
TNU Journal of Science and Technology 227(07): 102 - 113

http://jst.tnu.edu.vn 102 Email: jst@tnu.edu.vn

ON THE REED-SOLOMON CODES

Nguyen Thi Lan Huong1, Luu Thi Hiep2*, Le Le Hang3, Nguyen Thi Nhung4, Nguyen Ngo Cong Thanh5
1TNU - University of Economics and Business Admistration, 2Thu Dau Mot university
3Economics - Technology Industries University
4TNU - University of Information and Communication Technology, 5Deakin University, Australia

ARTICLE INFO ABSTRACT

Received: 04/4/2022 The Reed-Solomon (RS) codes are among the most powerful methods to

preserve data integrity from errors and erasures for storage or transmission

purposes. This coding technique has been proven to be a high performance

while maintaining a reasonable cost and productivity. Unlike some coding

techniques that enforce data transmission as a sequence of binary numbers,

Reed-Solomon encodes the message as non-binary symbols. This gives Reed-

Solomon the advantage of handling bursts of errors or even erasure error. It

plays a significant role in modern communication systems and many daily life

applications. Some known applications of this coding technique are the fault-

tolerant systems in CD disks, and the communication protocol in satellites and

spaceships. In the paper, we give the basic properties and structures of the

Reed-Solomon codes by discussing its mathematics models. The encoding

process with the original approach and the modern BCH approaches. For the

decoding process, we investigate a wide range of algorithms and techniques,

such as Syndrome decoding, RiBM algorithm, Chien search and Forney

algorithm. Finally, we present the result is a functional Reed-Solomon encoder

and decoder implemented using the MATLAB platform and give examples of

encoding and decoding with different messages.

Revised: 29/5/2022

Published: 30/5/2022

KEYWORDS

Reed-Solomon codes

Binary codes

Encoder

Decoder

Syndrome decoding

RiBM algorithm

Chien Search algorithm

Forney algorithm

MÃ REED-SOLOMON

Nguyễn Thị Lan Hương1, Lưu Thị Hiệp2*, Lê Lệ Hằng3, Nguyễn Thị Nhung4, Nguyễn Ngô Công Thành5
1Trường Đại học Kinh tế và Quản trị kinh doanh – ĐH Thái Nguyên
2Đại học Thủ Dầu Một, 3Trường Đại học Kinh tế Kỹ thuật công nghiệp Hà Nội
4Trường Đại học Công nghệ thông tin và truyền thông – ĐH Thái Nguyên, 5Trường Đại học Daekin, Úc

THÔNG TIN BÀI BÁO TÓM TẮT

Ngày nhận bài: 04/4/2022 Mã Reed-Solomon (mã RS) là một trong những phương pháp mạnh mẽ

nhất để bảo vệ tính toàn vẹn của dữ liệu khỏi các lỗi có thể xảy ra trong

quá trình lưu trữ hoặc truyền tải. Kỹ thuật mã hóa này đã được chứng

minh đạt được hiệu suất cao với chi phí hợp lý. Trong khi các kỹ thuật mã

hóa khác truyền dữ liệu dưới dạng một chuỗi số nhị phân, mã Reed-

Solomon mã hóa thông điệp dưới dạng một chuỗi ký hiệu. Điều này đem

lại cho mã Reed-Solomon lợi thế trong việc xử lý lỗi hàng loạt hoặc thậm

chí là lỗi xóa. Nó đóng vai trò quan trọng trong các hệ thống thông tin liên

lạc hiện đại và nhiều ứng dụng khác trong cuộc sống. Một số ứng dụng có

thể kể đến như là hệ thống chịu lỗi trong đĩa CD và giao thức truyền thông

trong vệ tinh và tàu vũ trụ. Trong bài viết này, chúng tôi đưa ra các thuộc

tính và cấu trúc cơ bản của mã Reed-Solomon bằng cách thảo luận về các

mô hình toán học của nó. Quá trình mã hóa với cách tiếp cận ban đầu và

cách tiếp cận BCH hiện đại. Đối với quá trình giải mã, chúng tôi nghiên

cứu một loạt các thuật toán và kỹ thuật, chẳng hạn như giải mã hội chứng,

thuật toán RiBM, Chien và Forney. Kết quả là một bộ mã hóa và giải mã

Reed-Solomon sử dụng nền tảng MATLAB. Chúng tôi đưa ra các ví dụ về

mã hóa và giải mã với các thông điệp khác nhau.

