ON THE SECOND MAIN THEOREM FOR HOLOMORPHIC CURVES INTO LINEAR PROJECTIVE SUBSPACE

Ha Tran Phuong ${ }^{1}$, Nguyen Thi Ngan ${ }^{1 *}$, Padaphet Inthavichit ${ }^{2}$

${ }^{1}$ TNU - University of Education,
${ }^{2}$ Luang Prabang teacher training college, Laos

ARTICLE INFO	ABSTRACT
Received: 16/5/2022	Value distribution theory for holomorphic curves which also known
Revised: 31/5/2022	as Nevanlinna-Cartan theory was originated by the work of H. Cartan in 1933. Since that time it had attracted the attention of many
Published: 31/5/2022	mathematicians and had many important publications and it had many
	applications in different areas of mathematics. Recently, J. M.
KEYWORDS	Anderson and A. Hinkkanen introduced the integrated reduced
Holomorphic curves	version of second main theorem for holomorphic curves with
Nevanlinna-Cartan theory	integrated reduced counting functions in the complex case. Our idea
Second main theorem	here is to consider the Anderson and A. Hinkkanen's result for the case of holomorphic curves into a linear projective subspace. The
Subspace	main result in this paper is Main Theorem, which is an improved of
Reduced counting function	second main theorem for holomorphic curves with reduced counting functions.

ĐỊNH LÝ CƠ BẢN THỨ HAI CHO ĐƯỜNG CONG CHỈNH HÌNH VÀO KHÔNG GIAN CON TUYẾN TÍNH XẠ ẢNH

Hà Trần Phương ${ }^{1}$, Nguyễn Thị Ngân ${ }^{1 *}$, Padaphet Inthavichit ${ }^{2}$
${ }^{1}$ Truờng Đại học Su phạm - ĐH Thái Nguyên
${ }^{2}$ Trường Cao đẳng Su phạm Luang Prabang

THÔNG TIN BÀI BÁO	TÓM TȦT
Ngày nhận bài: 16/5/2022	Lý thuyết phân bố giá trị cho đường cong chỉnh hình hay còn gọi
	là lý thuyết Nevanlinna-Cartan khởi nguồn bởi các công việc của H .
Ngà hoàn thiện: 31/5/2022	Cartan vào năm 1933. Từ đó đến nay lý thuyết này đã nhận được sự
Ngày đăng: 31/5/2022	quan tâm của nhiều nhà toán học trên thế giới và có nhiều công trình
	công bố quan trọng và có nhiều ứng dụng trong các lĩnh vực khác
TÙ̉ KHÓA	nhau của toán học. Gần đây J. M. Anderson và A. Hinkkanen giới
Đường cong chỉnh hình	một phiên bản mới của định lý cơ bản thứ hai cho đường cong chỉnh
Lý thuyết Nevanlinna-Cartan	hình với hàm đếm mới trong trường hợp phức. Y
Định lý cơ bản thứ hai	ở đây là xem xét kết quả của Anderson và A . Hinkkanen cho trường
Không gian con	hợp đường cong chỉnh hình vào một không gian con tuyên tính xạ ảnh. Kết quả chính của chúng tôi là Main Theorem, đinh lý này là
Hàm đếm rút gọn	một dạng định lý cơ bản thứ hai cho đường cong chỉnh hình với hàm đếm mới.

DOI: https://doi.org/10.34238/tnu-jst. 5990

[^0]
1. Introduction

Let $f: \mathbb{C} \rightarrow \mathbb{P}^{n}(\mathbb{C})$ be a holomorphic map and let $f=\left(f_{0}: \cdots: f_{n}\right)$ be a reduced representative of f, where f_{0}, \ldots, f_{n} are entire functions on \mathbb{C} without common zeros. The Nevanlinna-Cartan characteristic function $T_{f}(r)$ is defined by

$$
\begin{equation*}
T_{f}(r)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left\|f\left(r e^{i \theta}\right)\right\| d \theta \tag{1.1}
\end{equation*}
$$

