYWORDS

Reed-Solomon codes
Binary codes

Encoder

Decoder

Syndrome decoding
RiBM algorithm

Chien Search algorithm
Forney algorithm

MA REED-SOLOMON

The Reed-Solomon (RS) codes are among the most powerful methods to
preserve data integrity from errors and erasures for storage or transmission
purposes. This coding technique has been proven to be a high performance
while maintaining a reasonable cost and productivity. Unlike some coding
techniques that enforce data transmission as a sequence of binary numbers,
Reed-Solomon encodes the message as non-binary symbols. This gives Reed-
Solomon the advantage of handling bursts of errors or even erasure error. It
plays a significant role in modern communication systems and many daily life
applications. Some known applications of this coding technique are the fault-
tolerant systems in CD disks, and the communication protocol in satellites and
spaceships. In the paper, we give the basic properties and structures of the
Reed-Solomon codes by discussing its mathematics models. The encoding
process with the original approach and the modern BCH approaches. For the
decoding process, we investigate a wide range of algorithms and techniques,
such as Syndrome decoding, RiBM algorithm, Chien search and Forney
algorithm. Finally, we present the result is a functional Reed-Solomon encoder
and decoder implemented using the MATLAB platform and give examples of
encoding and decoding with different messages.

Nguyén Thi Lan Huwong?, Lwu Thi Hiép?”, L& Lé Hing®, Nguyén Thi Nhung?, Nguyén Ngé Cong Thanh®
1Tvieong Pai hoc Kinh té va Quan trj kinh doanh — BH Thdi Nguyén

2Pgi hoc Thit Dau Mét, 3Trong Dai hoc Kinh té K thugt cong nghiép Ha Ngi

“Trirong Pai hoc CONg nghé thdng tin va truyén théng — PH Thdi Nguyén, STrirong Pai hoc Daekin, Uc

THONG TIN BAI BAO

TOM TAT

Ngay nhan bai: 04/4/2022
Ngay hoan thién: 29/5/2022
Ngay ding: 30/5/2022

TU KHOA

M& Reed-Solomon
Ma nhi phéan

Bo ma héa

Bo giai ma

Giai ma hoi chung
Thuat toan RiBM
Thuat toan Chien
Thuéat toan Forney

Ma Reed-Solomon (ma RS) la mot trong nhitng phuong phéap manh meé
nhat dé bao vé tinh toan ven cua dir liéu khoi cac 15i c6 thé xay ra trong
qué trinh luu trir hodc truyén tai. K¥ thuat ma hoa nay da dwoc ching
minh dat duoc hiéu suat cao vai chi phi hop ly. Trong khi cac ky thuat ma
hoa khac truyén dit lieu dudi dang mot chudi sé nhi phan, ma Reed-
Solomon ma hoéa thong diép dudi dang mot chudi ky hiéu. Didu nay dem
lai cho ma Reed-Solomon lgi thé trong viéc xir 1y 15i hang loat hodc tham
chi 1 18i x6a. N6 déng vai trd quan trong trong cac hé thong thong tin lién
lac hién dai va nhiéu tng dung khéc trong cudc séng. Mot sé tng dung co
thé ké dén nhur 1a hé thdng chiu 15i trong dia CD va giao thuc truyén théng
trong vé tinh va tau vii tru. Trong bai viét ndy, ching toi dua ra cac thudc
tinh va céu trac co ban cua ma Reed-Solomon béang cach thao luan vé cac
mo hinh toan hoc cua né. Qua trinh ma héa véi cach tiép can ban dau va
céch tiép can BCH hién dai. P6i v6i qua trinh giai ma, ching tdi nghién
ctiru mot loat cac thuat toan va ky thuat, chang han nhu giai ma hoi chang,
thuat toan RiBM, Chien va Forney. Két qua Ia mot bo ma hda va giai ma
Reed-Solomon str dung nén tang MATLAB. Chung toi dua ra cac vi du vé
ma hda va giai ma vai cac thong diép khac nhau.

