

Vinh University Journal of Science Vol. 54, No. 1A/2025

 5

ENHANCING NETWORK PERFORMANCE

WITH IMPROVED RANDOM EARLY DETECTION

Vu Van Dien

University of Information and Communication Technology, Thai Nguyen University, Vietnam

ARTICLE INFORMATION ABSTRACT

Journal: Vinh University

 Journal of Science

Natural Science, Engineering

and Technology

p-ISSN: 3030-4563

e-ISSN: 3030-4180

Congestion has become an important issue affecting the

performance of network systems. Active Queue Management

(AQM) algorithms are crucial in ensuring network stability.

The first active queue management technique deployed to

control congestion was Random Early Detection (RED). RED

compares the average queue length with predefined thresholds

to mark or discard packets. DyRED [1] has improved RED

based on changing the upper threshold. The author proposes an

enhanced DyRED algorithm called ImRED (Improved

DyRED) to enhance network performance further. Through

simulation evaluation on the NS2, the author observed that

ImRED outperforms DyRED regarding packet loss rate and

average queue delay.

Keywords: Active queue management; congestion; average

queue size; RED; threshold.

1. Introduction

Volume: 54

Issue: 1A

*Correspondence:

vvdien@ictu.edu.vn

Received: 13 September 2024

Accepted: 18 December 2024

Published: 20 March 2025

Citation:

Vu Van Dien (2025). Enhancing

network performance with

improved random early detection.

Vinh Uni. J. Sci.

Vol. 54 (1A), pp. 5-13

 doi: 10.56824/vujs.2024a083a

The Internet is a global information-sharing system. It is

built upon the IP foundation to provide data transmission

services to users. This network has grown rapidly in

recent years, leading to increased congestion within the

network. A packet sent to a network node will be put in

the node's buffer or queue before being processed.

Retrieving packets from the queue depends on the

principle of serving requests in the queue. Network

congestion is detected when a node's queue becomes full,

causing incoming packets to be lost (dropped). Network

congestion is an important issue affecting the quality of

network services [1], [2]. Minimizing packet loss rate and

reducing queue delay, thereby decreasing average

latency, are important objectives in enhancing the quality

of service on the IP network.

TCP is a reliable, connection-oriented data transmission

protocol widely used on the Internet. It offers a control

mechanism to prevent network congestion. TCP uses

several techniques to avoid congestion and improve

network performance [3], [4].

OPEN ACCESS

Copyright © 2025. This is an

Open Access article distributed

under the terms of the Creative

Commons Attribution License (CC

BY NC), which permits non-

commercially to share (copy and

redistribute the material in any

medium) or adapt (remix,

transform, and build upon the

material), provided the original

work is properly cited.

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

Vu Van Dien / Enhancing network performance with improved random early detection

 6

Various algorithms have been proposed to address the issue of network congestion,

including DropTail and Active Queue Management (AQM) strategies. DropTail processes

packets in the queue using the First In, First Out (FIFO) principle. When the queue of a

node becomes full, the packets that come later will be dropped. AQM is extensively used

on routers. It detects congestion early, does not wait until the queue is complete, and drops

packets with a certain probability.

Along with dropping packets, the router notifies some sending nodes to adjust their

transmission rates. Instead of waiting for the queue to become whole, all nodes must reduce

their transmission rates. This results in a decrease in the number of packets lost and an

increase in the average throughput. RED [5], proposed by Floyd and Jacobson, is the first

dynamic queue management strategy. Then, many more strategies were proposed,

including BLUE, ERED, ENRED, and DyRED. RED avoids early congestion by using the

average queue size (avg). This parameter is computed based on the current queue size (q),

queue weight (wq), and previous avg. It is recalculated every time a packet arrives. Then,

avg is compared to the values of two thresholds. If avg is lower than the lower threshold,

no packets are dropped. If avg is higher than the upper threshold, packets are dropped. If

avg is between the two thresholds, discard the packet according to the probability

calculated based on avg and the value of the thresholds.

RED has shown better network performance than DropTail in terms of parameters

such as packet loss rate, average delay, and average throughput. However, when network

traffic suddenly increased, RED proved ineffective in reducing the number of lost packets

and the average queue delay [6], [7], [8], [9], [10]. DyRED [1] solved the above problem.

This research will focus on improving DyRED to achieve better network performance.