where $\|f(z)\|=\max \left\{\left|f_{0}(z)\right|, \ldots,\left|f_{n}(z)\right|\right\}$.
Let H be a hyperplane in $\mathbb{P}^{n}(\mathbb{C})$ and let L be the linear form defining H. Let $n_{f}(r, H)$ be the number of zeros of $L \circ f$ in the disk $|z|<r$, counting multiplicity, and $n_{f}^{\Delta}(r, L)$ be the number of zeros of $L \circ f$ in the disk $|z|<r$, truncated multiplicity by a positive integer Δ. The counting function and truncated counting function are defined by

$$
\begin{gather*}
N_{f}(r, H)=\int_{0}^{r} \frac{n_{f}(t, H)-n_{f}(0, H)}{t} d t+n_{f}(0, H) \log r \tag{1.2}\\
N_{f}^{\Delta}(r, H)=\int_{0}^{r} \frac{n_{f}^{\Delta}(t, H)-n_{f}^{\Delta}(0, H)}{t} d t+n_{f}^{\Delta}(0, H) \log r \tag{1.3}
\end{gather*}
$$

Let X be a k-dimensional linear projective subspace of $\mathbb{P}^{n}(\mathbb{C}), 1 \leqslant k \leqslant n$. A collection of hypersurfaces $\left\{H_{1}, \ldots, H_{q}(q \geq k+1)\right\}$ in $\mathbb{P}^{n}(\mathbb{C})$, which are defined by linear forms $L_{j}, 1 \leqslant j \leqslant q$, is said to be in general position with X if for any subset $\left\{i_{0}, \ldots, i_{k}\right\}$ of $\{1, \ldots, q\}$ of cardinality $k+1$,

$$
\begin{equation*}
\left\{x \in X: L_{i_{j}}(x)=0, j=0, \ldots, k\right\}=\emptyset \tag{1.4}
\end{equation*}
$$

When $k=n$, we call the collection of hypersurfaces $\left\{H_{1}, \ldots, H_{q}\right\}$ in general position.
Năm 1933, in [1], H. Cartan showed the following
Theorem A ([1]). Let $f: \mathbb{C} \rightarrow \mathbb{P}^{n}(\mathbb{C})$ be an linearly non-degenerate holomorphic map, and let $\left\{H_{1}, \ldots, H_{q}\right\}$ be a collection of hyperplanes in $\mathbb{P}^{n}(\mathbb{C})$ in general position. Then we have for any $\varepsilon>0$,

$$
\begin{equation*}
(q-n-1-\varepsilon) T_{f}(r) \leqslant \sum_{j=1}^{q} N_{f}^{n}\left(r, H_{j}\right)+O(1) \tag{1.5}
\end{equation*}
$$

for all enough large $r>0$, outside a set of Lebesgue finite measure.
In 1983, Nochka ([2]) established a truncated defect relation for a linearly nondegenerate holomorphic map intersecting hyperplanes. In 2004, M.Ru ([3]) established a defect relation for algebraically non-degenerate holomorphic map intersecting hypersurfaces. The other results of the value distributions theory of for holomorphic curves with counting functions can be found in [4], [5], [6], [7], [8]. In 2014, J. M. Anderson and A. Hinkkanen ([9]) improved of Cartan's result and proved a version of second main theorem for holomorphic curves with integrated reduced counting functions in the complex case. Now we introduce this result.

Let g_{0}, \ldots, g_{p} be are entire functions on \mathbb{C} without common zeros and linearly independent over \mathbb{C}, we denote by $W\left(g_{0}, \ldots, g_{p}\right)$ the Wronskian determinant of g_{0}, \ldots, g_{p} and denote by $\mathcal{L}\left(g_{0}, \ldots, g_{p}\right)$ the set of all of non-trivial linear combinations of g_{0}, \ldots, g_{p}.

Let X be a k-dimensional linear projective subspace of $\mathbb{P}^{n}(\mathbb{C}), 1 \leqslant k \leqslant n$, and let $f=\left(f_{0}: \cdots: f_{n}\right): \mathbb{C} \rightarrow X$ be a linear non-degenerate holomorphic map, where f_{0}, \ldots, f_{n} have no common zeros. Then there are $k+1$ functions $f_{s_{0}}, \ldots, f_{s_{k}}$, which are linearly independent, and f_{s} can be written as a linear form of $f_{s_{0}}, \ldots, f_{s_{k}}$ for any $s \notin\left\{s_{0}, \ldots, s_{k}\right\}$. We denote $W_{f}=W\left(f_{s_{0}}, \ldots, f_{s_{k}}\right)$ the Wronskian determinant of $f_{s_{0}}, \ldots, f_{s_{k}}$. And it is easy to check from definition $\mathcal{L}\left(f_{0}, \ldots, f_{n}\right)=\mathcal{L}\left(f_{s_{0}}, \ldots, f_{s_{k}}\right)$.