DOI: https://doi.org/10.34238/tnu-jst.5808

* Corresponding author. Email: hieplt@tdmu.edu.vn

http://jst.tnu.edu.vn

102 Email: jst@tnu.edu.vn

http://jst.tnu.edu.vn/
mailto:jst@tnu.edu.vn
https://doi.org/10.34238/tnu-jst.5808

TNU Journal of Science and Technology 227(07): 102 - 113

1. Introduction

In the last few decades, communication has been a vital field in engineering, and it is getting
ever more interesting and challenging [1]-[4]. There are two important goals to achieve in this
field are reliability and efficiency. Depends on the context, one must compromise for the sake of
the other, and in most cases, reliability is the priority. In digital communication, there are a wide
range of concern over errors, which are mainly occur due to noise, electromagnetic, bandwidth
limits, etc.

To provide a better reliability for data transmission or storage, one can use error correction
codes. The ideal of error correction is to add redundance to transmitted data such that error can be
detected and corrected. There are different techniques, such as Hamming code [4], Golay code
[5], etc.

In 1960, I.S. Reed and G. Solomon introduced a family of error-correcting codes that are
doubly blessed [6]. The Reed-Solomon code can also be seen as non-binary BCH (Bose-
Chaudhuri-Hocquenghem) code and some BCH decoding algorithms can also work for the case
of RS code. The codes and their generalizations are useful in practice, and the mathematics that
lies behind them is interesting.

Compared to binary cyclic code in which the coefficients of codeword polynomial are all in
modulo 2 (either 0 or 1) [7], Reed Solomon codes coefficients are nonbinary, and each symbol of
RS codeword can be constructed from multiple bits. This also means that if multiple bits in a
symbol are corrupted, it only counts as a single symbol error. An overview of RS encoding and
decoding techniques, such as RiBM [8], Chien search and Forney Algorithm [9] are presented in
this paper.

2. The construction of RS codes

The original approach of constructing the RS codes is quite straightforward [5]:

A message word of the form M= (My, My, -+, Mj_4, M;,) where the M;-th position generates
k information symbols taken from the finite field GF(q). Then the polynomial p(x) = M, +
Myx+ -+ My_,x¥2 + M,_,x¥~1 can be constructed accordingly. The RS codeword C of
message Mis generated by evaluating p(x) at each of the g element in GF (q):

C = (Co,Cy,+++,Cqeq) = [p(0), p(c), p(0®), -+, p(a®"D)], with & is a primitive element in
GF(q)

RS codes are denoted by their length n and dimension of k as (n, k) codes. The code length
(or block length) n is equivalent to q, since each codewords has g positions. The message length
k, also known as the “dimension’ of the RS code as the RS codewords are generated from a
vector space of dimension k.

The generator matrix isan X k:

1 0 0 0
o=l « o? o1
i an.—l az(fq—l) a(k—l.)(n—l)

As can be seen, the generator matrix of RS codes is a Vandermonde matrix, therefore the
generated RS codeword are linear, which mean that the sum of any two message of length k is
another message of length k.

2.1. RS codes described as BCH codes

The original method of constructing the RS code was eventually replaced with a more modern
approach of cyclic code: generator-polynomial. Nowadays, this technique of RS encoding is
widely used in studies and research on error correction and communication.

http://jst.tnu.edu.vn 103 Email: jst@tnu.edu.vn

http://jst.tnu.edu.vn/
mailto:jst@tnu.edu.vn

TNU Journal of Science and Technology 227(07): 102 - 113

For a symbol size m, a codeword of cyclic RS code from GF(q = 2™) have the length of g —
1, which is one position less than that of the original construction idea.
For the RS code to correct up to t symbols of length g — 1 in the finite field GF(q), the

generator G (x) is defined as the polynomial:
2t-1 2t-1

G(x) = H(x —) = Z Gjx
j=0 =0

Where the integer h is the power of the first consecutive roots of generator G (x), this constant
h is usually 1.

To create a RS generator, we can write a function that takes the codeword length n, message
length k, number of bits per symbol m, and the primitive polynomial. MATLAB’s
communication toolbox will be used to provide the Galois Field for RS code:

function rs = rsCodeConstruct(n, k, m, primPol)

rs=[I;

%% Alpha power

alpha = gf(2, m, primitivePolynomial);
alphaPower = alpha.(0:n);
alphaPower = uint16(alphaPower.x);

%% Find GF element in alpha power
indexGFE = zeros(1,n+1);
for i = 2:nMax+1
indexGFE(i) = find(i-1 == alphaPower(1:n));
end

%% Generator Polynomial
generator = genpoly(n, k, alpha);
generator = uint16(generaotr.x);