Ngày hoàn thiện: 29/5/2022

Ngày đăng: 30/5/2022

TỪ KHÓA

Mã Reed-Solomon

Mã nhị phân

Bộ mã hóa

Bộ giải mã

Giải mã hội chứng

Thuật toán RiBM

Thuật toán Chien

Thuật toán Forney

DOI: https://doi.org/10.34238/tnu-jst.5808

* Corresponding author. Email: hieplt@tdmu.edu.vn

http://jst.tnu.edu.vn/
mailto:jst@tnu.edu.vn
https://doi.org/10.34238/tnu-jst.5808

TNU Journal of Science and Technology 227(07): 102 - 113

http://jst.tnu.edu.vn 103 Email: jst@tnu.edu.vn

1. Introduction

In the last few decades, communication has been a vital field in engineering, and it is getting

ever more interesting and challenging [1]-[4]. There are two important goals to achieve in this

field are reliability and efficiency. Depends on the context, one must compromise for the sake of

the other, and in most cases, reliability is the priority. In digital communication, there are a wide

range of concern over errors, which are mainly occur due to noise, electromagnetic, bandwidth

limits, etc.

To provide a better reliability for data transmission or storage, one can use error correction

codes. The ideal of error correction is to add redundance to transmitted data such that error can be

detected and corrected. There are different techniques, such as Hamming code [4], Golay code

[5], etc.

In 1960, I.S. Reed and G. Solomon introduced a family of error-correcting codes that are

doubly blessed [6]. The Reed-Solomon code can also be seen as non-binary BCH (Bose-

Chaudhuri-Hocquenghem) code and some BCH decoding algorithms can also work for the case

of RS code. The codes and their generalizations are useful in practice, and the mathematics that

lies behind them is interesting.

Compared to binary cyclic code in which the coefficients of codeword polynomial are all in

modulo 2 (either 0 or 1) [7], Reed Solomon codes coefficients are nonbinary, and each symbol of

RS codeword can be constructed from multiple bits. This also means that if multiple bits in a

symbol are corrupted, it only counts as a single symbol error. An overview of RS encoding and

decoding techniques, such as RiBM [8], Chien search and Forney Algorithm [9] are presented in

this paper.

2. The construction of RS codes

The original approach of constructing the RS codes is quite straightforward [5]:

A message word of the form 𝑀⃗⃗ = (𝑀0,  𝑀1,⋯ ,𝑀𝑘−1,𝑀𝑘) where the 𝑀𝑖-th position generates

𝑘 information symbols taken from the finite field 𝐺𝐹(𝑞). Then the polynomial p(𝑥) = 𝑀0 +

𝑀1x + ⋯+ 𝑀𝑘−2𝑥
𝑘−2 + 𝑀𝑘−1𝑥

𝑘−1 can be constructed accordingly. The RS codeword 𝐶 of

message 𝑀⃗⃗ is generated by evaluating 𝑝(𝑥) at each of the 𝑞 element in 𝐺𝐹(𝑞):

𝐶 = (𝐶0, 𝐶1,⋯ , 𝐶𝑞−1) = [𝑝(0), 𝑝(α), 𝑝(α2),⋯ , 𝑝(𝑎𝑞−1)], with 𝛼 is a primitive element in

𝐺𝐹(𝑞)

RS codes are denoted by their length 𝑛 and dimension of 𝑘 as (𝑛, 𝑘) codes. The code length

(or block length) 𝑛 is equivalent to 𝑞, since each codewords has 𝑞 positions. The message length

𝑘, also known as the “dimension’ of the RS code as the RS codewords are generated from a

vector space of dimension 𝑘.

The generator matrix is a 𝑛 × 𝑘:

G⊺ = [

1 0 0 ⋯ 0
1 α α2 ⋯ α𝑘−1

⋮ ⋮ ⋮ ⋱ ⋮
1 α𝑛−1 α2(𝑛−1) ⋯ α(𝑘−1)(𝑛−1)

]

As can be seen, the generator matrix of RS codes is a Vandermonde matrix, therefore the

generated RS codeword are linear, which mean that the sum of any two message of length 𝑘 is

another message of length 𝑘.

2.1. RS codes described as BCH codes

The original method of constructing the RS code was eventually replaced with a more modern

approach of cyclic code: generator-polynomial. Nowadays, this technique of RS encoding is

widely used in studies and research on error correction and communication.

http://jst.tnu.edu.vn/
mailto:jst@tnu.edu.vn

TNU Journal of Science and Technology 227(07): 102 - 113

http://jst.tnu.edu.vn 104 Email: jst@tnu.edu.vn

For a symbol size 𝑚, a codeword of cyclic RS code from 𝐺𝐹(𝑞 = 2𝑚) have the length of 𝑞 −
1, which is one position less than that of the original construction idea.