For any $z \in \mathbb{C}$, from Lemma 1 , we have the possible orders of the zeros of the functions in $\mathcal{L}\left(f_{s_{0}}, \ldots, f_{s_{k}}\right)$ form the sequence

$$
\begin{equation*}
\left\{0=d_{0}(z)<d_{1}(z)<\cdots<d_{k}(z)\right\} . \tag{1.6}
\end{equation*}
$$

The integer numbers $d_{0}(z), d_{1}(z), \ldots, d_{k}(z)$ are said to be the characteristic exponents of $f_{s_{0}}, \ldots, f_{s_{k}}$ at z. Since $\mathcal{L}\left(f_{0}, \ldots, f_{n}\right)=\mathcal{L}\left(f_{s_{0}}, \ldots, f_{s_{k}}\right)$, the possible orders of the zeros of the functions in $\mathcal{L}\left(f_{0}, \ldots, f_{n}\right)$ also form the sequence $d_{0}(z), d_{1}(z), \ldots, d_{k}(z)$, which also are said to be the characteristic exponents of f_{0}, \ldots, f_{n} at z. From Lemma 2 , this characteristic exponents does not depend on the choice of $f_{s_{0}}, \ldots, f_{s_{k}} \in$ $\left\{f_{0}, \ldots, f_{n}\right\}$ as long as $f_{s_{0}}, \ldots, f_{s_{k}}$ are linearly independent.

Now let H be hyperplane in $\mathbb{P}^{n}(\mathbb{C})$, which is defined by a linear form L, obviously $L(f) \in \mathcal{L}\left(f_{0}, \ldots, f_{n}\right)=\mathcal{L}\left(f_{s_{0}}, \ldots, f_{s_{k}}\right)$. So for any $z \in \mathbb{C}$, there is an integer number $j \in\{0,1, \ldots, k\}$ such that $d_{j}(z)$ is the order of $L(f)$ at z, here $d_{0}(z), \ldots, d_{k}(z)$ are the characteristic exponents of f_{0}, \ldots, f_{n} at z_{0}. We say $\nu(H, z)=j$ the reduced multiplicity of zero of $L(f)$ at z and $\varepsilon(H, z)=d_{j}(z)-j$ is the excess of $L(f)$ at z. It is easy to see that

$$
\begin{equation*}
\nu(H, z) \leqslant \min \left\{d_{j}(z), k\right\}, \tag{1.7}
\end{equation*}
$$

and $\varepsilon(H, z) \geqslant 0, \varepsilon(H, z)=0$ when $W_{f}(z) \neq 0$ from Lemma 1 .
We denote the new non-integrated counting function of zeros of $L(f)$ by

$$
\begin{equation*}
\nu_{f}(r, H)=\sum_{|z| \leqslant r} \nu(H, z) . \tag{1.8}
\end{equation*}
$$

The integrated reduced counting function of f is defined by

$$
\begin{equation*}
\mathcal{N}_{f}(r, H)=\int_{0}^{r} \frac{\nu_{f}(t, H)-\nu_{f}(0, H)}{t} d t+\nu_{f}(0, H) \log r . \tag{1.9}
\end{equation*}
$$

Now let $\mathcal{H}=\left\{H_{1}, \ldots, H_{q}\right\}$ be a collection of $q \geq k+1$ hyperplanes in $\mathbb{P}^{n}(\mathbb{C})$ and let L_{j} is the linear form defining H_{j} for $j=1,2, \ldots, q$. We set

$$
\begin{equation*}
H=\frac{L_{1}(f) L_{2}(f) \ldots L_{q}(f)}{W_{f}} \tag{1.10}
\end{equation*}
$$