%% Create alpha array

nn = 1:2*t;

alphaSynd = alpha.”*(offset+nn-1);
alphaSyndNum = uint16(alphaSynd.x);

rs.alphaPower = alphaPower;
rs.indexGF = indexGFE;
rs.generator = fliplr(generator);
rs.n=n;
rs.k = k;
rs.m=m;
rs.t = (n-k)/2;
rs.primitivePolynomial = primpol;
rs.alphaSynd = alphaSyndNum;
end

function g = genpoly(k, n, alpha)
9=1
% Multiplication on galios field is a convolution
for k =mod(1 : n-k, n)

http://jst.tnu.edu.vn 104 Email: jst@tnu.edu.vn

http://jst.tnu.edu.vn/
mailto:jst@tnu.edu.vn

TNU Journal of Science and Technology 227(07): 102 - 113

g = conv(g, [1 alpha . (k-1)]);
end
end

2.2. Properties

The RS codes is a [n,k,n — k + 1] linear block code, with length n, dimension k and
minimum Hamming distance d = n — k + 1.
A valid code C(x) of length g — 1 and dimension k can correct upto t = |(q — k + 1)/2]
symbol errors.
RS codes are good with burst errors, since any bit errors in a symbol will only treated as one
symbol error in terms of correction
For example, a valid RS code is (15, 9):
e The codeword is constructed over GF(16),
e Each symbol is constructed from 4 bit: m = 4
Each codeword contains 15 symbols: n = 15,
There are 9 symbols of which are data: k = 9,
There are 6 symbols of which are used for parity check: n —k = 6
This code can correct up to 3 symbols: t = (n — k)/2 =3
Codeword generator polynomial:
G(x) = x® + oa'%x> + ax* + a*x3 + a®x? + a°x +

3. Encoding of RS codes

Let the sequence of k message symbols in GF(2™) be m = (my, m4, -+, m,_1). The message
vector can be represented in polynomial form as:

M(x) = My + Myx + -+ + My_,x*71

To generate the nonsystematic code polynomial C(x), we multiply the message M(x) by the
generator G (x):

C(x) = M(x)G(x),

Or for systematic encoding:

C(x) = M(x)x?t + M(x)x? mod G(x)

For example, we encode the message vector 7 = (0000 0 0 0 ! 0) which represented as
polynomial M (x) = a'lx with the (15,9) RS code above. The codeword is generated by multiply
the message polynomial M (x) with the (15,9) RS generator polynomial C(x):

C(x) = M(x)G(x) = a''x7 + a®x® + allx® + x* + a®x3 + a®x? + o®x

Which represent the codeword € = (000000 0 o' a® a!! 1 o2 o a2 0)

The decoding process involves recovering the message polynomial M(x) from the received
code polynomial R(x). We will discuss the decoder techniques and process in more details later.

The following functions encodes a message vector to a RS systematic codeword using the RS
structure provided:

function symbols = rsEncoder(m, rs)

GPL = length(rs.generator);
z = uint16(zeros(1, GPL - 1));

fori=121rsk
xor = bitxor(z(GPLength - 1), m(i));
gfm = gfMul (xor, rs,generator(1:GPL - 1), rs);
z = bitxor(gfm, [uint16(0) z(1:GPL - 2)]);
end

http://jst.tnu.edu.vn 105 Email: jst@tnu.edu.vn

http://jst.tnu.edu.vn/
mailto:jst@tnu.edu.vn

TNU Journal of Science and Technology 227(07): 102 - 113

redundancy = fliplr(z(1:GPL - 1));
symbols = [m redundancy]
end

Multiplying over Galois field:
function [prodVector] = gfMul(x1, x2, rs)
indexGF = rs.indexGF;
alphaPower = rs.alphaPower;
alphalndex = mod((indexGF(x1+1)+indexGF(x2+1)-2), rs.nMax);
Ix1 = uint16(logical(x1));
IX2 = uint16(logical(x2));
apw = uint16(alphaPower(alphalndex+1));
prodVector = IX1.*Ix2.*apw;
end

4. Decoding of RS codes
4.1. Complete Decoder

A complete decoder process can be described as steps:
1. Compute Hamming distances between the received code and each valid
codeword of RS(n, k) code.
2. Chose the code with least Hamming distance value.
This approach to decode is impractical, as there are g* valid codewords for a RS(n, k), which
is an enormous number and would take much time to iterate through each one of them.