For the RS code to correct up to 𝑡 symbols of length 𝑞 − 1 in the finite field 𝐺𝐹(𝑞), the

generator 𝐺(𝑥) is defined as the polynomial:

G(𝑥) = ∏(𝑥 − α(ℎ+𝑗))

2𝑡−1

𝑗=0

= ∑ 𝐺𝑗𝑥
𝑗

2𝑡−1

𝑗=0

Where the integer ℎ is the power of the first consecutive roots of generator 𝐺(𝑥), this constant

ℎ is usually 1.

To create a RS generator, we can write a function that takes the codeword length 𝑛, message

length 𝑘, number of bits per symbol 𝑚, and the primitive polynomial. MATLAB’s

communication toolbox will be used to provide the Galois Field for RS code:

function rs = rsCodeConstruct(n, k, m, primPol)

rs = [];

%% Alpha power

alpha = gf(2, m, primitivePolynomial);

alphaPower = alpha.^(0:n);

alphaPower = uint16(alphaPower.x);

%% Find GF element in alpha power

indexGFE = zeros(1,n+1);

for i = 2:nMax+1

indexGFE(i) = find(i-1 == alphaPower(1:n));

end

%% Generator Polynomial

generator = genpoly(n, k, alpha);

generator = uint16(generaotr.x);

%% Create alpha array

nn = 1:2*t;

alphaSynd = alpha.^(offset+nn-1);

alphaSyndNum = uint16(alphaSynd.x);

rs.alphaPower = alphaPower;

rs.indexGF = indexGFE;

 rs.generator = fliplr(generator);

 rs.n = n;

 rs.k = k;

 rs.m = m;

 rs.t = (n-k)/2;

 rs.primitivePolynomial = primpol;

rs.alphaSynd = alphaSyndNum;

end

function g = genpoly(k, n, alpha)

 g = 1;

 % Multiplication on galios field is a convolution

 for k = mod(1 : n-k, n)

http://jst.tnu.edu.vn/
mailto:jst@tnu.edu.vn

TNU Journal of Science and Technology 227(07): 102 - 113

http://jst.tnu.edu.vn 105 Email: jst@tnu.edu.vn

 g = conv(g, [1 alpha .^ (k-1)]);

 end

end

2.2. Properties

The RS codes is a [𝑛, 𝑘, 𝑛 − 𝑘 + 1] linear block code, with length 𝑛, dimension 𝑘 and

minimum Hamming distance 𝑑 = 𝑛 − 𝑘 + 1.

A valid code 𝐶(𝑥) of length 𝑞 − 1 and dimension 𝑘 can correct up to 𝑡 = ⌊(𝑞 − 𝑘 + 1)/2⌋
symbol errors.

RS codes are good with burst errors, since any bit errors in a symbol will only treated as one

symbol error in terms of correction

For example, a valid RS code is (15, 9):

• The codeword is constructed over 𝐺𝐹(16),

• Each symbol is constructed from 4 bit: 𝑚 = 4

• Each codeword contains 15 symbols: 𝑛 = 15,

• There are 9 symbols of which are data: 𝑘 = 9,

• There are 6 symbols of which are used for parity check: 𝑛 − 𝑘 = 6

• This code can correct up to 3 symbols: 𝑡 = (𝑛 − 𝑘)/2 = 3

• Codeword generator polynomial:

𝐺(𝑥) = 𝑥6 + α10𝑥5 + α14𝑥4 + α4𝑥3 + α6𝑥2 + α9𝑥 + α6

3. Encoding of RS codes

Let the sequence of 𝑘 message symbols in 𝐺𝐹(2𝑚) be 𝑚⃗⃗ = (𝑚0, 𝑚1,⋯ ,𝑚𝑘−1). The message

vector can be represented in polynomial form as:

M(x) = 𝑀0 + 𝑀1x + ⋯+ Mk−1𝑥
𝑘−1

To generate the nonsystematic code polynomial 𝐶(𝑥), we multiply the message 𝑀(𝑥) by the

generator 𝐺(𝑥):
𝐶(𝑥) = 𝑀(𝑥)𝐺(𝑥),

Or for systematic encoding:

𝐶(𝑥) = 𝑀(𝑥)𝑥2𝑡 + 𝑀(𝑥)𝑥2𝑡 𝑚𝑜𝑑 𝐺(𝑥)