And for any $z \in \mathbb{C}$, we set

$$
\begin{equation*}
\mathcal{V}(\mathcal{H}, z)=\operatorname{ord}_{W_{f}}(z)-\sum_{j=1}^{q} \varepsilon\left(H_{j}, z\right) \tag{1.11}
\end{equation*}
$$

here $\operatorname{ord}_{W_{f}}(z)$ is order of W_{f} at z. It is easy to see that if W_{f} has a zero of order $m \geqslant 1$ at $z \in \mathbb{C}$, then $\mathcal{V}(\mathcal{H}, z) \geqslant 0$ by Lemma 3 and if $W_{f}(z) \neq 0$ then $\mathcal{V}(\mathcal{H}, z)=0$ by Lemma 2 .
For $r \geqslant 0$, we set $\mathcal{V}_{f}(r, \mathcal{H})=\sum_{|z| \leqslant r} \mathcal{V}(\mathcal{H}, z)$ and call

$$
\begin{equation*}
\mathcal{U}_{f}(r, \mathcal{H})=\int_{0}^{r} \frac{\mathcal{V}_{f}(t, \mathcal{H})-\mathcal{V}_{f}(0, \mathcal{H})}{t} d t-\mathcal{V}_{f}(0, \mathcal{H}) \log r \tag{1.12}
\end{equation*}
$$

the counting function of the unrealized excesses for \mathcal{H}.
In the case of $k=n$, năm 2014, J. M. Anderson and A. Hinkkanen showed
Theorem B ([9]). Let $f: \mathbb{C} \rightarrow \mathbb{P}^{n}(\mathbb{C})$ be a linearly non-degenerate holomorphic curve, and let $\mathcal{H}=\left\{H_{1}, \ldots, H_{q}\right\}$ be a collection of $q \geqslant n+1$ hyperplanes in $\mathbb{P}^{n}(\mathbb{C})$ in general position. Then we have

$$
\begin{align*}
(q-n-1) T_{f}(r) \leqslant & \sum_{j=1}^{q} \mathcal{N}_{f}\left(r, H_{j}\right)-\mathcal{U}_{f}(r, \mathcal{H})-N(r, H) \\
& +O(\log r)+O\left(\log T_{f}(f)\right) \tag{1.13}
\end{align*}
$$

as $r \rightarrow \infty$ outside a set of finite linear measure.
In this paper, we will prove an improved version of Theorem B in the case of f is holomorphic curve into a linear projective subspace of $\mathbb{P}^{n}(\mathbb{C})$. Our result is stated as follows:
Main Theorem. Let X be a k-dimension linear projective subspace of $\mathbb{P}^{n}(\mathbb{C})$ and let $f: \mathbb{C} \rightarrow X$ be a linearly non-degenerate holomorphic map. Let $\mathcal{H}=\left\{H_{1}, \ldots, H_{q}\right\}$ be a collection of $q \geqslant k+1$ hyperplanes in $\mathbb{P}^{n}(\mathbb{C})$ in general position with X. Then we have

$$
\begin{align*}
(q-k-1) T_{f}(r) \leqslant & \sum_{j=1}^{q} \mathcal{N}_{f}\left(r, H_{j}\right)-\mathcal{U}_{f}(r, \mathcal{H})-N(r, H) \\
& +O(\log r)+O\left(\log T_{f}(r)\right) \tag{1.14}
\end{align*}
$$

as $r \rightarrow \infty$ outside a set of finite linear measure.
Note that, when $X=\mathbb{P}^{n}(\mathbb{C})$ then $k=n, f: \mathbb{C} \rightarrow \mathbb{P}^{n}(\mathbb{C})$ is a linearly non-degenerate holomorphic map and hyperplanes $H_{j}, j=1, \ldots, q$ are in general position in $\mathbb{P}^{n}(\mathbb{C})$. Hence Theorem B is a special case of Main Theorem when $k=n$.

