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Abstract: In this paper, the stochastic SIR epidemic model with Markov switch-
ing and general incidence rate is investigated. We classify the model by introduc-
ing a threshold value A\. To be more specific, we show that if A < 0 then the
disease-free is globally asymptotic stable i.e., the disease will eventually disap-
pear while the epidemic is strongly stochastically permanent provided that A > 0.
We also give some of numerical examples to illustrate our results.

1 Introduction

The idea of using mathematical models to investigate disease transmissions and behavior
of epidemics was first introduced by Kermack and McKendrick in [11] [12]. Since then, much
attention has been devoted to analyzing, predicting the spread, and designing controls of
infectious diseases in host populations (see [2] [3] [4] [13] [14] [16] and the references therein).
One of classic epidemic models is the SIR model, which subdivides a homogeneous host
population into three epidemiologically distinct types of individuals, the susceptible, the
infective, and the removed, with their population sizes denoted by S, I and R, respectively.
It is suitable for some infectious diseases of permanent or long immunity, such as chickenpox,
smallpox, measles, etc.

As we all know, the incidence rate of a disease is the number of new cases per unit time
and it plays an important role in the investigation of mathematical epidemiology. Therefore,
during the last few decades, a number of realistic transmission functions have become the
focus of considerable attention. Concreterly, in[10], authors studied a deterministic SIR
model with the standard bilinear incidence rate and has been extended to stochastic SIR
model in [3] [5] [7] [14] [16]. However, there is a variety of reasons why this standard
bilinear incidence rate may require modifications. For instance, the underlying assumption
of homogeneous mixing and homogeneous environment may be invalid. In this case the
necessary population structure and heterogeneous mixing may be incorporated into a model
with a specific form of nonlinear transmission. For example, in [2], Capasso and Serio
studied the cholera epidemic spread in Bari in 1978. They imposed the saturated incidence

rate 1/3;5 aII in their model of the cholera, where a is positive constant. Anderson et. al. [1]
used saturated incidence rate ﬁifs In [8], authors considered the Beddington-DeAngelis
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functional response %. Ruan et. al. [18] considered nonlinear incidence of saturated

mass action %, where m, o, n are positive constants. Taking into account the presence of
white noise, color noise and both of them, the stochastic SIR models with various incidence
rates mentioned above have been studied in [4] [15] [19] [20].

In this paper, we work with the general incidence rate STF;(S,I), where F} is locally
Lipschitz continuous. Thus, our model includes almost incidence rates appeared in the
literature. Furthermore, we suppose that the model is perturbed by both white nose and

color noise. To be specific, we consider the following model

dS(t) = (=SI(E)F1(S(t), I(t),re) + p(re) (K — S(t))) dit — S(E)I(t) F2(S(t), 1(t), 7)dB(t)
dI(t) = (SO F(S(), I(t),re) — (plre) + p(re) + (o)) I(t))dt

+S()I()Fa(S(t), I(t),r)dB(t)
dR(t) = (v(re)I(t) — (u(re))R(E))dt,

(1.1)
where {ry,t > 0} is a right continuous Markov chain taking values in M = {1,2,...,mqo},
Fy(+), F»(+) are positive and locally Lipschitz functions on [0, 00)% x M, B(t) is a one dimen-
sional standard Brownian motion, u(7), p(i), (i) are assumed to be positive for all i € M.

Our main goal in this paper is to provide a sufficient and almost necessary condition
for strongly stochastically permanent and extinction of the disease in the stochastic SIR
model (1.1). Concretely, we establish a threshold A such that the sign of A determines
the asymptotic behavior of the system. If A < 0, the disease is eradicated at a disease-
free equilibrium (K,0). In this case, we derive that the density of disease converges to 0
with exponential rate. Meanwhile, in the case A > 0, we show that the disease is strongly
stochastically permanent.

The rest of the paper is arranged as follows. In section 2, we give and prove our main
results. Section 3 is reserved for providing some numerical examples and figures.