2. RED, DyRED, and some other active queue management strategies

2.1. RED

The RED algorithm [5] introduces a different network congestion control strategy

than the previous method, DropTail. If DropTail drops packets only when the node's queue

is complete, then RED will drop packets before the queue is full. This reduces the number

of dropped packets and avoids the phenomenon of source nodes simultaneously reducing

the window size. For each packet that arrives at the router, the average queue size is

calculated in cases where the queue is empty, and the queue has packets in it. Then, this

avg is compared with two thresholds (upper threshold maxthr, lower threshold minthr) in the

router's buffer to decide whether to drop the packet. If so, what is the probability?

Thus, two computations are performed within RED: calculating the average queue

size and determining the packet drop probability. The average queue size is calculated

based on the queue weight, the current queue size q, and the previous avg using the

following formula:

𝑎𝑣𝑔 = 𝑤𝑞 . 𝑞 + (1 − 𝑤𝑞). 𝑎𝑣𝑔 (1)

The probability of dropping a packet is calculated according to the following

formula:

Vinh University Journal of Science Vol. 54, No. 1A/2025

 7

𝑝𝑏 = {

1, 𝑖𝑓 𝑎𝑣𝑔 ≥ 𝑚𝑎𝑥𝑡ℎ𝑟
𝑚𝑎𝑥𝑝(𝑎𝑣𝑔−𝑚𝑖𝑛𝑡ℎ𝑟)

𝑚𝑎𝑥𝑡ℎ𝑟−𝑚𝑖𝑛𝑡ℎ𝑟
 , 𝑖𝑓 𝑚𝑖𝑛𝑡ℎ𝑟 ≤ 𝑎𝑣𝑔 ≤ 𝑚𝑎𝑥𝑡ℎ𝑟

0, 𝑖𝑓 𝑎𝑣𝑔 < 𝑚𝑖𝑛𝑡ℎ𝑟

 (2)

Where 𝑚𝑎𝑥𝑝 is the maximum value for 𝑝𝑏.

The general algorithm of RED [5] is described as follows:

For each packet arrival

 Calculate the average queue size avg

 if 𝑎𝑣𝑔 < 𝑚𝑖𝑛𝑡ℎ𝑟

 Accept incoming packet

 else if 𝑚𝑖𝑛𝑡ℎ𝑟 ≤ 𝑎𝑣𝑔 < 𝑚𝑎𝑥𝑡ℎ

 Calculate probability 𝑝𝑎

 With probability: mark the arriving packet

 else mark the arriving packet

 RED has detected congestion early, reduced packet loss, and avoided global

synchronization. Subsequently, many RED improvement algorithms have been proposed

to increase network performance when traffic suddenly increases.

2.2. DyRED

DyRED is an enhanced RED strategy proposed by Danladi et al [1]. It extends

RED by recomputing avg. When comparing avg with two thresholds, if avg is smaller than

the lower threshold or greater or equal to the upper threshold, it keeps the avg unchanged.

Moreover, if avg is between the lower and upper thresholds, it adjusts the upper threshold.

The upper threshold is calculated based on the average queue size. Through simulation and

evaluation, DyRED performs better than RED regarding network performance parameters

such as a smaller packet loss rate and higher throughput.

2.3. ERED

ERED (Enhanced RED) is another improved RED algorithm [6]. While DyRED

focuses on adjusting the upper threshold, ERED modifies the average queue size to

improve network performance. The calculation of avg uses two parameters, α and β. If q

is between the two thresholds, calculate avg as RED by comparing the current queue length

with the two thresholds. However, if q is outside the range of two thresholds, the formula

for calculating avg is adjusted. Through simulation, evaluated with the values of two

parameters, α and β, equal to 1.1, ERED gave better results than RED regarding packet

loss rate and network stability.

2.4. ENRED

ENRED (Enhanced Random Early Detection) was proposed by Ismail et al [7]. It

also focuses on adjusting the average queue size. ENRED uses the queue target parameter

(qt) and a queue weight to calculate the avg. This qt parameter is calculated as the

difference between the current queue size and the average of the upper and lower

thresholds. The average queue size (avg) is adjusted according to the following formula:

𝑎𝑣𝑔 = 𝑞𝑡. (1 − 𝑤𝑞) + 𝑞. (𝑞𝑡 − 𝑤𝑞) (3)

Vu Van Dien / Enhancing network performance with improved random early detection

 8

3. Improvement of the DyRED strategy

Although the RED strategy is more straightforward and practical than DropTail, it

performs poorly when network traffic increases dramatically. DyRED has been proposed

to improve network performance even in cases of increased network traffic [1]. The

DyRED strategy improves RED by adjusting the upper threshold when the queue size is

between two thresholds. The author proposed improving the DyRED strategy to improve

network system performance in this study. The improvement proposed here is an extension

of DyRED. ImRED combines adjustments to the lower threshold, upper threshold, and

average queue size to control congestion in a router's cache early before its queue becomes

full. This proposed improvement aims to reduce the packet loss rate and the average

queuing delay in the following congestion cases: Heavy congestion and light congestion.