2. Some Preparations

Let f_{0}, \ldots, f_{p} are entire functions on \mathbb{C} without common zeros and linearly independent over \mathbb{C}. Set $W=W\left(f_{0}, \ldots, f_{p}\right)$ is wronskian of the functions f_{0}, \ldots, f_{p}. And let $\mathcal{L}\left(f_{0}, \ldots, f_{p}\right)$ be the set of all of non-trivial linear combinations of f_{0}, \ldots, f_{n}. In [9], Anderson and Hinkkanen showed a relationship between the wronskian of f_{0}, \ldots, f_{p}
and the possible orders of zeros of functions in $\mathcal{L}\left(f_{0}, \ldots, f_{p}\right)$ in the complex case as followings:

Lemma 1 ([9]). For $z_{0} \in \mathbb{C}$, the possible orders of zeros of functions in $\mathcal{L}\left(f_{0}, \ldots, f_{p}\right)$ at z_{0} form the sequence $\left\{d_{0}\left(z_{0}\right), d_{1}\left(z_{0}\right), \ldots, d_{p}\left(z_{0}\right)\right\}$ such that
i) If $W\left(z_{0}\right) \neq 0$ then $d_{0}\left(z_{0}\right)=0<d_{1}\left(z_{0}\right)<\cdots<d_{p}\left(z_{0}\right)=p$;
ii) If $W\left(z_{0}\right)=0$ then $d_{0}\left(z_{0}\right)=0<d_{1}\left(z_{0}\right)<\cdots<d_{p}\left(z_{0}\right)$ depend on z_{0}, furthermore the order of the zero of W at z_{0} is equal to

$$
\sum_{j=1}^{p} d_{j}-\frac{p(p+1)}{2}
$$

Lemma 2. Let X be a k-dimension linear projective subspace of $\mathbb{P}^{n}(\mathbb{C})$ and let $f=\left(f_{0}: \cdots: f_{n}\right): \mathbb{C} \rightarrow X$ be a linearly non-degenerate holomorphic map. Assume that $f_{s_{0}}, \ldots, f_{s_{k}}$ and $f_{t_{0}}, \ldots, f_{t_{k}}$ are two subset of $\left\{f_{0}, \ldots, f_{n}\right\}$, which are linearly independent. Let $d_{0}(z), d_{1}(z), \ldots, d_{k}(z)$ are characteristic exponents of the functions $f_{s_{0}}, \ldots, f_{s_{k}}$ at z and $t_{0}(z), t_{1}(z), \ldots, t_{k}(z)$ are characteristic exponents of the functions $f_{t_{0}}, \ldots, f_{t_{k}}$ at z. Then we have

$$
W\left(f_{s_{0}}, \ldots, f_{s_{k}}\right)=C . W\left(f_{t_{0}}, \ldots, f_{t_{k}}\right),
$$

where C is a non-zero constant, and

$$
\left\{d_{0}(z), d_{1}(z), \ldots, d_{k}(z)\right\}=\left\{t_{0}(z), t_{1}(z), \ldots, t_{k}(z)\right\}
$$

Proof. Since f is a linearly non-degenerate holomorphic map, we have the functions f_{s} can be written as a linear form of $f_{s_{0}}, \ldots, f_{s_{k}}$ for any $s \notin\left\{s_{0}, \ldots, s_{k}\right\}$ and the functions f_{t} can be written as a linear form of $f_{t_{0}}, \ldots, f_{t_{k}}$ for any $s \notin\left\{t_{0}, \ldots, t_{k}\right\}$. Obviously

$$
\mathcal{L}\left(f_{s_{0}}, \ldots, f_{s_{k}}\right)=\mathcal{L}\left(f_{0}, \ldots, f_{n}\right)=\mathcal{L}\left(f_{t_{0}}, \ldots, f_{t_{k}}\right)
$$

This implies that from properties of Wronskian

$$
W\left(f_{s_{0}}, \ldots, f_{s_{k}}\right)=C . W\left(f_{t_{0}}, \ldots, f_{t_{k}}\right)
$$

here C is a non-zero constant.
Now we prove $t_{j}\left(z_{0}\right) \in\left\{d_{0}(z), d_{1}(z), \ldots, d_{k}(z)\right\}$ for any $j \in\{0, \ldots, k\}$. Indeed since $t_{j}(z)$ is characteristic exponent the functions $f_{t_{0}}, \ldots, f_{t_{k}}$ at z_{0}, there is a $g(z) \in$ $\mathcal{L}\left(f_{t_{0}}, \ldots, f_{t_{k}}\right)$ such that

$$
\operatorname{ord}_{g}(z)=t_{j}(z)
$$

Since

$$
\mathcal{L}\left(f_{s_{0}}, \ldots, f_{s_{k}}\right)=\mathcal{L}\left(f_{t_{0}}, \ldots, f_{t_{k}}\right),
$$

we have $g(z) \in \mathcal{L}\left(f_{s_{0}}, \ldots, f_{s_{k}}\right)$, so $\operatorname{ord}_{g}(z) \in\left\{d_{0}(z), d_{1}(z), \ldots, d_{k}(z)\right\}$. This implies that $t_{j}(z) \in\left\{d_{0}(z), d_{1}(z), \ldots, d_{k}(z)\right\}$.

