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ABSTRACT
Image enhancement is a meaningful problem in many
practical applications. It plays an important role in

preprocessing steps for recognition and information
extraction. Image restoration is often considered one of the
data processing steps before the training process for machine
learning models is performed. Image restoration problems are
often solved by iterative algorithms, where the choice of
iteration parameters plays an important role in improving the
algorithm's convergence rate. The problem is determining the
parameters that ensure the algorithm has the fastest
convergence rate. In this paper, we propose a parameter
selection method for the Gradient descent algorithm to
recover the original image data from the image obtained after
performing morphological transformation on the original
image. According to this method, we analyze the eigenvalues
of the morphological transformation matrix to derive a
formula to determine the optimal parameters for the Gradient
descent algorithm. We have proven that the iterative process
converges from the parameter determination formula. The
experimental results also show that the proposed theory is
consistent and confirms that the approximate solution
converges to the solution of the original problem.

Keywords: Image restoration; Gradient descent; iterative
method; convex optimization; optimal parameter.

1. Introduction

Advanced image enhancement is a significant issue in
many practical applications, playing a crucial role in
preprocessing steps for recognition and information
extraction. Image restoration, in particular, is often
considered one of the essential preprocessing stages for
image data before training machine learning models,
especially in applications that use image data [1], [2],
[3]. These steps are critical for preparing and improving
the quality of input data before feeding it into training
processes. Key reasons for performing image
preprocessing and restoration before training include:
Removing noise from image data, helping machine
learning models recognize and learn important patterns
more accurately [4], [5], [6], [7]; Ensuring that input

33


https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

Nguyen Dinh Dung / Gradient descent method and parameter selection for image restoration problem

data is complete and free from loss of important information helps the model learn and
predict more effectively with sufficient data [8]; Highlighting important features in
images allows machine learning models to identify objects and features more efficiently
[9]; Removing backgrounds and detecting objects focuses on critical areas of the image,
minimizing distractions and allowing machine learning models to concentrate on
essential features in the data [10]. Image data preprocessing and restoration are often
crucial steps in data preparation before training machine learning models and are
typically performed to improve model quality and performance. Image preprocessing is
often done through morphological transformations, which modify images by altering
orientation, dimensions, angles, edges, and more. These transformations can be linear or
nonlinear operators, depending on the goals of the image-processing task.

In practice, for various reasons, each morphological transformation of an image
may result in blurred images due to the impact of noise [11], [12]. This paper's problem
is restoring the original image from these morphologically transformed images.

Let A denote the morphological transformation operator that transforms image x
into a new morphology b, with e as the noise vector resulting from environmental
factors. Thus, the image restoration problem is reduced to finding a solution x* € R that
satisfies the operator equation.

Ax+e=Dhb 1)

In cases where the noise e has a negligible impact on image quality, the image
can be restored using the formula

x*=A"1h (2)

From (1) and (2), we have

x*=x+Ale (3)

It is evident that, in some cases, A~le can be pretty significant, even though e
itself is negligible compared to b. This discrepancy introduces differences between the
original image and the restored image. In this scenario, the problem is called an ill-posed
problem, where solving (1) directly using (2) becomes infeasible. Instead, regularization
methods must be used to approximate (1) as a well-posed problem and find a solution for
this approximation.

For removing noise, numerous traditional methods in image processing, typically
basic and widely used techniques, have been applied long before modern approaches like
machine learning and artificial intelligence became prevalent. These traditional methods
include Median Filtering [13], Gaussian Filtering [14], and Fourier Transform [15],
among others. Such techniques are usually applied directly to image data and do not
demand extensive computational resources, which makes them popular and
straightforward for basic image processing applications. However, they may be less
effective in handling complex images and substantial noise. In contrast, regularization
methods offer advantages in flexibility, performance, and quality over traditional
approaches. Notably, the adaptability and customizability of regularization methods
allow users to produce more visually appealing and realistic images. For this reason,
various regularization techniques and their applications in image restoration have been
chosen as the research topic.
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In essence, the problem addressed in this paper is: Given a blurred, noisy, or
otherwise degraded input image, the goal of image restoration is to generate a
reconstructed image that closely resembles the original image. This process may include
noise removal, reconstruction of lost information, contrast enhancement, colour balance
adjustment, and restoration of lost details.