ImRED extends DyRED by combining upper and lower threshold tuning based on the

average queue size and recalculating the avg parameter when comparing its current value

with the two thresholds. Avg is calculated each time a packet arrives based on the current

queue size and the previously calculated avg. The two thresholds and avg are adjusted

according to the following formulas:

𝒂𝒗𝒈 =
𝒂𝒗𝒈.(𝟏−𝒘𝒒)

𝒎
+ 𝒒. 𝒘𝒒 , 𝒘𝒊𝒕𝒉 𝒎 > 𝟏 (4)

𝒎𝒊𝒏𝒕𝒉𝒓 = 𝒏. 𝒂𝒗𝒈 , 𝒘𝒊𝒕𝒉 𝒎 > 𝟏 (5)

𝒎𝒂𝒙𝒕𝒉𝒓 =
𝒂𝒗𝒈

𝒑
 , 𝒘𝒊𝒕𝒉 𝒕 > 𝟎 (6)

Where m, n, and p are chosen logically to achieve a low average queue delay.

The algorithm checks whether the queue is empty for each incoming packet and

gives the formula to calculate avg. Then, compare the value of avg with the two thresholds.

If avg is smaller than the lower threshold, adjust avg and the lower threshold according to

avg. If avg is between the two thresholds, it adjusts the upper threshold and removes

packets with a certain probability. However, if avg is greater than or equal to the upper

threshold, it discards the packet.

The proposed method is described in detail as follows:

 Initialization :

 avg = 0 ; count = -1

 for each packet arrival

 calculate the new average queue size avg:

 if the queue is not empty

 avg = (1 - wq).avg + q.wq

 if (avg < minth) 𝒂𝒗𝒈 =
𝒂𝒗𝒈.(𝟏−𝒘𝒒)

𝒎
+ 𝒒. 𝒘𝒒

 else

 u = f(time – q_time)

 avg = (1 - wq)
u.avg

 if minthr ≤ avg < maxth

 count = count + 1

 𝒎𝒂𝒙𝒕𝒉𝒓 =
𝒂𝒗𝒈

𝒑

 calculate probability pa :

Vinh University Journal of Science Vol. 54, No. 1A/2025

 9

 𝒑𝒃 =
(𝒂𝒗𝒈−𝒎𝒊𝒏𝒕𝒉𝒓)

𝒎𝒂𝒙𝒕𝒉𝒓−𝒎𝒊𝒏𝒕𝒉𝒓
𝒎𝒂𝒙𝒑

 𝒑𝒂 =
𝒑𝒃

𝟏−𝒄𝒐𝒖𝒏𝒕.𝒑𝒃

 with probability pa :

 mark incoming packet

 count = 0

 else if avg ≥ maxthr

 mark incoming packet; count = 0

 else count = -1; 𝒎𝒊𝒏𝒕𝒉𝒓 = 𝒏. 𝒂𝒗𝒈

 When the queue becomes empty: q_time = q

Variables:

 q_time: start of the queue idle time.

 count: the number of packets arriving immediately after the last marked packet.

 pa: Probability of marking the current packet.

 f(t): Linear function of time t.

 time: current time.

4. Simulation results and performance evaluation

4.1. Simulation environment

In this study, the author conducted simulations of DyRED and the proposed

enhancement method, ImRED, using the NS2 network simulation software. The network's

topology diagram was designed as shown in Figure 1.

Figure 1: Topology diagram of the simulated network

The bandwidth and delay of the links are 35 Mbps and 3.5 ms, respectively, except

for the R-S5 link, which has a bandwidth of 3 Mbps and a delay of 30 ms. The queue size

for the R-S5 link is 50 packets. The full-duplex link between two network nodes, R and

S5, uses a queue type called DyRED or ImRED. Parameters such as bandwidth, latency,

queue size, start time of traffic generation, stop time of traffic generation, simulation

duration, etc., must be kept consistent across all simulations for comparison purposes.