Similarly, we have $d_{j}(z) \in\left\{t_{0}(z), t_{1}(z), \ldots, t_{k}(z)\right\}$ for any $j \in\{0, \ldots, k\}$. This implies that $\left\{d_{0}(z), d_{1}(z), \ldots, d_{k}(z)\right\}=\left\{t_{0}(z), t_{1}(z), \ldots, t_{k}(z)\right\}$.

Lemma 3 ([9]). Let $f=\left(f_{0}, \ldots, f_{p}\right): \mathbb{C} \rightarrow \mathbb{P}^{p}(\mathbb{C})$ be a linearly non-degenerate holomorphic map and let $\mathcal{H}=\left\{H_{1}, \ldots, H_{q}\right\}$ be a collection of $q \geqslant p+1$ hyperplanes in $\mathbb{P}^{p}(\mathbb{C})$ in general position. Assuming that the Wronskian of f_{0}, \ldots, f_{p} has a zero of order $m \geqslant 1$ at $z_{0} \in \mathbb{C}$, then

$$
\sum_{j=1}^{q} \varepsilon\left(H_{j}, z_{0}\right) \leqslant m .
$$

3. Proof of Main Theorem

Let $\left(f_{0}: \cdots: f_{n}\right)$ be a reduced representative of f, where f_{0}, \ldots, f_{n} are entire functions have no common zeros. Since f is a linear non-degenerate holomorphic map into a k-dimension linear projective subspace, there are $(k+1)$ functions $f_{s_{0}}, \ldots, f_{s_{k}}$, which are linearly independent, and $f_{s}, s \notin\left\{s_{0}, \ldots, s_{k}\right\}$, can be written as a linear form of $f_{s_{0}}, \ldots, f_{s_{k}}$.

Without loss of generality, we may assume (by rearranging the indices $\{0, \ldots, n\}$) that f_{0}, \ldots, f_{k} are linearly independent, and

$$
f_{s}=\sum_{i=0}^{k} b_{s, i} f_{i}, s=k+1, \ldots, n
$$

Set $f^{*}=\left(f_{0}: \cdots: f_{k}\right): \mathbb{C} \rightarrow \mathbb{P}^{k}(\mathbb{C})$, so we have f^{*} is a linear non-degenerate holomorphic map on $\mathbb{P}^{k}(\mathbb{C})$. And set

$$
W_{f}=W\left(f_{0}, \ldots, f_{k}\right)
$$

Now let $L_{j}, j=1, \ldots, q$, be the linear forms in $\mathbb{C}\left[z_{0}, \ldots, z_{n}\right]$ defining L_{j}. For any $j=1, \ldots, q$, we set

$$
L_{j}^{*}=L_{j}^{*}\left(z_{0}, \ldots, z_{k}\right)=L_{j}\left(z_{0}, \ldots, z_{k}, \sum_{i=0}^{k} b_{k+1, i} z_{i}, \ldots, \sum_{i=0}^{k} b_{n, i} z_{i}\right) .
$$

Then L_{j}^{*} is a linear form in $\mathbb{C}\left[z_{0}, \ldots, z_{k}\right]$. Let H_{j}^{*} be the hyperplane in $\mathbb{P}^{k}(\mathbb{C})$ which is defined by the linear form L_{j}^{*} for $j=1, \ldots, q$. Next we show that the hyperplanes $H_{j}^{*}, j=1, \ldots, q$, are in general position with $\mathbb{P}^{k}(\mathbb{C})$. Assume for the sake contradiction that there are $(k+1)$ hyperplanes $H_{i_{0}}^{*}, \ldots, H_{i_{k}}^{*} \in\left\{H_{1}^{*}, \ldots, H_{q}^{*}\right\}$ and $\mathbf{a}^{*}=\left(a_{0}, \ldots, a_{k}\right) \in \mathbb{P}^{k}(\mathbb{C})$ such that

$$
L_{i_{0}}^{*}\left(\mathbf{a}^{*}\right)=\cdots=L_{i_{k}}^{*}\left(\mathbf{a}^{*}\right)=0
$$