In this paper, we focus on the iterative regularization technique to find a solution
to the image restoration problem [16], [17], [18]. This approach is widely used in image
restoration tasks, especially when dealing with ill-posed problems where direct solutions
may be unstable or prone to noise amplification. This technique helps approximate the
solution to the image restoration problem by applying a sequence of iterations that
gradually improve the image quality.

2. Method

From problem (1), we transform it into the equivalent problem of finding X such
that

~ . 1
J(®) = min,een - |Ax — bl|? 4)
Where J(x) is the loss function describes the error between the left and right sides
of (1). In this section, we will use an iterative approach to solve (4), which is often more
efficient for large and complex problems, as it does not require direct computation of the
matrix inverse. Specifically, we use the Gradient Descent method and propose optimal
parameter choices that ensure the stability and convergence of the solution. This is
necessary when the data is strongly noisy, or the problem is unstable.
The gradient of J(x) is
Vj(x) = A"(Ax — b), (5)
Applying the Gradient Descent method to minimize (4), we get the iterator
sequence
x() = xk-1) _ ,uAT(Ax(k‘l) — b),k =12, .. (6)
From the iteration sequence (6), we have
x ) — = x k=D — e — (AT Ax k=D — A*b)
— x(k—l) —x* — ‘u(ATAx(k_l) _ ATAx*)
= k=1 _ oy — ,uATA(x("‘l) —x").
Let e® = x®) — x*, we have
e® = etk=1) _ AT Ae®*=D = (] — pATA)e*® D = (I — uATA)*e©
e® = e — AT Ae®= = (1 — pATA)e* ™V = (I — pATA)ke®
If x(©) is selected, z(© is the eigenvector of the matrix AT A, we have
e®) = (1- u/l)ke(o) (7
where, A is the eigenvalue of the matrix AT A and satisfied || < ||ATA]|, so for
the sequence to converge, |1 — ud| < 1 or can be written equivalently 0 < uld < 2.
So, the iteration process (6) converges when the parameter u is chosen so that
2

Oo<u<
K< Tara)

(8)
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Now, we will choose the parameter u for the fastest convergence iteration. First,
we set M = E — uATA as the iteration matrix, R(M) = max|1 — u4;| as the spectral
radius (largest eigenvalue of M), where A; are the eigenvalues of ATA. Suppose the
corresponding smallest and largest eigenvalues are A,,;; and A,.,, then we have
R(M) = miax{ll — Uhminly |1 — A max|}.

The iteration process (6) converges fastest if R(M)is the smallest. The
equilibrium conditions must be ensured, that is

|1 — pdmin| = |1 — pldmaxl 9)
We need to choose u satisfy (9); that is, it is necessary to choose parameters that

satisfy
2

K= Amin+tAmax’ (10)
R(M) reaches its minimum value
Amax—Amin
ROD = i imas 4y

So, the following theorem shows how to choose optimal parameters and the
convergence rate of the iterative sequence (6).
Theorem 1. Let the smallest and largest eigenvalues of ATA be A4,,, and

Amax, Y€SPectivel, if selecting calibration parameter u = ;, then the iteration

AmintAmax
process (6) converges with a convergence rate of (R(M))*.
If with choice (10), then condition (8) can be replaced by condition

0<pu<—

Amax (12)

The above selection shows that the optimal parameters overcome the
disadvantages if u is small; the iterative sequence converges very slowly. Otherwise, u is

approaching 2 oscillating, unstable sequence. The convergence rate is a quantity that

Amax

depends on Apin, Amaxs I Amin < Amax, then the convergence process will be slow;
conversely, the convergence rate will be increased if A,,;,, is closer to 4,4,