For example, we encode the message vector 𝑣 = (0 0 0 0 0 0 0 α11 0) which represented as

polynomial 𝑀(𝑥) = α11𝑥 with the (15,9) RS code above. The codeword is generated by multiply

the message polynomial 𝑀(𝑥) with the (15,9) RS generator polynomial 𝐶(𝑥):

𝐶(𝑥) = 𝑀(𝑥)𝐺(𝑥) = α11𝑥7 + α6𝑥6 + α11𝑥5 + 𝑥4 + α2𝑥3 + α5𝑥2 + α2𝑥

Which represent the codeword 𝐶 = (0 0 0 0 0 0 0 α11 α6 α11 1 α2 α5 α2 0)
The decoding process involves recovering the message polynomial 𝑀(𝑥) from the received

code polynomial 𝑅(𝑥). We will discuss the decoder techniques and process in more details later.

The following functions encodes a message vector to a RS systematic codeword using the RS

structure provided:

function symbols = rsEncoder(m, rs)

 GPL = length(rs.generator);

 z = uint16(zeros(1, GPL - 1));

 for i = 1:rs.k

 xor = bitxor(z(GPLength - 1), m(i));

 gfm = gfMul (xor, rs,generator(1:GPL - 1), rs);

 z = bitxor(gfm, [uint16(0) z(1:GPL - 2)]);

end

http://jst.tnu.edu.vn/
mailto:jst@tnu.edu.vn

TNU Journal of Science and Technology 227(07): 102 - 113

http://jst.tnu.edu.vn 106 Email: jst@tnu.edu.vn

redundancy = fliplr(z(1:GPL - 1));

symbols = [m redundancy]
 end

Multiplying over Galois field:

function [prodVector] = gfMul(x1, x2, rs)

indexGF = rs.indexGF;

 alphaPower = rs.alphaPower;

 alphaIndex = mod((indexGF(x1+1)+indexGF(x2+1)-2), rs.nMax);

 lx1 = uint16(logical(x1));

 lx2 = uint16(logical(x2));

 apw = uint16(alphaPower(alphaIndex+1));

 prodVector = lx1.*lx2.*apw;

end

4. Decoding of RS codes

4.1. Complete Decoder

A complete decoder process can be described as steps:

1. Compute Hamming distances between the received code and each valid

codeword of 𝑅𝑆(𝑛, 𝑘) code.

2. Chose the code with least Hamming distance value.

This approach to decode is impractical, as there are 𝑞𝑘 valid codewords for a 𝑅𝑆(𝑛, 𝑘), which

is an enormous number and would take much time to iterate through each one of them.

4.2. Syndrome calculation

A received polynomial 𝑅(𝑥) is a combination of the original codeword and errors: 𝑅(𝑥) =
𝐶(𝑥) + 𝐸(𝑥) where E(𝑥) = ∑ 𝐸𝑖𝑥

𝑖𝑛−1
𝑖=0 is the error polynomial such that 𝐸𝑖 is the error value of

the 𝑖-th position. Note that the decoder does not know 𝐸(𝑥), and its task is to find errors 𝐸(𝑥)
from the input 𝑅(𝑥) then correct the data by subtracting 𝐸(𝑥) from 𝑅(𝑥).

For the number of errors less than the defined capacity 𝑡, the decoder received polynomial as

input:

R(𝑥) = C(𝑥) + R(𝑥) = 𝑅0 + 𝑅1x + ⋯+ 𝑅𝑛−1𝑥
𝑛−1

The codeword polynomial 𝐶(𝑥) is divisible by generator 𝐺(𝑥), and 𝐺(𝑎𝑖) = 0 for 𝑖 =

1,2,⋯ , 𝑑 − 1. Since C(α𝑖) = M(α𝑖)G(α𝑖) = 0 for 𝑖 = 1, 2,⋯ , 𝑑 − 1,

R(α𝑖) = C(α𝑖) + E(α𝑖) = E(α𝑖)

= ∑ 𝐸𝑗α
𝑖𝑗

𝑛−1

𝑗=0

The syndromes 𝑆𝑖 of the received polynomial can be computed based on above 𝑑 − 1

equations, as following:

𝑆𝑖 = R(α𝑖) = ∑ 𝑅𝑗α
𝑖𝑗𝑛−1

𝑗=0 , for 𝑖 = 1,2,⋯ , 𝑑 − 1

Syndrome polynomial for a codeword up to 𝑡 errors:

𝑆(𝑥) = ∑𝑆𝑖

2𝑡

𝑖=1

𝑥𝑖

If the syndromes are all zero, then the codeword is not corrupted and need no further

correction. Otherwise, if there are nonzero syndromes, then the decoder needs to find the number

of errors, their locations, and values.

http://jst.tnu.edu.vn/
mailto:jst@tnu.edu.vn

TNU Journal of Science and Technology 227(07): 102 - 113

http://jst.tnu.edu.vn 107 Email: jst@tnu.edu.vn

function syndr = syndrome(received, rs)

n = rs.n;

 t = rs.t;

 syndr = uint16(zeros(1,2*t));

 for i = 1:n

 syndr = gfMul(syndr, rs.alphaSynd, rs);

 syndr = bitxor(syndr, repmat(received(i), 1, 2*t));

 end

end

4.3. RiBM algorithm

RS code can be seen as nonbinary BCH code. For binary codes which is a sub-class of BCH

code, the decoding process involves finding the error position and adding 1 to the error to flip the

position to the right value. However, for nonbinary codes (such as RS code), the error value is

also needed besides its position.

Let the error locator polynomial Λ(𝑥) for 𝑣 unknown number of errors:

Λ(𝑥) = ∑Λ𝑖𝑥
𝑖

𝑣

𝑖=0

Let the error evaluator Ω(𝑥) with known syndrome 𝑆(𝑥) and error locator Λ(𝑥):
Ω(𝑥) = [1 + 𝑆(𝑥)]Λ(𝑥)mod 𝑥2𝑡+1

Reformulated inversionless Berlekamp–Massey algorithm [7] is used to find error locator

polynomial Λ(x) and the error evaluator polynomial Ω(𝑥), implemented as following:

function ribm = RiBM(syndrome, rs)

 t = rs.t;

 k = 0;

 zero = uint16(0);

 %% Initialization

 delta = uint16([zeros(1, 3*t), 1, 0]);

 theta = uint16([zeros(1, 3*t),1]);

 gamma = uint16(1);

 theta(1:2*t) = syndrome;

 delta(1:2*t) = syndrome;

 for ii = 1:2*t

 % RiBM.1:

 delta0 = delta;

 delta(1:3*t+1) = bitxor(gfMul(gamma, delta0(2:3*t+2), rs), gfMul(delta0(1), theta, rs));

 % RiBM.2:

 if((delta0(1) ~= zero) && (k >= 0))

 theta(1:3*t) = delta0(2:3*t+1);

 theta(3*t+1) = zero;

 gamma = delta0(1);

 k = -k-1;

 else

 k = k+1;

http://jst.tnu.edu.vn/
mailto:jst@tnu.edu.vn

TNU Journal of Science and Technology 227(07): 102 - 113

http://jst.tnu.edu.vn 108 Email: jst@tnu.edu.vn

 end

 end

 omega = fliplr(delta(1:t)); % error evaluator polynominal

 lambda = delta(t+1:2*t+1); % error locator polynominal

 index = find(lambda(2:t+1));

 % Find lambda degree

 if isempty(index)

 lambdaDegree = 0;

 else

 lambdaDegree = index(length(index));

 end

 ribm.omega = omega;

 ribm.delta = delta;

 ribm.theta = theta;

 ribm.gamma = gamma;

 ribm.lambda = lambda;

 ribm.lambdaDegree = lambdaDegree;

 end

4.4. Chien Search and Forney algorithm

The roots of error locator polynomial Λ(𝑥) over finite field 𝐺𝐹(2𝑚) can be found with Chien

search method [1]. The polynomial Λ(𝑥) is expressed as:

Λ(𝑥) = Λ0 + Λ1𝑥 + ⋯+ Λ𝑡𝑥
𝑡

The roots α𝑖 of error locator polynomial Λ(𝑥) must satisfy:

Λ(α𝑖) = Λ0 + Λ1α
𝑖 + ⋯+ Λ𝑡α

𝑖𝑡 = 0

After obtaining error locator polynomial Λ(𝑥), the number of known errors can be identified

as v = 𝑑𝑒𝑔Λ (𝑥). Forney algorithm can calculate the error values 𝑒 at known locations [8] from

error evaluator polynomial Ω(𝑥), error locators 𝑋𝑗 and formal derivative polynomial Λ′ of Λ:

𝐸𝑘𝑗
= −𝑋𝑗

Ω(𝑋𝑗
−1)

Λ′(𝑋𝑗
−1)

