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Image enhancement is a meaningful problem in many 

practical applications. It plays an important role in 

preprocessing steps for recognition and information 

extraction. Image restoration is often considered one of the 

data processing steps before the training process for machine 

learning models is performed. Image restoration problems are 

often solved by iterative algorithms, where the choice of 

iteration parameters plays an important role in improving the 

algorithm's convergence rate. The problem is determining the 

parameters that ensure the algorithm has the fastest 

convergence rate. In this paper, we propose a parameter 

selection method for the Gradient descent algorithm to 

recover the original image data from the image obtained after 

performing morphological transformation on the original 

image. According to this method, we analyze the eigenvalues 

of the morphological transformation matrix to derive a 

formula to determine the optimal parameters for the Gradient 

descent algorithm. We have proven that the iterative process 

converges from the parameter determination formula. The 

experimental results also show that the proposed theory is 

consistent and confirms that the approximate solution 

converges to the solution of the original problem. 
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Advanced image enhancement is a significant issue in 

many practical applications, playing a crucial role in 

preprocessing steps for recognition and information 

extraction. Image restoration, in particular, is often 

considered one of the essential preprocessing stages for 

image data before training machine learning models, 

especially in applications that use image data [1], [2], 

[3]. These steps are critical for preparing and improving 

the quality of input data before feeding it into training 

processes. Key reasons for performing image 

preprocessing and restoration before training include: 

Removing noise from image data, helping machine 

learning models recognize and learn important patterns 

more accurately [4], [5], [6], [7]; Ensuring that input  
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data is complete and free from loss of important information helps the model learn and 

predict more effectively with sufficient data [8]; Highlighting important features in 

images allows machine learning models to identify objects and features more efficiently 

[9]; Removing backgrounds and detecting objects focuses on critical areas of the image, 

minimizing distractions and allowing machine learning models to concentrate on 

essential features in the data [10]. Image data preprocessing and restoration are often 

crucial steps in data preparation before training machine learning models and are 

typically performed to improve model quality and performance. Image preprocessing is 

often done through morphological transformations, which modify images by altering 

orientation, dimensions, angles, edges, and more. These transformations can be linear or 

nonlinear operators, depending on the goals of the image-processing task. 

In practice, for various reasons, each morphological transformation of an image 

may result in blurred images due to the impact of noise [11], [12]. This paper's problem 

is restoring the original image from these morphologically transformed images. 

Let 𝐴 denote the morphological transformation operator that transforms image 𝑥 

into a new morphology 𝑏, with 𝑒 as the noise vector resulting from environmental 

factors. Thus, the image restoration problem is reduced to finding a solution 𝑥∗ ∈ 𝑅𝑁 that 

satisfies the operator equation. 

𝐴𝑥 + 𝑒 = 𝑏                                                           (1) 

In cases where the noise 𝑒 has a negligible impact on image quality, the image 

can be restored using the formula 

𝑥∗ = 𝐴−1𝑏                                                           (2) 

From (1) and (2), we have 

𝑥∗ = 𝑥 + 𝐴−1𝑒                                                        (3) 

It is evident that, in some cases, 𝐴−1𝑒 can be pretty significant, even though 𝑒 

itself is negligible compared to 𝑏. This discrepancy introduces differences between the 

original image and the restored image. In this scenario, the problem is called an ill-posed 

problem, where solving (1) directly using (2) becomes infeasible. Instead, regularization 

methods must be used to approximate (1) as a well-posed problem and find a solution for 

this approximation. 

For removing noise, numerous traditional methods in image processing, typically 

basic and widely used techniques, have been applied long before modern approaches like 

machine learning and artificial intelligence became prevalent. These traditional methods 

include Median Filtering [13], Gaussian Filtering [14], and Fourier Transform [15], 

among others. Such techniques are usually applied directly to image data and do not 

demand extensive computational resources, which makes them popular and 

straightforward for basic image processing applications. However, they may be less 

effective in handling complex images and substantial noise. In contrast, regularization 

methods offer advantages in flexibility, performance, and quality over traditional 

approaches. Notably, the adaptability and customizability of regularization methods 

allow users to produce more visually appealing and realistic images. For this reason, 

various regularization techniques and their applications in image restoration have been 

chosen as the research topic. 
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In essence, the problem addressed in this paper is: Given a blurred, noisy, or 
otherwise degraded input image, the goal of image restoration is to generate a 
reconstructed image that closely resembles the original image. This process may include 
noise removal, reconstruction of lost information, contrast enhancement, colour balance 
adjustment, and restoration of lost details. 