Vu Van Dien / Enhancing network performance with improved random early detection

 10

4.2. Average queuing delay for packets

The average queue delay of the packets is determined by dividing the total queue

delay of the packets by the total number of packets. This delay is determined in two

scenarios: heavy congestion and light congestion. The collected comparison results are

presented as shown in Figures 2 and 3.

4.2.1. Scenarios 1: heavy congestion

Figure 2: Average queue delay of the packets under heavy congestion

4.2.2. Scenarios 2: light congestion

Figure 3: Average queue delay of the packets under light congestion

Through simulation evaluation, we see that in both scenarios, the average queue

delay of packets in ImRED is lower than in DyRED: for heavy congestion, it is 15.6%, and

for light congestion, it is 12.2%. The more severe the congestion, the greater the average

packet queue delay.

4.3. Packet drop rate

The packet drop rate is determined by the total number of dropped packets divided

by the total number of packets arriving in the queue.

0.0280000000000000

0.0290000000000000

0.0300000000000000

0.0310000000000000

0.0320000000000000

0.0330000000000000

0.0340000000000000

0.0350000000000000

0.0360000000000000

0.0370000000000000

0.0380000000000000

DyRED ImREDA
ve

ra
ge

_Q
u

eu
e_

D
el

ay
 (

m
s)

Algorithms

0.0210000000000000

0.0220000000000000

0.0230000000000000

0.0240000000000000

0.0250000000000000

0.0260000000000000

0.0270000000000000

DyRED ImREDA
ve

ra
ge

_Q
u

eu
e_

D
el

ay
 (

m
s)

Algorithms

Vinh University Journal of Science Vol. 54, No. 1A/2025

 11

This packet drop rate is determined in two scenarios: heavy congestion and light

congestion.

4.3.1. Scenarios 1: heavy congestion

The values of the total number of packets arriving in the queue, the total number

of dropped packets, and the packet drop rate of both strategies under heavy congestion are

shown in Table 1.

Table 1: Compare the dropped packets under heavy congestion

DyRED algorithm ImRED algorithm

Total

incoming

packets

Total

dropped

packets

Percentage of

dropped

packets

Total

incoming

packets

Total

dropped

packets

Percentage of

dropped

packets

321538 5145 1.600 331698 2143 0.646

321402 5095 1.585 332082 2458 0.740

321524 5114 1.590 331516 2239 0.675

321032 5136 1.599 331616 2308 0.695

320794 5105 1.591 331568 2127 0.641

4.3.2. Scenarios 2: light congestion

The values of the total number of packets arriving in the queue, the total number

of dropped packets, and the packet drop rate of both strategies under light congestion are

shown in Table 2.

Table 2: Compare the dropped packets under light congestion

DyRED algorithm ImRED algorithm

Total

incoming

packets

Total

dropped

packets

Percentage of

dropped

packets

Total

incoming

packets

Total

dropped

packets

Percentage of

dropped

packets

283158 2447 0.864 290930 1297 0.445

276668 2316 0.837 283432 1421 0.501

282854 2298 0.812 290216 1304 0.449

273412 2250 0.822 279650 1296 0.463

258942 2206 0.851 265864 1284 0.482

Under heavy congestion, the packet drop rate of ImRED decreases significantly

compared to DyRED, with a reduction of over 50%. Meanwhile, under light congestion,

this reduction is more than 40%. This result is achieved because ImRED reduces the value

of avg whenever it falls below the lower threshold, which corresponds to the scenario

where the packet drop probability is set to 0.

5. Conclusions

This study has presented an enhanced congestion control method called ImRED

aimed at improving the performance of DyRED. ImRED combines the adjustment of two

Vu Van Dien / Enhancing network performance with improved random early detection

 12

thresholds and the average queue size. Simulation results and evaluations show that

ImRED outperforms DyRED in reducing the packet drop rate and decreasing the average

queue delay for packets. This leads to a reduction in packet transmission delays between

nodes within the network. As a result, ImRED significantly enhances network system

performance.

REFERENCES

[1] S. B. Danladi and F. U. Ambursa, “DyRED: An Enhanced Random Early Detection

Based on a new Adaptive Congestion Control,” in Proc. 15th Int. Conf. Electron.