In case, matrix A is a large and irregular matrix, the eigenvalues of A”A non-
uniform distribution with many very small and approximately zero values, then
determining the correction parameter depending on the number of iterations becomes
more efficient. To select parameters depending on the number of iterations, we choose a
balanced strategy between fast convergence in the early stage, stability, and reduced
oscillation when approaching the solution; the overall convergence rate is optimized. In
addition, the choice of the tuning parameter needs to ensure that the iteration steps are
enough to reach the exact solution gradually; this condition is important in ensuring two
conditions: the first is that the iteration process does not stop early and approaches the
solution of the problem; the second is that the total accumulated error does not cause
divergence. So, the conditions set for the tuning parameter are

k=1l = ® (14)
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Yoy < 00 (15)
To ensure these criteria, we choose a linear reduction parameter tuned to the
spectrum of eigenvalues of AT A, specifically

2
Hie = Amin+Amax+ck (16)

where c is a reduction factor and is adjusted to control the convergence rate.

By this choice, we can see that in the first iterations, if u; is large, it can help the
iteration sequence move faster to the solution. When close to the solution, if pu; is
smaller, it will help reduce oscillation and stabilize convergence. Suppose A,,;, and
Amax @re not known precisely. In that case, flexibly changing the calibration parameter
over the number of iterations will help adapt to the spectrum of eigenvalues of AT A. The
following theorem allows us to choose a parameter depending on the number of
iterations to obtain a convergent sequence.

Theorem 2. If u;, = 2 — » then we have (13), (14, (15) and lim [|x —
=0

First, we prove p, satisfies (13), (14), (15) in turn. Let a = Apin + Amax- The
parameter can be rewritten as

AmintAmax+

x*

2
a+ck

Hi = (17)

Then, Ilim U = ]lim
consider condition (14).

= 0. So condition (13) is satisfied. Now, let us
a+ck

We have
oo oo 2 oo 2
2k=1l1k - Zk=1a+ck ~ fl a+cx dx (18)
floo afcx dx =§(lim In(a + cx) —In(a + c)) = (19)
X—00

From (18) and (19), we deduce (14). Considering condition (15), we have

[ele] (o) 4 (o] 1
Yi=1()? = Zk:lm ~ 4 fl (atcx)? (20)
oo 1 1
fl (a+cx)? dx = c(a+c) (21)
From (20) and (21), we imply (15).
From (7), we have
e = 1 = ¥ le] @)
Combined with the hypothesis of the theorem, we have

From (22) and (23), we have||e®|| - 0 when k — oo.
Based on Theorem 2, we have the following implementation algorithm:

Algorithm: Gradient descent method and parameter selection for image restoration
problem

Input: A, b, ¢, maximum number of iterations

1: Initialize: x, d, k=1
2: Compute Ain + Amax
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3 Repeat

_ 2
4 Hie = Amin+Amax+ck
5: I =x— uAT(Ax — b)

2

6: MSE = ﬁzyﬁ hoalxiy = 1l
7 PSRN = 2010g10%
8: x =1
9: k++;
10: Until (PRSN > d or k > maximum number of iterations)
Output: x =1

The following section presents some experimental results for the proposed
algorithm.

3. Numerical results

The proposed algorithm has been applied to restore the original image from the
blurred image data. We use the image blurring operator as matrix A, the input image has
size 38x50 (Figure 1). The matrix code A has size NxN with N=1900 and is defined as a

diagonal matrix A = diag (0.5 + ﬁ) ,i =1,2,...,N. The image vector will be a column

vector of length 1900. Eigenvalues A,,;, = 0.25; A,,4x = 1. Therefore, y;, = PETIVTR

After performing the algorithm, we get the blurred image and the restored image
as in Figure 1, 2 and 3.