4.2. Syndrome calculation

A received polynomial R(x) is a combination of the original codeword and errors: R(x) =
C(x) + E(x) where E(x) = X" E;xt is the error polynomial such that E; is the error value of
the i-th position. Note that the decoder does not know E(x), and its task is to find errors E(x)
from the input R(x) then correct the data by subtracting E (x) from R(x).

For the number of errors less than the defined capacity t, the decoder received polynomial as
input:

R(x) = C(x) + R(x) = Ry + Ryx+ -+ R_x™1

The codeword polynomial C(x) is divisible by generator G(x), and G(a') =0 for i =

1,2,--,d — 1. Since C(a*) = M(a')G(a*) =0 fori = 1,2,-,d — 1,

R(ai) = C(a;)_ll- E(ai) = E(ai)

_ i
S
j=o

The syndromes S; of the received polynomial can be computed based on above d — 1
equations, as following:

S; =R(a') = XFg Ryt fori = 1,2,+,d — 1

Syndrome polynomial for a codeword up to ¢ errors:

2t
S(x) = Z S; xt
i=1

If the syndromes are all zero, then the codeword is not corrupted and need no further
correction. Otherwise, if there are nonzero syndromes, then the decoder needs to find the number
of errors, their locations, and values.

http://jst.tnu.edu.vn 106 Email: jst@tnu.edu.vn

http://jst.tnu.edu.vn/
mailto:jst@tnu.edu.vn

TNU Journal of Science and Technology 227(07): 102 - 113

function syndr = syndrome(received, rs)
n=rs.n;

t=rs.t;

syndr = uint16(zeros(1,2*t));

fori=1n
syndr = gfMul(syndr, rs.alphaSynd, rs);
syndr = bitxor(syndr, repmat(received(i), 1, 2*t));
end
end

4.3. RiBM algorithm

RS code can be seen as nonbinary BCH code. For binary codes which is a sub-class of BCH
code, the decoding process involves finding the error position and adding 1 to the error to flip the
position to the right value. However, for nonbinary codes (such as RS code), the error value is
also needed besides its position.

Let the error locator polynomial A(x) for v unknown number of errors:

v

AGx) = Z A
i=0

Let the error evaluator Q(x) with known syndrome S(x) and error locator A(x):
Q(x) = [1 + S(x)]A(x)mod x2t+1
Reformulated inversionless Berlekamp—Massey algorithm [7] is used to find error locator
polynomial A(x) and the error evaluator polynomial Q(x), implemented as following:

function ribm = RiBM(syndrome, rs)

t=rs.t;

k=0;

zero = uint16(0);

%% Initialization

delta = uint16([zeros(1, 3*t), 1, O]);
theta = uint16([zeros(1, 3*t),1]);
gamma = uint16(1);

theta(1:2*t) = syndrome;
delta(1:2*t) = syndrome;

forii = 1:2*t
% RiBM.1:
delta0 = delta;
delta(1:3*t+1) = bitxor(gfMul(gamma, delta0(2:3*t+2), rs), gfMul(delta0(1), theta, rs));

% RiBM.2:

if((deltaO(1) ~= zero) && (k >=0))
theta(1:3*t) = delta0(2:3*t+1);
theta(3*t+1) = zero;
gamma = delta0(1);

k =-k-1;
else
k = k+1;

http://jst.tnu.edu.vn 107 Email: jst@tnu.edu.vn

http://jst.tnu.edu.vn/
mailto:jst@tnu.edu.vn

TNU Journal of Science and Technology 227(07): 102 - 113

end
end

omega = fliplr(delta(1:t)); % error evaluator polynominal
lambda = delta(t+1:2*t+1); % error locator polynominal

index = find(lambda(2:t+1));
% Find lambda degree
if isempty(index)
lambdaDegree = 0;
else
lambdaDegree = index(length(index));
end

ribm.omega = omega;

ribm.delta = delta;

ribm.theta = theta;

ribm.gamma = gamma;