Set

$$
\mathbf{a}=\left(a_{0}, \ldots, a_{k}, \sum_{i=0}^{k} b_{k+1, i} a_{i}, \ldots, \sum_{i=0}^{k} b_{n, i} a_{i}\right),
$$

then $\mathbf{a} \in X$ and

$$
L_{i_{0}}(\mathbf{a})=\cdots=L_{i_{k}}(\mathbf{a})=0 .
$$

This is a contradiction with the assumption "in general position with X " of hyperplanes $H_{j}, j=1, \ldots, q$.

Set

$$
H^{*}(z)=\frac{L_{1}^{*}(f) L_{2}^{*}(f) \ldots L_{q}^{*}(f)}{W_{f}}
$$

Applying Theorem B to the linearly non-degenerate holomorphic map $f^{*}: \mathbb{C} \rightarrow \mathbb{P}^{k}(\mathbb{C})$ and collection of hyperplanes $\mathcal{H}^{*}=\left\{H_{j}^{*}, j=1, \ldots, q\right\}$ we have

$$
\begin{align*}
(q-k-1) T_{f^{*}}(r) \leqslant & \sum_{j=1}^{q} \mathcal{N}_{f^{*}}\left(r, H_{j}^{*}\right)-\mathcal{U}_{f^{*}}\left(r, \mathcal{H}^{*}\right) \tag{3.1}\\
& -N\left(r, H^{*}\right)+O(\log r)+O\left(\log T_{f^{*}}(r)\right)
\end{align*}
$$

where inequality (3.1) holds for all large positive real number r.
We now estimate both sides of the above inequality. For $z \in \mathbb{C}$ and for any $s=$ $k+1, \ldots, n$ we have

$$
\begin{aligned}
\left|f_{s}(z)\right| & =\left|\sum_{i=0}^{k} b_{s, i} f_{i}(z)\right| \leqslant \sum_{i=0}^{k}\left|b_{s, i} f_{i}(z)\right| \leqslant \sum_{i=0}^{k}\left|b_{s, i}\right| \cdot\left|f_{i}(z)\right| \\
& \leqslant \max \left\{\left|f_{0}(z)\right|, \ldots,\left|f_{k}(z)\right|\right\} \cdot \sum_{i=0}^{k}\left|b_{s, i}\right|=c_{s} \cdot \max \left\{\left|f_{0}(z)\right|, \ldots,\left|f_{k}(z)\right|\right\} .
\end{aligned}
$$

where c_{s} is a positive constant, depends only on the $b_{s, i}$ and not on z and f^{*}. Set

$$
c=\max \left\{1, c_{k+1}, \ldots, c_{n}\right\}
$$

then we have, for any $z \in \mathbb{C}$,

$$
\left|f_{s}(z)\right| \leqslant c \cdot \max \left\{\left|f_{0}(z)\right|, \ldots,\left|f_{k}(z)\right|\right\} \text { for any } s=(k+1), \ldots, n .
$$

Hence

$$
\|f(z)\|=\max \left\{\left|f_{0}(z)\right|, \ldots,\left|f_{n}(z)\right|\right\} \leqslant c \max \left\{\left|f_{0}(z)\right|, \ldots,\left|f_{k}(z)\right|\right\}=c\left\|f^{*}(z)\right\|
$$

where c is a positive constant, depends only on the $b_{s, i}$ and not on z and f^{*}. This implies

$$
\begin{aligned}
T_{f}(r) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left\|f\left(r e^{i \theta}\right)\right\| d \theta \leqslant \frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left\|f^{*}\left(r e^{i \theta}\right)\right\| d \theta+O(1) \\
& =T_{f^{*}}(r)+O(1)
\end{aligned}
$$