In this paper, we focus on the iterative regularization technique to find a solution 
to the image restoration problem [16], [17], [18]. This approach is widely used in image 
restoration tasks, especially when dealing with ill-posed problems where direct solutions 
may be unstable or prone to noise amplification. This technique helps approximate the 
solution to the image restoration problem by applying a sequence of iterations that 
gradually improve the image quality. 

2. Method 

From problem (1), we transform it into the equivalent problem of finding 𝑥̃ such 

that 

𝐽(𝑥̃) = 𝑚𝑖𝑛𝑥∈𝑅𝑁
1

2
‖𝐴𝑥 − 𝑏‖2                                                (4) 

Where 𝐽(𝑥) is the loss function describes the error between the left and right sides 

of (1). In this section, we will use an iterative approach to solve (4), which is often more 
efficient for large and complex problems, as it does not require direct computation of the 
matrix inverse. Specifically, we use the Gradient Descent method and propose optimal 
parameter choices that ensure the stability and convergence of the solution. This is 
necessary when the data is strongly noisy, or the problem is unstable. 

The gradient of 𝐽(𝑥) is 

∇J(x) = A𝑇(𝐴𝑥 − 𝑏),                                                  (5) 

Applying the Gradient Descent method to minimize (4), we get the iterator 
sequence 

𝑥(𝑘) = 𝑥(𝑘−1) − 𝜇𝐴𝑇(𝐴𝑥(𝑘−1) − 𝑏), 𝑘 = 1,2, …                              (6) 

From the iteration sequence (6), we have 

𝑥(𝑘) − 𝑥∗ = 𝑥(𝑘−1) − 𝑥∗ − 𝜇(𝐴𝑇𝐴𝑥(𝑘−1) − 𝐴∗𝑏)

= 𝑥(𝑘−1) − 𝑥∗ − 𝜇(𝐴𝑇𝐴𝑥(𝑘−1) − 𝐴𝑇𝐴𝑥∗)

= 𝑥(𝑘−1) − 𝑥∗ − 𝜇𝐴𝑇𝐴(𝑥(𝑘−1) − 𝑥∗). 

Let 𝑒(𝑘) = 𝑥(𝑘) − 𝑥∗, we have 

𝑒(𝑘) = 𝑒(𝑘−1) − 𝜇𝐴𝑇𝐴𝑒(𝑘−1) = (𝐼 − 𝜇𝐴𝑇𝐴)𝑒(𝑘−1) = (𝐼 − 𝜇𝐴𝑇𝐴)𝑘𝑒(0) 

𝑒(𝑘) = 𝑒(𝑘−1) − 𝜇𝐴𝑇𝐴𝑒(𝑘−1) = (𝐼 − 𝜇𝐴𝑇𝐴)𝑒(𝑘−1) = (𝐼 − 𝜇𝐴𝑇𝐴)𝑘𝑒(0) 

If 𝑥(0) is selected, 𝑧(0) is the eigenvector of the matrix 𝐴𝑇𝐴, we have 

𝑒(𝑘) = (1 − 𝜇𝜆)𝑘𝑒(0)                                                      (7) 

where, 𝜆 is the eigenvalue of the matrix 𝐴𝑇𝐴 and satisfied |𝜆| < ‖𝐴𝑇𝐴‖, so for 

the sequence to converge, |1 − 𝜇𝜆| < 1 or can be written equivalently 0 < 𝜇𝜆 < 2.  

