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1. Introduction

The pure triethoxysilane (TRIES) and pure N, gases are widely used in various plasma
processing such as doping plasma, plasma etching and plasma-enhanced chemical vapor
deposition (PECVD) [1] - [8]. Y. Shin et al. [3] studied the silicon dioxide (SiO,) films, which
were deposited by the low plasma-enhanced chemical vapor deposition using the TRIES and
tetraethoxysilane (TEOS). They suggested that TRIES is a good candidate for SiO, films. Y.
Kudoh et al. [4] have been proposed a new plasma chemical vapor deposition (CVD) technology
with reaction gases of TRIES and oxygen (O,). This technology improves the step coverage of
SiO; films and quality of SiO, films deposited on the step sidewalls. The gas can be used in the
form of pure. However, the gas mixtures are commonly used to improve the quality of plasma
processing. The database of electron transport coefficients in the pure TRIES and N, molecule
has been published. However, the electron transport coefficients in TRIES-N, mixtures both in
experiments and theories are not available. Therefore, the determination of the electron transport
coefficients in TRIES-N, mixtures with different mixing ratio are necessary.

For these purposes, the Boltzmann two-term calculation was applied to calculate and analyse
the electron transport coefficients in the TRIES-N, mixture for the first time. These coefficients
include the electron drift velocities W, the density-normalized longitudinal diffusion coefficients
ND,, the ratio of the longitudinal diffusion coefficient to the electron mobility D,/u and the first
ionization coefficients a/N. The calculations were carried out in the E/N range of 0.1-1000 Td at
a pressure of 1 Torr and a temperature of 300 K.

2. Analysis

As successfully used in many publications and also in our previous papers [9] — [13], the
electron swarm method was applied for TRIES-N, mixture to calculate the electron transport
coefficients. These coefficients can be derived by solving the Boltzmann equation in the two-
term approximation [14]. The Boltzmann two-term calculation suggested by Tagashira et al. [14]
has been presented briefly here.

The electron energy distribution function (EEDF), f(e, E/N), is normalized by:

[ r(eDaes
i f s,N £ =
The EEDF for gases can be found by solving the Boltzmann equation
X W trav fz(ﬂj 2)
at ' v A Jeoll

Where r is positions, v is velocities of electrons, and f = f(r, v, t) is the distribution function of
r and v, (0f/0t)eq is the collision term. After finding the EEDF from equation 2, the electron drift

velocity can be obtained as follows:
12 o
wz—l[ij eE® & df(eE/N) 3)
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where ¢ is the electron energy, m is the electron mass, e is the elementary charge and qm(g) is
the momentum-transfer cross section. The density-normalized longitudinal diffusion coefficient
is defined as
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where V is the speed of electron, gy is the total cross section, here F, ande,, (n =0, 1, 2) are
respectively the electron energy distributions of various orders and their eigenvalues. Vi, @,,, @,
and A, are given by
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The Townsend first ionization coefficient is defined as
12 »
al/N= %[%j j (e, E/ N)e"?, (¢)de (10)

where 1 is the ionization onset energy and gi(¢) is the ionization cross section.

The sets of electron collision cross section are required input data for this calculation.
Therefore, in order to obtain the accuracy electron transport coefficients, it is necessary to choose
the reliable sets of electron collision cross section. The electron collision cross section is set for
TRIES molecule determined by Tuoi et al. [12], and N, molecule determined by Nakamura [15].
The electron collision cross section set for N, [15] includes one momentum-transfer cross section
Qm, seven vibrational excitation cross sections Q,;.7, seven electronic excitation cross sections
Qex1.7 and one ionization cross section Q;. The electron collision cross sections for N, molecule
were shown in Figure 1 and their threshold energies were listed in Table 1. The electron collision
cross section set for the TRIES [12] molecule includes one momentum-transfer cross section Qy,,
the ionization cross section Q;, the dissociation cross section Qg, and two vibrational excitation
cross sections Q1. The electron collision cross sections for TRIES molecule were shown in
Figure 2 and their threshold energies were listed in Table 2. The reliability of these sets has been
proven in [12] for TRIES and in [15] for N,.
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Figure 1. Set of electron collision cross sections for the N, molecule
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Figure 2. Set of electron collision cross sections for the TRIES molecule

