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công bố quan trọng và có nhiều ứng dụng trong các lĩnh vực khác 
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một phiên bản mới của định lý cơ bản thứ hai cho đường cong chỉnh 

hình với hàm đếm mới trong trường hợp phức. Ý tưởng của chúng tôi 
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hợp đường cong chỉnh hình vào một không gian con tuyến tính xạ 

ảnh. Kết quả chính của chúng tôi là Main Theorem, định lý này là 

một dạng định lý cơ bản thứ hai cho đường cong chỉnh hình với hàm 

đếm mới. 
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1. Introduction

Let f : C→ Pn(C) be a holomorphic map and let f = (f0 : · · · : fn) be a reduced

representative of f , where f0, . . . , fn are entire functions on C without common zeros.

The Nevanlinna-Cartan characteristic function Tf (r) is defined by

Tf (r) =
1

2π

2π∫
0

log ‖f(reiθ)‖dθ, (1.1)

where ‖f(z)‖ = max{|f0(z)|, . . . , |fn(z)|}.
Let H be a hyperplane in Pn(C) and let L be the linear form defining H. Let

nf (r,H) be the number of zeros of L◦f in the disk |z| < r, counting multiplicity, and

n∆
f (r, L) be the number of zeros of L ◦ f in the disk |z| < r, truncated multiplicity

by a positive integer ∆. The counting function and truncated counting function are

defined by

Nf (r,H) =

r∫
0

nf (t,H)− nf (0, H)

t
dt+ nf (0, H) log r; (1.2)

N∆
f (r,H) =

r∫
0

n∆
f (t,H)− n∆

f (0, H)

t
dt+ n∆

f (0, H) log r. (1.3)

Let X be a k-dimensional linear projective subspace of Pn(C), 1 6 k 6 n. A

collection of hypersurfaces {H1, . . . , Hq (q ≥ k + 1)} in Pn(C), which are defined by

linear forms Lj, 1 6 j 6 q, is said to be in general position with X if for any subset

{i0, . . . , ik} of {1, . . . , q} of cardinality k + 1,

{x ∈ X : Lij(x) = 0, j = 0, . . . , k} = ∅. (1.4)

When k = n, we call the collection of hypersurfaces {H1, . . . , Hq} in general position.

N«m 1933, in [1], H. Cartan showed the following

Theorem A ([1]). Let f : C→ Pn(C) be an linearly non-degenerate holomorphic

map, and let {H1, . . . , Hq} be a collection of hyperplanes in Pn(C) in general position.

Then we have for any ε > 0,

(q − n− 1− ε)Tf (r) 6
q∑
j=1

Nn
f (r,Hj) +O(1) (1.5)

for all enough large r > 0, outside a set of Lebesgue finite measure.

In 1983, Nochka ([2]) established a truncated defect relation for a linearly non-

degenerate holomorphic map intersecting hyperplanes. In 2004, M.Ru ([3]) established

a defect relation for algebraically non-degenerate holomorphic map intersecting hy-

persurfaces. The other results of the value distributions theory of for holomorphic

curves with counting functions can be found in [4], [5], [6], [7], [8]. In 2014, J. M.

Anderson and A. Hinkkanen ([9]) improved of Cartan's result and proved a version

of second main theorem for holomorphic curves with integrated reduced counting

functions in the complex case. Now we introduce this result.
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Let g0, . . . , gp be are entire functions on C without common zeros and linearly inde-

pendent over C, we denote by W (g0, . . . , gp) the Wronskian determinant of g0, . . . , gp
and denote by L(g0, . . . , gp) the set of all of non-trivial linear combinations of g0, . . . , gp.

Let X be a k-dimensional linear projective subspace of Pn(C), 1 6 k 6 n, and let

f = (f0 : · · · : fn) : C → X be a linear non-degenerate holomorphic map, where

f0, . . . , fn have no common zeros. Then there are k + 1 functions fs0 , . . . , fsk , which

are linearly independent, and fs can be written as a linear form of fs0 , . . . , fsk for

any s /∈ {s0, . . . , sk}. We denote Wf = W (fs0 , . . . , fsk) the Wronskian determinant of

fs0 , . . . , fsk . And it is easy to check from definition L(f0, . . . , fn) = L(fs0 , . . . , fsk).