So, the iteration process (6) converges when the parameter 𝜇 is chosen so that 

0 < 𝜇 <
2

‖𝐴𝑇𝐴‖
                                                           (8) 
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Now, we will choose the parameter 𝜇 for the fastest convergence iteration. First, 

we set 𝑀 = 𝐸 − 𝜇𝐴𝑇𝐴 as the iteration matrix, 𝑅(𝑀) = 𝑚𝑎𝑥|1 − 𝜇𝜆𝑖| as the spectral 

radius (largest eigenvalue of 𝑀), where 𝜆𝑖 are the eigenvalues of 𝐴𝑇𝐴. Suppose the 

corresponding smallest and largest eigenvalues are 𝜆𝑚𝑖𝑛 and 𝜆𝑚𝑎𝑥, then we have 

𝑅(𝑀) = max
𝑖

{|1 − 𝜇𝜆𝑚𝑖𝑛|, |1 − 𝜇𝜆𝑚𝑎𝑥|}. 

The iteration process (6) converges fastest if 𝑅(𝑀) is the smallest. The 

equilibrium conditions must be ensured, that is  

|1 − 𝜇𝜆𝑚𝑖𝑛| = |1 − 𝜇𝜆𝑚𝑎𝑥|                                                 (9) 

We need to choose 𝜇 satisfy (9); that is, it is necessary to choose parameters that 

satisfy 

𝜇 =
2

𝜆𝑚𝑖𝑛+𝜆𝑚𝑎𝑥
,                                                       (10) 

𝑅(𝑀) reaches its minimum value 

𝑅(𝑀) =
𝜆𝑚𝑎𝑥−𝜆𝑚𝑖𝑛

𝜆𝑚𝑖𝑛+𝜆𝑚𝑎𝑥
                                                    (11) 

So, the following theorem shows how to choose optimal parameters and the 
convergence rate of the iterative sequence (6). 

Theorem 1. Let the smallest and largest eigenvalues of 𝐴𝑇𝐴 be 𝜆𝑚𝑖𝑛 and 

𝜆𝑚𝑎𝑥, respectivel, if selecting calibration parameter 𝜇 =
2

𝜆𝑚𝑖𝑛+𝜆𝑚𝑎𝑥
, then the iteration 

process (6) converges with a convergence rate of (𝑅(𝑀))𝑘. 

If with choice (10), then condition (8) can be replaced by condition 

0 < 𝜇 <
2

𝜆𝑚𝑎𝑥
                                                           (12) 

The above selection shows that the optimal parameters overcome the 

disadvantages if 𝜇 is small; the iterative sequence converges very slowly. Otherwise, 𝜇 is 

approaching 
2

𝜆𝑚𝑎𝑥
  oscillating, unstable sequence. The convergence rate is a quantity that 

depends on 𝜆𝑚𝑖𝑛, 𝜆𝑚𝑎𝑥, if 𝜆𝑚𝑖𝑛 ≪ 𝜆𝑚𝑎𝑥, then the convergence process will be slow; 

conversely, the convergence rate will be increased if 𝜆𝑚𝑖𝑛 is closer to 𝜆𝑚𝑎𝑥. 

In case, matrix 𝐴 is a large and irregular matrix, the eigenvalues of 𝐴𝑇𝐴 non-
uniform distribution with many very small and approximately zero values, then 
determining the correction parameter depending on the number of iterations becomes 
more efficient. To select parameters depending on the number of iterations, we choose a 
balanced strategy between fast convergence in the early stage, stability, and reduced 
oscillation when approaching the solution; the overall convergence rate is optimized. In 
addition, the choice of the tuning parameter needs to ensure that the iteration steps are 
enough to reach the exact solution gradually; this condition is important in ensuring two 
conditions: the first is that the iteration process does not stop early and approaches the 
solution of the problem; the second is that the total accumulated error does not cause 
divergence. So, the conditions set for the tuning parameter are 

lim
𝑘→∞

𝜇𝑘 = 0                                                          (13) 

∑ 𝜇𝑘 = ∞∞
𝑘=1                                                          (14) 
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∑ 𝜇𝑘
2 < ∞∞

𝑘=1                                                          (15) 

To ensure these criteria, we choose a linear reduction parameter tuned to the 

spectrum of eigenvalues of 𝐴𝑇𝐴, specifically 

𝜇𝑘 =
2

𝜆𝑚𝑖𝑛+𝜆𝑚𝑎𝑥+𝑐𝑘
                                               (16) 

where 𝑐 is a reduction factor and is adjusted to control the convergence rate. 