ribm.lambda = lambda;
ribm.lambdaDegree = lambdaDegree;
end

4.4. Chien Search and Forney algorithm

The roots of error locator polynomial A(x) over finite field GF(2™) can be found with Chien
search method [1]. The polynomial A(x) is expressed as:
A(x) = Ay + Ayx + -+ Apxt
The roots o of error locator polynomial A(x) must satisfy:
A(dd) = Ag + Ao + -+ At =0
After obtaining error locator polynomial A(x), the number of known errors can be identified
as v = deg A (x). Forney algorithm can calculate the error values e at known locations [8] from
error evaluator polynomial Q(x), error locators X; and formal derivative polynomial A’ of A:
QX1
By =)
| (%71)
i—)
N =2 zA’x ;A; = 0 for j even
Chien search for error position and Forney algorithm for error value are implemented as
following:

function cf = ChienForney(ribm, rs)
n=rs.n;
t=rs.t;
omega = ribm.omega;
lambda = ribm.lambda;

%% Look-up tables shortcuts

alphaPowerLT = @(x) rs.alphaPower(1+uint16(x));
% Calculate 1/x

invertx = uint16(zeros(1,n+1));

fori=1:n

http://jst.tnu.edu.vn 108 Email: jst@tnu.edu.vn

http://jst.tnu.edu.vn/
mailto:jst@tnu.edu.vn

TNU Journal of Science and Technology 227(07): 102 - 113

index = find(i == rs.alphaPower(1:n));
invertx(1+i) = rs.alphaPower(n+2-index);
end
invertxLT = @(x) invertx(1+uint16(x));

%% Chien search and Forney algorithm
forneyCells2t = gfMul(uint16(1), alphaPowerLT(0), rs);
errorValues = uint16(zeros(1, n));

%% Chien search cells preparation

forneyCells(1:t) = gfMul(omega(1:t), alphaPowerLT(0), rs);

chienCellsEven(1:floor(t/2+1)) = gfMul(lambda(t+3-2*(1:floor(t/2)+1)), alphaPowerLT(0), rs);
chienCellsOdd(1:ceil(t/2)) = gfMul(lambda(t+2-2*(1:ceil(t/2))), alphaPowerLT(0), rs);

alphaForney = alphaPowerL T(t-(1:1));
alphaChienEven = alphaPowerLT(t+2-2*(1:(floor(t/2)+1)));
alphaChienOdd = alphaPowerL T(t+1-2*(1:ceil(t/2)));

roots = 0;

fori=1:n
lambdaEven = uint16(0);
lambdaOdd = uint16(0);
omegaVal = uint16(0);

chienCellsEven = gfMul(chienCellsEven, alphaChienEven, rs);
chienCellsOdd = gfMul(chienCellsOdd, alphaChienOdd, rs);
forneyCells2t = gfMul(alphaPowerLT(2*t), forneyCells2t, rs);
forneyCells = gfMul(forneyCells, alphaForney, rs);

for j=1:floor(t/2)+1
lambdaEven = bitxor(lambdaEven, chienCellsEven(j));
end

for j=1:ceil(t/2)
lambdaOdd = bitxor(lambdaOdd, chienCellsOdd(j));
end

lambdaFull = bitxor(lambdaEven, lambdaOdd);

for j=1:t
omegaVal = bitxor(omegaVal, forneyCells(j));
end

omegaVal2t = gfMul(omegaVal, forneyCells2t, rs);

%% Find root of error locator polynomial
if (lambdaFull == 0) && (lambdaOdd~=0)
% Calculate error value
errorValues(i) = gfMul(omegaVal2t, invertxLT(lambdaOdd), rs);

http://jst.tnu.edu.vn 109 Email: jst@tnu.edu.vn

http://jst.tnu.edu.vn/
mailto:jst@tnu.edu.vn

TNU Journal of Science and Technology 227(07): 102 - 113

roots = roots + 1;
else
errorValues(i) = uint16(0);
end
end

cf.errorValues = errorValues;
cf.roots = roots;

end
4.5. Decoding function implementation

The complete RS code decoder using implemented Syndrome calculation, RiBM algorithm,
Chien search and Forney algorithm:
function decoder = rsDecoder(receivedCode, rsStructure)
receivedCode = uint16(receivedCode);
n=rs.n;
t=rst;

%% Syndrome Calculation
syndr = syndrome(receivedCode, rs);

%% RiBM algorithm
ribm = RiBM(syndr, rs);

%% Chien search and Forney Algorithm
chienForney = ChienForney(ribm, rs);