Comput. Comput., Abuja, Nigeria, 2019. DOI:

10.1109/ICECCO48375.2019.9043276

[2] A. M. Alakharasani, M. Othman, A. Abdullah, and K. Y. Lun, “An Improved Quality-

of-Service Performance Using RED’s Active Queue Management Flow Control in

Classifying Networks,” IEEE Access, vol. 5, pp. 24467-24478, 2017. DOI:

10.1109/ACCESS.2017.2767071

[3] R. J. La, P. Ranjan, and E. H. Abed, “Analysis of Adaptive Random Early Detection

(ARED),” IEEE/ACM Trans. Netw., vol. 12, pp. 1079-1092, 2004. DOI:

10.1109/TNET.2004.838600

[4] D. Que, Z. Chen, and B. Chen, “An Improvement Algorithm Based on RED and Its

Performance Analysis,” in Proc. 9th Int. Conf. Signal Process., Beijing, China, 2008.

[5] S. Floyd and V. Jacobson, “Random Early Detection Gateways for Congestion

Avoidance,” IEEE/ACM Trans. Netw., vol. 1, no. 4, pp. 397-413, 1993. DOI:

10.1109/90.251892

[6] D. Que, Z. Chen, and B. Chen, “An Improvement Algorithm Based on RED and Its

Performance Analysis,” in Proc. ICSP, 2008.

[7] A. H. Ismail, A. El-Sayed, I. Z. Morsi, and Z. Elsaghir, “Enhanced Random Early

Detection (ENRED),” Int. J. Comput. Appl., vol. 92, no. 9, pp. 20-24, 2014. DOI:

10.5120/16039-5015

 [8] R. Sharma and G. Dixit, “Experimental Study of RED Performance by Regulating

Upper Threshold Parameter,” Int. J. Comput. Sci. Inf. Technol., vol. 5, no. 5, pp. 6202-

6204, 2014.

[9] A. M. Alkharasani, M. Othman, A. Abdul, and K. Y. Lun, “An Improved Quality of

Service Performance Using RED’s Active Queue Management Flow Control in

Classifying Networks,” IEEE Access, vol. 4, pp. 1-12, 2016.

[10] H. P. Uguta and L. N. Onyejegbu, “An Intelligent Fuzzy Logic System for Network

Congestion Control,” Circ. Comput. Sci., vol. 2, no. 11, pp. 23-30, Dec. 2017. DOI:

10.22632/ccs-2017-252-69

https://doi.org/10.1109/ICECCO48375.2019.9043276
https://doi.org/10.1109/ACCESS.2017.2767071
https://doi.org/10.1109/TNET.2004.838600
https://doi.org/10.1109/90.251892
https://doi.org/10.5120/16039-5015
https://doi.org/10.22632/ccs-2017-252-69

Vinh University Journal of Science Vol. 54, No. 1A/2025

 13

TÓM TẮT

NÂNG CAO HIỆU NĂNG MẠNG

VỚI PHÁT HIỆN SỚM NGẪU NHIÊN CẢI TIẾN

Vũ Văn Diện

Trường Đại học Công nghệ thông tin và truyền thông, Đại học Thái Nguyên, Việt Nam

Ngày nhận bài 13/9/2024, ngày nhận đăng 18/12/2024

Tắc nghẽn đã trở thành vấn đề quan trọng làm ảnh hưởng đến hiệu năng hệ thống

mạng. Các thuật toán quản lý hàng đợi động (AQM - Active queue management) đóng

vai trò quan trọng để đảm bảo sự ổn định của mạng. RED (Random Early Detection) là

kỹ thuật quản lý hàng đợi động đầu tiên được triển khai để điều khiển tránh tắc nghẽn.

RED dựa trên việc so sánh chiều dài trung bình hàng đợi với các ngưỡng để đánh dấu

hoặc loại bỏ gói tin. DyRED đã cải tiến RED dựa trên việc thay đổi ngưỡng trên. Trong

bài báo này, tác giả đề xuất một thuật toán DyRED cải tiến có tên gọi là ImRED

(Improved DyRED) để nâng cao hiệu năng mạng. Qua mô phỏng đánh giá trên bộ mô

phỏng NS2, tác giả đã thấy được ImRED cho kết quả tốt hơn DyRED xét về tỉ lệ mất gói

và độ trễ hàng đợi trung bình.

Từ khóa: Quản lý hàng đợi động; tắc nghẽn; kích thước hàng đợi trung bình; RED;

ngưỡng.