By this choice, we can see that in the first iterations, if 𝜇𝑘 is large, it can help the 

iteration sequence move faster to the solution. When close to the solution, if 𝜇𝑘 is 

smaller, it will help reduce oscillation and stabilize convergence. Suppose 𝜆𝑚𝑖𝑛 and 

𝜆𝑚𝑎𝑥 are not known precisely. In that case, flexibly changing the calibration parameter 

over the number of iterations will help adapt to the spectrum of eigenvalues of 𝐴𝑇𝐴. The 
following theorem allows us to choose a parameter depending on the number of 
iterations to obtain a convergent sequence. 

Theorem 2. If 𝑢𝑘 =
2

𝜆𝑚𝑖𝑛+𝜆𝑚𝑎𝑥+𝑐𝑘
 , then we have (13), (14, (15) and lim

𝑘→∞
‖𝑥(𝑘) −

𝑥∗‖ = 0  

First, we prove 𝜇𝑘 satisfies (13), (14), (15) in turn. Let 𝑎 = 𝜆𝑚𝑖𝑛 + 𝜆𝑚𝑎𝑥 . The 

parameter can be rewritten as 

𝜇𝑘 =
2

𝑎+𝑐𝑘
                                                          (17) 

Then, lim
𝑘→∞

𝜇𝑘 = lim
𝑘→∞

2

𝑎+𝑐𝑘
= 0. So condition (13) is satisfied. Now, let us 

consider condition (14). 
We have 

∑ 𝜇𝑘 = ∑
2

𝑎+𝑐𝑘
≈ ∫

2

𝑎+𝑐𝑥
𝑑𝑥

∞

1
∞
𝑘=1

∞
𝑘=1                                   (18) 

∫
2

𝑎+𝑐𝑥
𝑑𝑥 =

∞

1

2

𝑐
( lim

𝑥→∞
ln(𝑎 + 𝑐𝑥) − ln(𝑎 + 𝑐)) = ∞                 (19) 

From (18) and (19), we deduce (14). Considering condition (15), we have 

∑ (𝜇𝑘)2 = ∑
4

(𝑎+𝑐𝑘)2 ≈ 4 ∫
1

(𝑎+𝑐𝑥)2

∞

1
∞
𝑘=1

∞
𝑘=1 𝑑𝑥                              (20) 

∫
1

(𝑎+𝑐𝑥)2
𝑑𝑥 =

1

𝑐(𝑎+𝑐)

∞

1
                                           (21) 

From (20) and (21), we imply (15).  
From (7), we have 

‖𝑒(𝑘)‖ = (1 − 𝜇𝑘𝜆)𝑘‖𝑒(0)‖                                                  (22) 

Combined with the hypothesis of the theorem, we have 

1 − 𝜇𝑘𝜆 < 1                                                            (23) 

From (22) and (23), we have‖𝑒(𝑘)‖ → 0 when 𝑘 → ∞. 

Based on Theorem 2, we have the following implementation algorithm: 

Algorithm:  Gradient descent method and parameter selection for image restoration 
problem 

Input: A, b, c, maximum number of iterations 

1: Initialize: x , d , k=1  

2: Compute 𝜆𝑚𝑖𝑛 + 𝜆𝑚𝑎𝑥  
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3: Repeat  

4:   𝜇𝑘 =
2

𝜆𝑚𝑖𝑛+𝜆𝑚𝑎𝑥+𝑐𝑘
     

5:   𝐼 = 𝑥 − 𝜇𝑘𝐴𝑇(𝐴𝑥 − 𝑏)      

6:   𝑀𝑆𝐸 =
1

𝑚.𝑛
∑ ∑ |𝑥𝑖,𝑗 − 𝐼𝑖,𝑗|

2𝑛
𝑗=1

𝑚
𝑖=1       

7:    𝑃𝑆𝑅𝑁 = 20 log10
𝑀𝑎𝑥𝐼

√𝑀𝑆𝐸
     

8:     𝑥 = 𝐼;   

9:     k++;  

10: Until (𝑃𝑅𝑆𝑁 ≥ 𝑑 or 𝑘 ≥ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠)  

Output: 𝒙 = 𝑰  

The following section presents some experimental results for the proposed 
algorithm. 