%% Error Correction
corrected = receivedCode(1:(n-2*t));
if ribm.lambdaDegree == chienForney.roots
% Correct symbols
corrected = bitxor(receivedCode, chienForney.errorValues);
end

decoder.received = receivedCode;
decoder.syndrome = syndr;

decoder.RiBM = ribm;
decoder.chienForney = chienForney;
decoder.corrected = corrected;

decoder.msg = decoder.corrected(1:(n-2*t));

end
6. Evaluation with examples

RS(7,3)

A RS code of m = 3 bits symbol size, k = 3 symbols message size, codeword size of n = 7
symbols and capable of correcting t = (n — k)/2 = 2 symbol errors. The encoder takes m bits to
form a symbol, and k symbols to form a message. The encoder then calculates 2t = 4 added

http://jst.tnu.edu.vn 110 Email: jst@tnu.edu.vn

http://jst.tnu.edu.vn/
mailto:jst@tnu.edu.vn

TNU Journal of Science and Technology 227(07): 102 - 113

symbols which are appended to the message, the result is a codeword corresponding to the
message.

Primitive Polynomial:

p(x) =x3+x%+1
primitivePoly = 13; % x"3 + x2 +1 ->[11 0 1] -> 13 in decimal
The generator:
Gx)=x*+2x3+2x2+7x+6

rsConstruct = rsCodeConstruct(n, k, m, primitivePoly);

rsConstruct.generatorPolynomial

>>>[67221]

The message polynomial:

M(x)=x*+4x+1
msg=[141]
Codeword (systematic):
C(x) = M(x)x* + (M(x)x?* mod G(x)) = x° + 4x° + x* + 2x3 + 7x? + Ox + 1

encodedmsg = rsEncoder(message, rsStructure)

>>>[1412701]

RS(7,1)

An inefficient RS code that only have k =1 message symbol and 2t = 6 redundancy
symbols, and able to correct up to t = 3 error positions in a codeword of length n = 7. This RS
code is constructed over GF(23) that require m = 3 bits to form a symbol.

Primitive Polynomial: [L011]
Generator Polynomial: [2457361]
Message: [3]
Codeword: [3754216]
RS(15,9)

This codeword need to have m = 4 bits to represent one symbol, as this RS code is
constructed over GF(2*) using the primitive polynomial p = x* + x + 1. One codeword of
RS(15,9) code have the length of n = 15 symbols, k = 9 in which are used to store the actual
message. This code can correct up to t = (n—k)/2 =3 symbol errors, by using 2t =6
redundancy symbols.

Primitive Polynomial: [L1001]

Generator polynomial: [01 0304 02 1510 01]

Message: [12 1501 131308 04 03 03]

Codeword: [121501 13130804 0303001001 04 12 13]

7. Known applications and developments

It is true that RS codes are the most used digital error-correction code. That is because of the
Compact Disc uses two RS codes for error correction and concealment. The special properties of
theses codes allowed the sound to be regenerated by the player in high quality.

A pair of so called “cross-interleaved” RS codes are used in the CD systems as sequences Of
nonbinary codewords symbols and need to be translated into a string of bits to be used in a binary
channel [10]. Supposed that a noise burst corrupts some of consecutive bit on the transmitting
channel, it means that the error bits are contained within a few of nonbinary symbols. For each of
those noise bursts, the encoder only needs to correct a few of symbol errors, compared to long
error bit strings. RS codes also allows to efficiently regenerate bytes from erasure error. As
implemented in the compact disc error control system: the cross-interleaved RS will use the first
code declare byte erasure, and the second to correct them. Due to this characteristic, the sound

http://jst.tnu.edu.vn 111 Email: jst@tnu.edu.vn

http://jst.tnu.edu.vn/
mailto:jst@tnu.edu.vn

TNU Journal of Science and Technology 227(07): 102 - 113

can be reproduced by the CD player even if there are damages to the surface of the disc, such as
scratches, dust particles, fingerprints, cracks, etc.

However, the most significant use case of RS coding was one of its applications for deep-
space exploration. In 1977, the Voyager Il has implemented the RS code with 255 bytes length
and 223 bytes dimension, which able to correct 16 bytes errors to communicate with Earth base
in its exploration mission [11]. Previously, the very first implementation of RS codes was for
satellite telecommunication systems and for military use in the 70s.