Table 1. Threshold of electron collision cross sections for TRIES molecule [12]

Electron collision cross sections Energy threshold (eV)
Vibrational excitation cross section Q.1 1.13
Vibrational excitation cross section Q. 2.71

lonization cross section 3.6
Dissociation cross section 10.6

Table 2. Threshold of electron collision cross sections for N, molecule [15]

Electron collision cross sections Energy threshold (eV)
Seven vibrational excitation cross sections Q. 0.288 10 2.18
Seven electronic excitation cross sections Qeyi-7 6.169 to 12.579
lonization cross section 15.5

3. Results and Discussions

The calculated electron transport coefficients in the E/N range of 0-1000 Td for the TRIES-N,
mixtures with various mixing ratios are shown in Figures 3-6. The solid line and symbols display
the calculated results for electron transport coefficients in 10%, 30%, 50%, 70%, and 90%
TRIES-N, mixtures. The solid curves display the calculated results for the electron transport
coefficients in the pure TRIES and pure N, molecules. It is clearly that the electron transport
coefficients in pure TRIES, pure N, and their mixtures gases are as functions of the reduced
electric field. Figure 3 shows the electron drift velocities W for the pure TRIES, pure N, and their
mixtures. At same the E/N, the W values in TRIES-N, mixtures lie between those of the pure
gases (except in the 10%TRIES-N, mixture). The values of W in 10%TRIES-N, mixture are
greater than those in pure gases for E/N range of 1.5-30 Td. Figure 4 displays the variation of the
density-normalized longitudinal diffusion coefficient ND_ with the reduced electric field for
various TRIES-N, mixtures. The curves of the ND, for mixtures are located between those of the
pure gases over all range of E/N. Figure 5 also displays the variation of the ratio of the
longitudinal diffusion coefficient to the mobility D,/u. The trends of D,/u are the same as the
trends of ND_ in the TRIES-N,. Figure 6 displays the variation of the Townsend first ionization
coefficient o/N. Unlike other coefficients, the variation of o/N in 10%TRIES-N, and 30%TRIES-
N, have different trends. The curves of /N in mixtures are higher than those in pure gases.
Therefore, the curves of the calculated electron transport coefficients for TRIES-N, mixtures lie
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between those of the pure gases over the all range of E/N (except for the first Townsend
ionization coefficient).
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Figure 3. The electron drift velocity in TRIES-N, mixtures
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Figure 4. The density-normalized longitudinal diffusion coefficient NDL in TRIES-N, mixtures
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Figure 5. Ratio of the longitudinal diffusion coefficient to the electron mobility D\ /u in TRIES-N, mixtures
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Figure 6. Townsend first ionization coefficient a/N as functions of E/N for the TRIES-N, mixtures
4. Conclusion

In this study, the electron transport coefficients for pure TRIES, pure N, and their mixtures in
the E/N range of 0.1-1000 Td by using the Boltzmann two-term calculation were calculated for
the first time. We observe the variations of the electron transport coefficients of a pure TRIES, N,
and TRIES-N, gas mixture with E/N, which were affected by the concentrations of gas mixtures.
At the same E/N, the values of the electron transport coefficients in the mixture lie between those
of the pure gases over the all range of E/N (except for the first Townsend ionization coefficient in
10%TRIES-N; and 30%TRIES-N, mixtures). These coefficients were produced from reliable sets
of electron collision cross section for TRIES and N, molecules. Therefore, these results are useful
and reliable data for expansion of choices of TRIES-N, mixtures in various industrial
applications, especially in plasma etching, plasma-enhanced chemical vapor deposition and
doping plasma.
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