3. Numerical results 

The proposed algorithm has been applied to restore the original image from the 

blurred image data. We use the image blurring operator as matrix 𝐴, the input image has 

size 38x50 (Figure 1). The matrix code 𝐴 has size NxN with N=1900 and is defined as a 

diagonal matrix 𝐴 = 𝑑𝑖𝑎𝑔 (0.5 +
𝑖

5𝑁
) , 𝑖 = 1, 2, … , 𝑁. The image vector will be a column 

vector of length 1900. Eigenvalues 𝜆𝑚𝑖𝑛 = 0.25; 𝜆𝑚𝑎𝑥 = 1.  Therefore, 𝜇𝑘 =
2

1.25+𝑐𝑘
. 

After performing the algorithm, we get the blurred image and the restored image 
as in Figure 1, 2 and 3. 

 

Figure 1: Image size 38x50 and coefficient c=10 
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Figure 2: Image size 38x50 and coefficient c=1 

 

Figure 3: Image size 38x50 and coefficient c=0.1 

 

Figure 4: Graph shows PSNR depending on the number of iterations corresponding  

to each case of choosing parameter c for the result of restoring a 38x50 image 

Mean Squared Error between the restored and original images was used to 

indicate the accuracy of the recovery process: 𝑀𝑆𝐸 =
1

𝑚.𝑛
∑ ∑ |𝑥𝑖,𝑗

𝛼(𝛿)
− 𝑥𝑖,𝑗

0 |
2

𝑛
𝑗=1

𝑚
𝑖=1 . 
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PSNR (Peak Signal-to-Noise Ratio) PSNR (Peak Signal-to-Noise Ratio) was used 

to measure the quality of the restored image compared to the original image. Usually, the 

higher the PSNR, the better the quality of the restored image. Although there is no 

specific threshold for all situations, below is a table of PSNR calculation according to the 

number of iterations for the case c=0.1 and some commonly used PSNR benchmarks, in 

which: Below 20 dB: Poor image quality, with much noise; 20-30 dB: Average image 

quality, acceptable but still noisy; 30-40 dB: Good image quality, and little noticeable 

noise; Above 40 dB: Excellent image quality with negligible noise. However, the specific 

PSNR level considered reasonable depends on the application and user requirements. For 

example, the quality requirements in medical applications or satellite imagery may be 

higher than in general applications. 

Table 1: Calculation results of the algorithm (c=0.1) 

Iteration MSE PSNR (dB) 

50 1.718057964894565e-05 95.78042548631602 

100 3.066169479777623e-08 123.26484204446757 

150 6.362211074625241e-10 140.094722875734 

200 3.867337828200004e-11 152.25668249690958 

250 4.312061004389293e-12 161.78395464514313 

300 7.10305837927509e-13 169.61634976761414 

350 1.536221802444018e-13 176.26626436433355 

400 4.0614173483435126e-14 182.04402741294243 

450 1.2528264066459461e-14 187.1518946214721 

500 4.3669278354988115e-15 191.72904345704896 

The above results show that as the noise level decreases, PSRN increases, 

which means that MSE also decreases, which means that the restored image gradually 

approaches the original image. Here are some experimental results to illustrate the 

theory presented in the paper. 

4. Conclusion 

This paper proposes a method for selecting optimal parameters for the Gradient 

Descent algorithm. With the proposed method of selecting optimal parameters, we prove 

that the iteration sequence reduces oscillation when the approximate solution is close to 

the exact solution and ensures the iteration sequence is stable and convergent. We present 

the convergence rate and illustrate it with experimental results. 