In 1960s, the structure which involving multilevel of coding was found, called concatenated
codes, could exponentially reduce the probability of error at in information rate no larger than
channel capacity. The RS code was used as the “outer” code due to the Viterbi bursty decoder
output, and the “inner” convolutional code to ensure the maximum likelihood of achieving a
good error probability [12]. In this way, the RS “outer” code with its powerful error correcting
capability can correct the output of the convolutional decoder in the concatenated coding system.

8. Conclusions

A generalized structure of RS code was implemented in MATLAB, based on cyclic code
fundamentals to store RS code parameters length n, symbol size m, message length k, correction
capability t and calculate the Galois field, Generator polynomial. An encoder then takes this RS
structure to generate a unique systematic codeword from a message by multiply it with the
generator polynomial. After receiving a codeword, the encoder first attempts to correct the
symbols and then removes the redundant symbols from the codeword to return the original
message.

Some examples of known RS code applications and their impacts to the world are stated: CD
discs, space exploration, concatenated codes, etc.

In this paper, we provide some results about Reed-Solomon codes. We also encode and
decode such codes by using the MATLAB platform. We give examples of encoding and
decoding different messages.

Acknowledgement

This research is funded by Thu Dau Mot University, Binh Duong Province, Vietnam under
grant number DT.21.2-018.

REFERENCES

[1] S. Y. Korabelshchikova, B. F. Melnikov, S. V. Pivneva, and L. V. Zyablitseva, "Linear codes and
some their applications,” 2018, vol. 1096: IOP Publishing, 1 ed., p. 012174.

[2] R. W. McEliece and L. Swanson, “Reed-Solomon codes and the exploration of the solar system,” in
Reed-Solomon Codes and Their Applications (S. B. Wicker and V. K. Bhargava, eds.), pp. 25-40.
Piscataway, NJ: IEEE Press, 1994.

[3] R. W. Hamming, "Error detecting and error correcting codes,” The Bell System Technical Journal, vol.
29, no. 2, pp. 147-160, 1950, doi: 10.1002/j.1538-7305.1950.tb00463.x.

[4] S. B. Wicker and V. K. Bhargava, Reed-Solomon codes and their applications. John Wiley & Sons,
1999.

[5] M. Greferath, "Golay Codes," Wiley Encyclopedia of Telecommunications, 2003. [Online]. Available:
https://doi.org/10.1002/0471219282.e0t371. [Accessed Oct. 15, 2021].

[6] S. Reed and G. Solomon, "Polynomial codes over certain finite fields," Journal of the society for
industrial and applied mathematics, vol. 8, no. 2, pp. 300-304, 1960.

[7] C. E. Shannon, "A mathematical theory of communication,” The Bell System Technical Journal, vol.
27, no. 3, pp. 379-423, 1948, doi: 10.1002/j.1538-7305.1948.tb01338.x.

[8] D. V. Sarwate and N. R. Shanbhag, "High-speed architectures for Reed-Solomon decoders," IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 9, no. 5, pp. 641-655, 2001, doi:
10.1109/92.953498.

[9] R. E. Blahut, Algebraic Codes for Data Transmission. Cambridge: Cambridge University Press, 2003.

http://jst.tnu.edu.vn 112 Email: jst@tnu.edu.vn

http://jst.tnu.edu.vn/
mailto:jst@tnu.edu.vn
https://doi.org/10.1002/0471219282.eot371

TNU Journal of Science and Technology 227(07): 102 - 113

[10] B. W. Stephen and K. B. Vijay, "Reed-Solomon Codes and the Compact Disc,” in Reed-Solomon
Codes and Their Applications: IEEE, 1994, pp. 41-59.

[11] J. Uri. "45 years ago: Viking 1 Touches Down on Mars,” NASA. [Online]. Available;
https://www.nasa.gov/feature/45-years-ago-viking-1-touches-down-on-mars. [Accessed Oct. 15,
2021].

[12] Viterbi, "Error bounds for convolutional codes and an asymptotically optimum decoding
algorithm," IEEE Transactions on Information Theory, vol. 13, no. 2, pp. 260-269, 1967, doi:
10.1109/TIT.1967.1054010.

http://jst.tnu.edu.vn 113 Email: jst@tnu.edu.vn

http://jst.tnu.edu.vn/
mailto:jst@tnu.edu.vn