For any z ∈ C, from Lemma 1, we have the possible orders of the zeros of the

functions in L(fs0 , . . . , fsk) form the sequence

{0 = d0(z) < d1(z) < · · · < dk(z)}. (1.6)

The integer numbers d0(z), d1(z), . . . , dk(z) are said to be the characteristic exponents

of fs0 , . . . , fsk at z. Since L(f0, . . . , fn) = L(fs0 , . . . , fsk), the possible orders of the

zeros of the functions in L(f0, . . . , fn) also form the sequence d0(z), d1(z), . . . , dk(z),

which also are said to be the characteristic exponents of f0, . . . , fn at z. From Lemma

2, this characteristic exponents does not depend on the choice of fs0 , . . . , fsk ∈
{f0, . . . , fn} as long as fs0 , . . . , fsk are linearly independent.

Now let H be hyperplane in Pn(C), which is defined by a linear form L, obviously

L(f) ∈ L(f0, . . . , fn) = L(fs0 , . . . , fsk). So for any z ∈ C, there is an integer number

j ∈ {0, 1, . . . , k} such that dj(z) is the order of L(f) at z, here d0(z), . . . , dk(z)

are the characteristic exponents of f0, . . . , fn at z0. We say ν(H, z) = j the reduced

multiplicity of zero of L(f) at z and ε(H, z) = dj(z)− j is the excess of L(f) at z. It

is easy to see that

ν(H, z) 6 min{dj(z), k}, (1.7)

and ε(H, z) > 0, ε(H, z) = 0 when Wf (z) 6= 0 from Lemma 1.

We denote the new non-integrated counting function of zeros of L(f) by

νf (r,H) =
∑
|z|6r

ν(H, z). (1.8)

The integrated reduced counting function of f is defined by

Nf (r,H) =

r∫
0

νf (t,H)− νf (0, H)

t
dt+ νf (0, H) log r. (1.9)

Now let H = {H1, . . . , Hq} be a collection of q ≥ k + 1 hyperplanes in Pn(C) and

let Lj is the linear form defining Hj for j = 1, 2, . . . , q. We set

H =
L1(f)L2(f) . . . Lq(f)

Wf

. (1.10)
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And for any z ∈ C, we set

V(H, z) = ordWf
(z)−

q∑
j=1

ε(Hj, z), (1.11)

here ordWf
(z) is order of Wf at z. It is easy to see that if Wf has a zero of order

m > 1 at z ∈ C, then V(H, z) > 0 by Lemma 3 and if Wf (z) 6= 0 then V(H, z) = 0

by Lemma 2.

For r > 0, we set Vf (r,H) =
∑
|z|6r V(H, z) and call

Uf (r,H) =

r∫
0

Vf (t,H)− Vf (0,H)

t
dt− Vf (0,H) log r (1.12)

the counting function of the unrealized excesses for H.
In the case of k = n, n«m 2014, J. M. Anderson and A. Hinkkanen showed

Theorem B ([9]). Let f : C → Pn(C) be a linearly non-degenerate holomorphic

curve, and let H = {H1, . . . , Hq} be a collection of q > n + 1 hyperplanes in Pn(C)

in general position. Then we have

(q − n− 1)Tf (r) 6
q∑
j=1

Nf (r,Hj)− Uf (r,H)−N(r,H)

+O(log r) +O(log Tf (f)), (1.13)

as r →∞ outside a set of finite linear measure.

In this paper, we will prove an improved version of Theorem B in the case of f is

holomorphic curve into a linear projective subspace of Pn(C). Our result is stated as

follows:

Main Theorem. Let X be a k-dimension linear projective subspace of Pn(C) and

let f : C→ X be a linearly non-degenerate holomorphic map. Let H = {H1, . . . , Hq}
be a collection of q > k + 1 hyperplanes in Pn(C) in general position with X. Then

we have

(q − k − 1)Tf (r) 6
q∑
j=1

Nf (r,Hj)− Uf (r,H)−N(r,H)

+O(log r) +O(log Tf (r)), (1.14)

as r →∞ outside a set of finite linear measure.

Note that, whenX = Pn(C) then k = n, f : C→ Pn(C) is a linearly non-degenerate

holomorphic map and hyperplanes Hj, j = 1, . . . , q are in general position in Pn(C).

Hence Theorem B is a special case of Main Theorem when k = n.