 

REFERENCES 

 

[1] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for deep 

learning,” J. Big Data, vol. 6, p. 60, 2019. DOI: 10.1186/s40537-019-0197-0. 

https://doi.org/10.1186/s40537-019-0197-0


 

  

 

Vinh University Journal of Science                                                                        Vol. 54, No. 1A/2025 

 

      41 

[2] Z. Mahmood, “Digital Image Processing: Advanced Technologies and Applications,” 

Appl. Sci., vol. 14, p. 6051, 2024. DOI: 10.3390/app14146051. 

[3] K. Maharana, S. Mondal, and B. Nemade, “A review: Data preprocessing and data 

augmentation techniques,” Global Transitions Proceedings, vol. 3, no. 1, pp. 91-99, 

2022. DOI: 10.1016/j.gltp.2022.04.020. 

[4] N. Uzakkyzy, A. Ismailova, T. Ayazbaev, Z. Beldeubayeva, S. Kodanova, B. 

Utenova, A. Satybaldiyeva, and M. Kaldarova, “Image noise reduction by deep 

learning methods,” Int. J. Electr. Comput. Eng. (IJECE), vol. 13, p. 6855, 2023. 

DOI: 10.11591/ijece.v13i6.pp6855-6861. 

[5] M. Hartbauer, “A simple denoising algorithm for real-world noisy camera images,” J. 

Imaging, vol. 9, p. 185, 2023. DOI: 10.3390/jimaging9090185. 

[6] T. Hussein, H. Omar, and K. Jihad, “A study on image noise and various image 

denoising techniques,” OSF Preprints, vol. 11, pp. 27-42, 2021. DOI: 

10.17605/OSF.IO/87XGJ. 

[7] A. P. Sen, T. Pradhan, N. K. Rout, and A. Kumar, “Comparison of algorithms for the 

removal of impulsive noise from an image,” e-Prime - Adv. Electr. Eng., Electron. 

Energy, vol. 3, p. 100110, 2023. DOI: 10.1016/j.prime.2023.100110. 

[8] A. R. Munappy, J. Bosch, H. H. Olsson, A. Arpteg, and B. Brinne, “Data 

management for production quality deep learning models: Challenges and 

solutions,” J. Syst. Softw., vol. 191, p. 111359, 2022. DOI: 

10.1016/j.jss.2022.111359. 

[9] R. Archana and P. S. E. Jeevaraj, “Deep learning models for digital image processing: 

A review,” Artif. Intell. Rev., vol. 57, p. 11, 2024. DOI: 10.1007/s10462-023-10631-

z. 

[10] A. Gupta, A. Anpalagan, L. Guan, and A. S. Khwaja, “Deep learning for object 

detection and scene perception in self-driving cars: Survey, challenges, and open 

issues,” Array, vol. 10, p. 100057, 2021. DOI: 10.1016/j.array.2021.100057. 

[11] Y. Huihui, L. Daoliang, and C. Yingyi, “A state of the art review of image motion 

deblurring techniques in precision agriculture,” Heliyon, vol. 9, no. 6, p. e17332, 

2023. DOI: 10.1016/j.heliyon.2023.e17332. 

[12] N. Win, K. Kyaw, T. Win, and P. Aung, “Image noise reduction using linear and 

nonlinear filtering techniques,” Int. J. Sci. Res. Publ. (IJSRP), 2019. DOI: 

10.29322/IJSRP.9.08.2019.p92113. 

[13] S. Teoh, B. Koik, and H. Ibrahim, “Exploration of current trend on median filtering 

methods utilized in digital grayscale image processing,” Int. J. Mater. Mech. Manuf., 

pp. 50–54, 2013. DOI: 10.7763/IJMMM.2013.V1.11. 

[14] E. O. Rybakova, E. E. Limonova, and D. P. Nikolaev, “Fast Gaussian filter 

approximations comparison on SIMD computing platforms,” Appl. Sci., vol. 14, no. 

11, p. 4664, 2024. DOI: 10.3390/app14114664. 