Obviously $T_{f^{*}}(r) \leqslant T_{f}(r)$, so we have

$$
\begin{equation*}
T_{f^{*}}(r)=T_{f}(r)+O(1) \tag{3.2}
\end{equation*}
$$

For any $z \in \mathbb{C}$, let $d_{0}(z), \ldots, d_{k}(z)$ are the characteristic exponents of f_{0}, \ldots, f_{n} at z, of course it is also a characteristic exponents of f_{0}, \ldots, f_{k} at z_{0} by definition. For any $j \in\{1, \ldots, q\}$, by the construction of f^{*} and linear form L_{j}^{*}, we have

$$
L_{j} \circ f(z)=L_{j}^{*} \circ f^{*}(z) .
$$

So $\operatorname{ord}_{L_{j}(f)}(z)=\operatorname{ord}_{L_{j}^{*}\left(f^{*}\right)}(z)$, this implies that

$$
\begin{align*}
& \nu\left(H_{j}, z\right)=\nu\left(H_{j}^{*}, z\right) \tag{3.3}\\
& \varepsilon\left(H_{j}, z\right)=\varepsilon\left(H_{j}^{*}, z\right) . \tag{3.4}
\end{align*}
$$

Since (3.3) we have

$$
\begin{equation*}
\mathcal{N}_{f}\left(r, H_{j}\right)=\mathcal{N}_{f^{*}}\left(r, H_{j}^{*}\right) \tag{3.5}
\end{equation*}
$$

for any $j=1, \ldots, q$. Furthemore, since $W_{f}=W\left(f_{0}, \ldots, f_{k}\right)$ so from (3.4) we have $\mathcal{V}(\mathcal{H}, z)=\mathcal{V}\left(\mathcal{H}^{*}, z\right)$ for any $z \in \mathbb{C}$. This implies that

$$
\begin{equation*}
\mathcal{U}_{f}\left(r, H_{j}\right)=\mathcal{U}_{f^{*}}\left(r, H_{j}^{*}\right) \tag{3.6}
\end{equation*}
$$

Combining (3.1), (3.2), (3.5), (3.6) we have the conclusion of the theorem.

4. Conclusion

In this paper, we have stated and proved a new result about second main theorem for holomorphic curves from \mathbb{C} into a linear projective subspace for the reduced counting function intersecting hyperplanes in general position with respect to subspace. Obviously reduced counting functions is less than truncated counting functions by k which is dimension of subspace, so we can replace the reduced counting functions by truncated counting functions by k on the right. Hence our theorem can be used to prove of the unique problem for holomorphic curves.

References

[1] H. Cartan, Sur les zeros des combinaisions linearires de p fonctions holomorpes donnees, Mathematica (Cluj). 7, 80-103, 1933.
[2] E.I. Nochka, On the theory of meromorphic curves, Dokl. Akad. Nauk SSSR. 269, No 3, 547-552, 1983.
[3] M. Ru, A defect relation for holomorphic curves intersecting hypersurfaces Amer. Journal of Math. 126, 215-226, 2004.
[4] G G. Gundersen and W. K. Hayman, The Strength of Cartan's Version of Nevanlinna theory, Bull. London Math. Soc. 36, p433-454 (2004).
[5] H. T. Phuong, L. Q. Ninh and P. Inthavichit, On the Nevanlinna-Cartan Second main theorem for non-Archimedean holomorphic curves, p-Adic Numbers, Ultrametric Analysis and App. Vol. 11, pages 299-306, 2019.
[6] H. T. Phuong and M. V. Tu, On defect and truncated defect relations for holomorphic curves into linear subspaces, East-West J. of Mathematics Vol. 9, No 1, pp. 39-36, 2007.
[7] P. Vojta, On Cartan's theorem and Cartan's conjecture, American Journal of Mathematics 119, 1-17 1997.
[8] Q.M. Yan and Z.H. Chen, Weak Cartan-type Second Main Theorem for Holomorphic Curves, to appear in Acta Mathematica Sinica.
[9] J. M. Anderson and A. Hinkkanen, A new counting function for the zeros of holomorphic curves, Analysis and Mathematical Physics, Vol. 4, Issu. 1-2, pp 35-62 (2014).

[^0]: * Corresponding author. Email: ngannt@tnue.edu.vn