2. Some Preparations

Let f0, . . . , fp are entire functions on C without common zeros and linearly inde-

pendent over C. Set W = W (f0, . . . , fp) is wronskian of the functions f0, . . . , fp. And

let L(f0, . . . , fp) be the set of all of non-trivial linear combinations of f0, . . . , fn. In [9],

Anderson and Hinkkanen showed a relationship between the wronskian of f0, . . . , fp
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and the possible orders of zeros of functions in L(f0, . . . , fp) in the complex case as

followings:

Lemma 1 ([9]). For z0 ∈ C, the possible orders of zeros of functions in L(f0, . . . , fp)

at z0 form the sequence {d0(z0), d1(z0), . . . , dp(z0)} such that

i) If W (z0) 6= 0 then d0(z0) = 0 < d1(z0) < · · · < dp(z0) = p;

ii) If W (z0) = 0 then d0(z0) = 0 < d1(z0) < · · · < dp(z0) depend on z0, furthermore

the order of the zero of W at z0 is equal to
p∑
j=1

dj −
p(p+ 1)

2
.

Lemma 2. Let X be a k-dimension linear projective subspace of Pn(C) and let

f = (f0 : · · · : fn) : C → X be a linearly non-degenerate holomorphic map. Assume

that fs0 , . . . , fsk and ft0 , . . . , ftk are two subset of {f0, . . . , fn}, which are linearly

independent. Let d0(z), d1(z), . . . , dk(z) are characteristic exponents of the functions

fs0 , . . . , fsk at z and t0(z), t1(z), . . . , tk(z) are characteristic exponents of the functions

ft0 , . . . , ftk at z. Then we have

W (fs0 , . . . , fsk) = C.W (ft0 , . . . , ftk),

where C is a non-zero constant, and

{d0(z), d1(z), . . . , dk(z)} = {t0(z), t1(z), . . . , tk(z)}.

Proof. Since f is a linearly non-degenerate holomorphic map, we have the functions

fs can be written as a linear form of fs0 , . . . , fsk for any s /∈ {s0, . . . , sk} and the

functions ft can be written as a linear form of ft0 , . . . , ftk for any s /∈ {t0, . . . , tk}.
Obviously

L(fs0 , . . . , fsk) = L(f0, . . . , fn) = L(ft0 , . . . , ftk).

This implies that from properties of Wronskian

W (fs0 , . . . , fsk) = C.W (ft0 , . . . , ftk),

here C is a non-zero constant.

Now we prove tj(z0) ∈ {d0(z), d1(z), . . . , dk(z)} for any j ∈ {0, . . . , k}. Indeed
since tj(z) is characteristic exponent the functions ft0 , . . . , ftk at z0, there is a g(z) ∈
L(ft0 , . . . , ftk) such that

ordg(z) = tj(z).

Since

L(fs0 , . . . , fsk) = L(ft0 , . . . , ftk),

we have g(z) ∈ L(fs0 , . . . , fsk), so ordg(z) ∈ {d0(z), d1(z), . . . , dk(z)}. This implies

that tj(z) ∈ {d0(z), d1(z), . . . , dk(z)}.
Similarly, we have dj(z) ∈ {t0(z), t1(z), . . . , tk(z)} for any j ∈ {0, . . . , k}. This

implies that {d0(z), d1(z), . . . , dk(z)} = {t0(z), t1(z), . . . , tk(z)}. �
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Lemma 3 ([9]). Let f = (f0, . . . , fp) : C → Pp(C) be a linearly non-degenerate

holomorphic map and let H = {H1, . . . , Hq} be a collection of q > p + 1 hyperplanes

in Pp(C) in general position. Assuming that the Wronskian of f0, . . . , fp has a zero of

order m > 1 at z0 ∈ C, then
q∑
j=1

ε(Hj, z0) 6 m.

3. Proof of Main Theorem

Let (f0 : · · · : fn) be a reduced representative of f , where f0, . . . , fn are entire

functions have no common zeros. Since f is a linear non-degenerate holomorphic map

into a k−dimension linear projective subspace, there are (k+1) functions fs0 , . . . , fsk ,

which are linearly independent, and fs, s /∈ {s0, . . . , sk}, can be written as a linear

form of fs0 , . . . , fsk .

Without loss of generality, we may assume (by rearranging the indices {0, . . . , n})
that f0, . . . , fk are linearly independent, and

fs =
k∑
i=0

bs,ifi, s = k + 1, . . . , n.

Set f ∗ = (f0 : · · · : fk) : C → Pk(C), so we have f ∗ is a linear non-degenerate

holomorphic map on Pk(C). And set

Wf = W (f0, . . . , fk).

Now let Lj, j = 1, . . . , q, be the linear forms in C[z0, . . . , zn] defining Lj. For any

j = 1, . . . , q, we set

L∗j = L∗j(z0, . . . , zk) = Lj

(
z0, . . . , zk,

k∑
i=0

bk+1,izi, . . . ,
k∑
i=0

bn,izi

)
.