Λ′ =
∑𝑗=0Λ𝑗𝑥

𝑗

𝑥
; Λ𝑗 = 0 for 𝑗 even

Chien search for error position and Forney algorithm for error value are implemented as

following:

function cf = ChienForney(ribm, rs)

 n = rs.n;

 t = rs.t;

 omega = ribm.omega;

 lambda = ribm.lambda;

 %% Look-up tables shortcuts

 alphaPowerLT = @(x) rs.alphaPower(1+uint16(x));

 % Calculate 1/x

 invertx = uint16(zeros(1,n+1));

 for i = 1:n

http://jst.tnu.edu.vn/
mailto:jst@tnu.edu.vn

TNU Journal of Science and Technology 227(07): 102 - 113

http://jst.tnu.edu.vn 109 Email: jst@tnu.edu.vn

 index = find(i == rs.alphaPower(1:n));

 invertx(1+i) = rs.alphaPower(n+2-index);

 end

 invertxLT = @(x) invertx(1+uint16(x));

 %% Chien search and Forney algorithm

 forneyCells2t = gfMul(uint16(1), alphaPowerLT(0), rs);

 errorValues = uint16(zeros(1, n));

 %% Chien search cells preparation

 forneyCells(1:t) = gfMul(omega(1:t), alphaPowerLT(0), rs);

 chienCellsEven(1:floor(t/2+1)) = gfMul(lambda(t+3-2*(1:floor(t/2)+1)), alphaPowerLT(0), rs);

 chienCellsOdd(1:ceil(t/2)) = gfMul(lambda(t+2-2*(1:ceil(t/2))), alphaPowerLT(0), rs);

 alphaForney = alphaPowerLT(t-(1:t));

 alphaChienEven = alphaPowerLT(t+2-2*(1:(floor(t/2)+1)));

 alphaChienOdd = alphaPowerLT(t+1-2*(1:ceil(t/2)));

 roots = 0;

 for i = 1:n

 lambdaEven = uint16(0);

 lambdaOdd = uint16(0);

 omegaVal = uint16(0);

 chienCellsEven = gfMul(chienCellsEven, alphaChienEven, rs);

 chienCellsOdd = gfMul(chienCellsOdd, alphaChienOdd, rs);

 forneyCells2t = gfMul(alphaPowerLT(2*t), forneyCells2t, rs);

 forneyCells = gfMul(forneyCells, alphaForney, rs);

 for j=1:floor(t/2)+1

 lambdaEven = bitxor(lambdaEven, chienCellsEven(j));

 end

 for j=1:ceil(t/2)

 lambdaOdd = bitxor(lambdaOdd, chienCellsOdd(j));

 end

 lambdaFull = bitxor(lambdaEven, lambdaOdd);

 for j=1:t

 omegaVal = bitxor(omegaVal, forneyCells(j));

 end

 omegaVal2t = gfMul(omegaVal, forneyCells2t, rs);

 %% Find root of error locator polynomial

 if (lambdaFull == 0) && (lambdaOdd~=0)

 % Calculate error value

 errorValues(i) = gfMul(omegaVal2t, invertxLT(lambdaOdd), rs);

http://jst.tnu.edu.vn/
mailto:jst@tnu.edu.vn

TNU Journal of Science and Technology 227(07): 102 - 113

http://jst.tnu.edu.vn 110 Email: jst@tnu.edu.vn

 roots = roots + 1;

 else

 errorValues(i) = uint16(0);

 end

 end

 cf.errorValues = errorValues;

 cf.roots = roots;

end

4.5. Decoding function implementation

The complete RS code decoder using implemented Syndrome calculation, RiBM algorithm,

Chien search and Forney algorithm:

function decoder = rsDecoder(receivedCode, rsStructure)

 receivedCode = uint16(receivedCode);

 n = rs.n;

 t = rs.t;

 %% Syndrome Calculation

 syndr = syndrome(receivedCode, rs);

 %% RiBM algorithm

 ribm = RiBM(syndr, rs);

 %% Chien search and Forney Algorithm

 chienForney = ChienForney(ribm, rs);

 %% Error Correction

 corrected = receivedCode(1:(n-2*t));

 if ribm.lambdaDegree == chienForney.roots

 % Correct symbols

 corrected = bitxor(receivedCode, chienForney.errorValues);

 end

 decoder.received = receivedCode;

 decoder.syndrome = syndr;

 decoder.RiBM = ribm;

 decoder.chienForney = chienForney;

 decoder.corrected = corrected;

 decoder.msg = decoder.corrected(1:(n-2*t));

end

6. Evaluation with examples

RS(7,3)