[15] A. M. John, K. Khanna, R. R. Prasad, and L. G. Pillai, “A review on application of 

Fourier transform in image restoration,” in Proc. 4th Int. Conf. I-SMAC (IoT in 

https://doi.org/10.3390/app14146051
https://doi.org/10.1016/j.gltp.2022.04.020
https://doi.org/10.3390/jimaging9090185
https://doi.org/10.1016/j.prime.2023.100110
https://doi.org/10.1016/j.jss.2022.111359
https://doi.org/10.1007/s10462-023-10631-z
https://doi.org/10.1007/s10462-023-10631-z
https://doi.org/10.1016/j.array.2021.100057
https://doi.org/10.1016/j.heliyon.2023.e17332
https://doi.org/10.3390/app14114664


 

  

 

Nguyen Dinh Dung / Gradient descent method and parameter selection for image restoration problem 

 
 

      42 

Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, pp. 389-397, 2020. 

DOI: 10.1109/I-SMAC49090.2020.9243510. 

[16] J. Zhang and Q. Wang, “An iterative conjugate gradient regularization method for 

image restoration,” UK J. Inf. Comput. Sci., vol. 4, pp. 99-106, 2009. 

[17] M. Ponti, E. Helou, P. Ferreira, and N. Mascarenhas, “Image restoration using 

gradient iteration and constraints for band extrapolation,” IEEE J. Sel. Top. Signal 

Process., vol. 10, no. 1, 2015, pp. 71-80. DOI: 10.1109/JSTSP.2015.2493978 

[18] G. Yuan, T. Li, and W. A. Hu, “Conjugate gradient algorithm and its application in 

large-scale optimization problems and image restoration,” J. Inequal. Appl., vol. 

247, 2019. DOI: 10.1186/s13660-019-2192-6. 

 

 

TÓM TẮT 

 

PHƯƠNG PHÁP GRADIENT DESCENT  

VÀ LỰA CHỌN THAM SỐ CHO BÀI TOÁN PHỤC HỒI ẢNH 

 

Nguyễn Đình Dũng 

Trường Đại học Công nghệ Thông tin và Truyền thông, Đại học Thái Nguyên, Việt Nam 

Ngày nhận bài 15/10/2024, ngày nhận đăng 24/12/2024 

 

Xử lý nâng cao chất lượng hình ảnh là một bài toán có ý nghĩa trong nhiều ứng 

dụng thực tế. Nó đóng vai trò quan trọng trong các bước tiền xử lý cho việc nhận dạng và 

trích xuất thông tin. Trong đó, khôi phục ảnh thường được coi là một trong các công 

đoạn tiền xử lý dữ liệu trước khi thực hiện quá trình huấn luyện cho các mô hình học 

máy. Bài toán khôi phục ảnh thường được xử lý bằng các thuật toán lặp, trong đó việc 

lựa chọn tham số lặp đóng vai trò quan trọng trong việc nâng cao tốc độ hội tụ của thuật 

toán. Bài toán đặt ra ở đây là cần xác định được tham số đảm bảo tốc độ hội tụ của thuật 

toán nhanh nhất. Trong bài báo này, chúng tôi đề xuất một phương pháp lựa chọn tham 

số cho thuật toán Gradient descent nhằm khôi phục dữ liệu ảnh gốc từ ảnh thu được sau 

khi thực hiện phép biến đổi hình thái lên ảnh gốc ban đầu. Theo phương pháp này, chúng 

tôi phân tích giá trị riêng của ma trận biến đổi hình thái để từ đó đưa ra công thức xác 

định tham số tối ưu cho thuật toán Gradient descent. Từ công thức xác định tham số, 

chúng tôi đã chứng minh được quá trình lặp hội tụ. Các kết quả thực nghiệm cũng cho 

thấy lý thuyết đưa ra là phù hợp và khẳng định nghiệm xấp xỉ hội tụ về nghiệm của bài 

toán ban đầu. 

Từ khóa: Khôi phục ảnh; Gradient descent; phương pháp lặp; tối ưu lồi; tham số 

tối ưu. 
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