Then L∗j is a linear form in C[z0, . . . , zk]. Let H
∗
j be the hyperplane in Pk(C) which

is defined by the linear form L∗j for j = 1, . . . , q. Next we show that the hyper-

planes H∗j , j = 1, . . . , q, are in general position with Pk(C). Assume for the sake

contradiction that there are (k + 1) hyperplanes H∗i0 , . . . , H
∗
ik
∈ {H∗1 , . . . , H∗q } and

a∗ = (a0, . . . , ak) ∈ Pk(C) such that

L∗i0(a
∗) = · · · = L∗ik(a∗) = 0.

Set

a =

(
a0, . . . , ak,

k∑
i=0

bk+1,iai, . . . ,
k∑
i=0

bn,iai

)
,

then a ∈ X and

Li0(a) = · · · = Lik(a) = 0.

This is a contradiction with the assumption �in general position with X� of hyper-

planes Hj, j = 1, . . . , q.
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Set

H∗(z) =
L∗1(f)L∗2(f) . . . L∗q(f)

Wf

.

Applying Theorem B to the linearly non-degenerate holomorphic map f ∗ : C→ Pk(C)

and collection of hyperplanes H∗ = {H∗j , j = 1, . . . , q} we have

(q − k − 1)Tf∗(r) 6
q∑
j=1

Nf∗(r,H∗j )− Uf∗(r,H∗) (3.1)

−N(r,H∗) +O(log r) +O(log Tf∗(r))

where inequality (3.1) holds for all large positive real number r.

We now estimate both sides of the above inequality. For z ∈ C and for any s =

k + 1, . . . , n we have

|fs(z)| = |
k∑
i=0

bs,ifi(z)| 6
k∑
i=0

|bs,ifi(z)| 6
k∑
i=0

|bs,i|.|fi(z)|

6 max{|f0(z)|, . . . , |fk(z)|}.
k∑
i=0

|bs,i| = cs.max{|f0(z)|, . . . , |fk(z)|}.

where cs is a positive constant, depends only on the bs,i and not on z and f ∗. Set

c = max{1, ck+1, . . . , cn},

then we have, for any z ∈ C,

|fs(z)| 6 c.max{|f0(z)|, . . . , |fk(z)|} for any s = (k + 1), . . . , n.

Hence

‖f(z)‖ = max{|f0(z)|, . . . , |fn(z)|} 6 cmax{|f0(z)|, . . . , |fk(z)|} = c‖f ∗(z)‖,

where c is a positive constant, depends only on the bs,i and not on z and f ∗. This

implies

Tf (r) =
1

2π

2π∫
0

log ‖f(reiθ)‖dθ 6 1

2π

2π∫
0

log ‖f ∗(reiθ)‖dθ +O(1)

= Tf∗(r) +O(1).

Obviously Tf∗(r) 6 Tf (r), so we have

Tf∗(r) = Tf (r) +O(1). (3.2)

For any z ∈ C, let d0(z), . . . , dk(z) are the characteristic exponents of f0, . . . , fn at

z, of course it is also a characteristic exponents of f0, . . . , fk at z0 by definition. For

any j ∈ {1, . . . , q}, by the construction of f ∗ and linear form L∗j , we have

Lj ◦ f(z) = L∗j ◦ f ∗(z).

So ordLj(f)(z) = ordL∗
j (f∗)(z), this implies that

ν(Hj, z) = ν(H∗j , z) (3.3)

ε(Hj, z) = ε(H∗j , z). (3.4)
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Since (3.3) we have

Nf (r,Hj) = Nf∗(r,H∗j ) (3.5)

for any j = 1, . . . , q. Furthemore, since Wf = W (f0, . . . , fk) so from (3.4) we have

V(H, z) = V(H∗, z) for any z ∈ C. This implies that

Uf (r,Hj) = Uf∗(r,H∗j ) (3.6)

Combining (3.1), (3.2), (3.5), (3.6) we have the conclusion of the theorem.

4. Conclusion

In this paper, we have stated and proved a new result about second main theo-

rem for holomorphic curves from C into a linear projective subspace for the reduced

counting function intersecting hyperplanes in general position with respect to sub-

space. Obviously reduced counting functions is less than truncated counting functions

by k which is dimension of subspace, so we can replace the reduced counting functions

by truncated counting functions by k on the right. Hence our theorem can be used

to prove of the unique problem for holomorphic curves.
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