A RS code of 𝑚 = 3 bits symbol size, 𝑘 = 3 symbols message size, codeword size of 𝑛 = 7

symbols and capable of correcting 𝑡 = (𝑛 − 𝑘)/2 = 2 symbol errors. The encoder takes 𝑚 bits to

form a symbol, and 𝑘 symbols to form a message. The encoder then calculates 2𝑡 = 4 added

http://jst.tnu.edu.vn/
mailto:jst@tnu.edu.vn

TNU Journal of Science and Technology 227(07): 102 - 113

http://jst.tnu.edu.vn 111 Email: jst@tnu.edu.vn

symbols which are appended to the message, the result is a codeword corresponding to the

message.

Primitive Polynomial:

𝑝(𝑥) = 𝑥3 + 𝑥2 + 1

primitivePoly = 13; % x^3 + x^2 +1 -> [1 1 0 1] -> 13 in decimal

The generator:

𝐺(𝑥) = 𝑥4 + 2𝑥3 + 2𝑥2 + 7𝑥 + 6

rsConstruct = rsCodeConstruct(n, k, m, primitivePoly);

rsConstruct.generatorPolynomial

>>> [6 7 2 2 1]

The message polynomial:

𝑀(𝑥) = 𝑥2 + 4𝑥 + 1

msg = [1 4 1]'

Codeword (systematic):

𝐶(𝑥) = 𝑀(𝑥)𝑥2𝑡 + (𝑀(𝑥)𝑥2𝑡 𝑚𝑜𝑑 𝐺(𝑥)) = 𝑥6 + 4𝑥5 + 𝑥4 + 2𝑥3 + 7𝑥2 + 0𝑥 + 1

encodedmsg = rsEncoder(message, rsStructure)

>>> [1 4 1 2 7 0 1]

RS(7,1)

An inefficient RS code that only have 𝑘 = 1 message symbol and 2𝑡 = 6 redundancy

symbols, and able to correct up to 𝑡 = 3 error positions in a codeword of length 𝑛 = 7. This RS

code is constructed over 𝐺𝐹(23) that require 𝑚 = 3 bits to form a symbol.

Primitive Polynomial: [1 0 1 1]

Generator Polynomial: [2 4 5 7 3 6 1]

Message: [3]

Codeword: [3 7 5 4 2 1 6]

RS(15,9)

This codeword need to have 𝑚 = 4 bits to represent one symbol, as this RS code is

constructed over 𝐺𝐹(24) using the primitive polynomial 𝑝 = 𝑥4 + 𝑥 + 1. One codeword of

RS(15,9) code have the length of 𝑛 = 15 symbols, 𝑘 = 9 in which are used to store the actual

message. This code can correct up to 𝑡 = (𝑛 − 𝑘)/2 = 3 symbol errors, by using 2𝑡 = 6

redundancy symbols.

Primitive Polynomial: [1 1 0 0 1]

Generator polynomial: [01 03 04 02 15 10 01]

Message: [12 15 01 13 13 08 04 03 03]

Codeword: [12 15 01 13 13 08 04 03 03 00 10 01 04 12 13]

7. Known applications and developments

It is true that RS codes are the most used digital error-correction code. That is because of the

Compact Disc uses two RS codes for error correction and concealment. The special properties of

theses codes allowed the sound to be regenerated by the player in high quality.

A pair of so called “cross-interleaved” RS codes are used in the CD systems as sequences of

nonbinary codewords symbols and need to be translated into a string of bits to be used in a binary

channel [10]. Supposed that a noise burst corrupts some of consecutive bit on the transmitting

channel, it means that the error bits are contained within a few of nonbinary symbols. For each of

those noise bursts, the encoder only needs to correct a few of symbol errors, compared to long

error bit strings. RS codes also allows to efficiently regenerate bytes from erasure error. As

implemented in the compact disc error control system: the cross-interleaved RS will use the first

code declare byte erasure, and the second to correct them. Due to this characteristic, the sound

http://jst.tnu.edu.vn/
mailto:jst@tnu.edu.vn

TNU Journal of Science and Technology 227(07): 102 - 113

http://jst.tnu.edu.vn 112 Email: jst@tnu.edu.vn

can be reproduced by the CD player even if there are damages to the surface of the disc, such as

scratches, dust particles, fingerprints, cracks, etc.