Original Image Blurred Image  Restored Image

Figure 1: Image size 38x50 and coefficient c=10
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Figure 4: Graph shows PSNR depending on the number of iterations corresponding
to each case of choosing parameter c for the result of restoring a 38x50 image

Original Image

Blurred Image

Restored Image

Figure 2: Image size 38x50 and coefficient c=1
Blurred Image

Original Image

Restored Image

Figure 3: Image size 38x50 and coefficient c¢=0.1
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PSNR (Peak Signal-to-Noise Ratio) PSNR (Peak Signal-to-Noise Ratio) was used
to measure the quality of the restored image compared to the original image. Usually, the
higher the PSNR, the better the quality of the restored image. Although there is no
specific threshold for all situations, below is a table of PSNR calculation according to the
number of iterations for the case ¢=0.1 and some commonly used PSNR benchmarks, in
which: Below 20 dB: Poor image quality, with much noise; 20-30 dB: Average image
quality, acceptable but still noisy; 30-40 dB: Good image quality, and little noticeable
noise; Above 40 dB: Excellent image quality with negligible noise. However, the specific
PSNR level considered reasonable depends on the application and user requirements. For
example, the quality requirements in medical applications or satellite imagery may be
higher than in general applications.

Table 1: Calculation results of the algorithm (c=0.1)

Iteration MSE PSNR (dB)

50 1.718057964894565e-05 95.78042548631602
100 3.066169479777623e-08 123.26484204446757
150 6.362211074625241e-10 140.094722875734
200 3.867337828200004e-11 152.25668249690958
250 4.312061004389293e-12 161.78395464514313
300 7.10305837927509¢e-13 169.61634976761414
350 1.536221802444018e-13 176.26626436433355
400 4.0614173483435126e-14 182.04402741294243
450 1.2528264066459461e-14 187.1518946214721
500 4.3669278354988115e-15 191.72904345704896

The above results show that as the noise level decreases, PSRN increases,
which means that MSE also decreases, which means that the restored image gradually
approaches the original image. Here are some experimental results to illustrate the
theory presented in the paper.

4. Conclusion

This paper proposes a method for selecting optimal parameters for the Gradient
Descent algorithm. With the proposed method of selecting optimal parameters, we prove
that the iteration sequence reduces oscillation when the approximate solution is close to
the exact solution and ensures the iteration sequence is stable and convergent. We present
the convergence rate and illustrate it with experimental results.
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TOM TAT

PHUONG PHAP GRADIENT DESCENT
VA LUA CHON THAM SO CHO BAI TOAN PHUC HOI ANH

Nguyén DPinh Diing
Trwong Pai hoc Cong nghé Thong tin va Truyén théng, Pai hoc Thai Nguyén, Viét Nam
Ngay nhan bai 15/10/2024, ngay nhan dang 24/12/2024

Xir Iy nang cao chat lugng hinh anh 1a mot bai toan co ¥ nghia trong nhiéu wng
dung thyuc té. N6 dong vai tro quan trong trong cac budc tién xir Iy cho viéc nhan dang va
trich xuat thong tin. Trong d6, khoi phuc anh thuong dugc coi la mét trong cac cong
doan tién xir ly dir liéu trude khi thuc hién qua trinh huan luyén cho cac mé hinh hoc
may. Bai toan khdi phuc anh thuong dugc xtr ly bang céc thuat toan lip, trong d6 viéc
lya chon tham sé ldp dong vai trd quan trong trong viéc nang cao toc do hoi tu cua thuat
toan. Bai toan dit ra & day 1a can xac dinh duoc tham sé dam bao tdc d6 hoi tu cua thuat
toan nhanh nhat. Trong bai béo nay, ching t6i dé xuat mot phuong phap lya chon tham
s6 cho thuat toan Gradient descent nham khdi phuc dir liéu anh gdc tir anh thu duoc sau
khi thuc hién phép bién d6i hinh théi 1én anh gdc ban dau. Theo phuong phap niy, ching
t6i phan tich gié tri riéng cua ma tran bién doi hinh thai dé tir d6 dua ra cong thiic Xac
dinh tham sb t6i vu cho thuét toan Gradient descent. Tir ¢ong thirc xac dinh tham sé,
chung t6i di chimg minh duoc qua trinh Iap hoi tu. Cac két qua thuc nghiém ciing cho
thay ly thuyét dua ra 1a phu hop va khing dinh nghiém xap xi hi tu vé nghiém caa bai
toan ban dau.

Tir khoa: Khoi phuc anh; Gradient descent; phuong phap 1ap; téi wu 16i; tham sé
to1 uu.
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