However, the most significant use case of RS coding was one of its applications for deep-

space exploration. In 1977, the Voyager II has implemented the RS code with 255 bytes length

and 223 bytes dimension, which able to correct 16 bytes errors to communicate with Earth base

in its exploration mission [11]. Previously, the very first implementation of RS codes was for

satellite telecommunication systems and for military use in the 70s.

In 1960s, the structure which involving multilevel of coding was found, called concatenated

codes, could exponentially reduce the probability of error at in information rate no larger than

channel capacity. The RS code was used as the “outer” code due to the Viterbi bursty decoder

output, and the “inner” convolutional code to ensure the maximum likelihood of achieving a

good error probability [12]. In this way, the RS “outer” code with its powerful error correcting

capability can correct the output of the convolutional decoder in the concatenated coding system.

8. Conclusions

A generalized structure of RS code was implemented in MATLAB, based on cyclic code

fundamentals to store RS code parameters length 𝑛, symbol size 𝑚, message length 𝑘, correction

capability 𝑡 and calculate the Galois field, Generator polynomial. An encoder then takes this RS

structure to generate a unique systematic codeword from a message by multiply it with the

generator polynomial. After receiving a codeword, the encoder first attempts to correct the

symbols and then removes the redundant symbols from the codeword to return the original

message.

Some examples of known RS code applications and their impacts to the world are stated: CD

discs, space exploration, concatenated codes, etc.

In this paper, we provide some results about Reed-Solomon codes. We also encode and

decode such codes by using the MATLAB platform. We give examples of encoding and

decoding different messages.

Acknowledgement

This research is funded by Thu Dau Mot University, Binh Duong Province, Vietnam under

grant number DT.21.2-018.

REFERENCES

[1] S. Y. Korabelshchikova, B. F. Melnikov, S. V. Pivneva, and L. V. Zyablitseva, "Linear codes and

some their applications," 2018, vol. 1096: IOP Publishing, 1 ed., p. 012174.

[2] R. W. McEliece and L. Swanson, “Reed-Solomon codes and the exploration of the solar system,” in

Reed-Solomon Codes and Their Applications (S. B. Wicker and V. K. Bhargava, eds.), pp. 25–40.

Piscataway, NJ: IEEE Press, 1994.

[3] R. W. Hamming, "Error detecting and error correcting codes," The Bell System Technical Journal, vol.

29, no. 2, pp. 147-160, 1950, doi: 10.1002/j.1538-7305.1950.tb00463.x.

[4] S. B. Wicker and V. K. Bhargava, Reed-Solomon codes and their applications. John Wiley & Sons,

1999.

[5] M. Greferath, "Golay Codes," Wiley Encyclopedia of Telecommunications, 2003. [Online]. Available:

https://doi.org/10.1002/0471219282.eot371. [Accessed Oct. 15, 2021].

[6] S. Reed and G. Solomon, "Polynomial codes over certain finite fields," Journal of the society for

industrial and applied mathematics, vol. 8, no. 2, pp. 300-304, 1960.

[7] C. E. Shannon, "A mathematical theory of communication," The Bell System Technical Journal, vol.

27, no. 3, pp. 379-423, 1948, doi: 10.1002/j.1538-7305.1948.tb01338.x.

[8] D. V. Sarwate and N. R. Shanbhag, "High-speed architectures for Reed-Solomon decoders," IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 9, no. 5, pp. 641-655, 2001, doi:

10.1109/92.953498.

[9] R. E. Blahut, Algebraic Codes for Data Transmission. Cambridge: Cambridge University Press, 2003.

http://jst.tnu.edu.vn/
mailto:jst@tnu.edu.vn
https://doi.org/10.1002/0471219282.eot371

TNU Journal of Science and Technology 227(07): 102 - 113

http://jst.tnu.edu.vn 113 Email: jst@tnu.edu.vn

[10] B. W. Stephen and K. B. Vijay, "Reed-Solomon Codes and the Compact Disc," in Reed-Solomon

Codes and Their Applications: IEEE, 1994, pp. 41-59.

[11] J. Uri. "45 years ago: Viking 1 Touches Down on Mars," NASA. [Online]. Available:

https://www.nasa.gov/feature/45-years-ago-viking-1-touches-down-on-mars. [Accessed Oct. 15,

2021].

[12] Viterbi, "Error bounds for convolutional codes and an asymptotically optimum decoding

algorithm," IEEE Transactions on Information Theory, vol. 13, no. 2, pp. 260-269, 1967, doi:

10.1109/TIT.1967.1054010.

http://jst.tnu.edu.vn/
mailto:jst@tnu.edu.vn