2 Main results

Denote R% := {(z,y) : > 0,y > 0}, Ri’o = A{(z,y) : x > 0,y > 0}, A := {(x,y) €
R2 : 24y < K} and M = {1,2,...,mg} for a positive integer mg. Let B(t) be an one-
dimensional Brownian motion defined on a complete probability space (2, F,P). Denote by
Q = (qk1)moxm, the generator of the Markov chain {r;,t > 0} taking values in M. This
means that

qk15 + 0(5) if k 75 l,

P{ros = llry = k} =
{rees = lre = k} {1+qkk(5—|—0(5) if k=1,

as 0 — 0. Here, qi; is the transition rate from k to [ and qi; > 0 if k # [, while ¢z, =
> 1 Dl We assume that the Markov chain 74 is irreducible, under this condition, the
Markov chain r; has a unique stationary distribution 7 = (w1, w2, ..., Tpy,) € R™0.

We assume that the Markov chain 7; is independent of the Brownian motion B(t).
Because the dynamics of class of recover has no effect on the disease transmission dynamics,

18



Truong Dai hoc Vinh Tap chi khoa hoc, Tap 47, S6 3A (2018), tr. 17-27

we only consider the reduced system,

dS(t) = (= SOIOFL(SE), (1), re) + p(re) (K — S(t)))dt — S () Fo(S(t), I(¢), r)dB(t)
dI(t) = (SMI)F1(S(t), (1), 7e) — (ulre) + plre) +(re) I (1)) dt
+S()I(t)Fa(S(t), L(t), r)dB(t).
(2.1)
Theorem 2.1. For any given initial value (S(0),1(0)) € R%, there exists a unique global

solution {(S(t),1(t)),t > 0} of Equation (2.1) and the solution will remains in R% with
probability one. Moreover, if I(0) > 0 then I(¢) > 0 for any ¢ > 0 with probability 1.

Proof. The proof is almost the same as those in [9]. Hence we obmit.
To simplify notations, we denote by ®(¢) = (S(¢), I(t)) the solution of system (2.1), and

2,0
¢ = (-’L',y) € R+ :

Lemma 2.1. For any initial value ¢ = (z,y) € Ri’o the solution ®(t) = (S(¢),I(t)) of
Equation (2.1) eventually enters A. Further A is an invariant set.

Proof. By adding side by side in system (2.1), we have

%(S(t) +1(t) = Kp(re) — p(r) (S(#) + 1(2) — (p(re) +7(re)) 1(2)
< p(re) K — p(re) (S(t) + 1(2)).
Using the comparison theorem yields

limsup(S(¢) + I(t)) < K. (2.2)
t—o0
Therefore (S(t),I(t)) eventually enters A. Further, if S(0) + I(0) < K, so is (S(¢) + I(t)
for ¢t > 0.
Remark 2.1. Thus, A = {(z,y) € R : z + y < K} is an invariant set. By Lemma 2.1,we
only need to work with the process (S(t),I(t)) on the invariant set A.
We are now in position to provide a condition for the extinction and permanence of
disease. Let
2

o(w.0.0) = Fi (.. i)z — (i) + ) + () + 2L DTY

We define the threshold

o o 2 i 2
A= g(K.0,0)m =Y [Fl (K,0,i)K — (,u(z’) + () + () + IWQO)K)} T (2.3)

i=1 =1

Let C?(R? x M, Ry ) denote the family of all non-negative functions V (¢, ) on R? x M
which are twice continuously differentiable in ¢. The operator £ associated with (2.1) is
defined as follows. For V € C%(R? x M, R, ), define

LV ($,0) = LV ($,0) + D a1V (e, J) (2.4)

JEM
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gradient and Hessian of V(-,7), f and g are the drift and diffusion coefficients of (2.1),
respectively; i.e.,

F(8,0) = (—ayFi(x,y,8) + p(i) (K = x), 2y F1(z,y,8) — (i) + p(i) +1(0)y) "

and
g(d)a Z) = (_CUyFQ($, Y, Z)? xyFQ(xa Y, Z))T

Following lemma gives condition for the locally asymptotic stability of free-desease point
(K,0).

Lemma 2.2. If A < 0, for any € > 0, there exists a > 0 such that for all initial value
(p,i) € Us x M := (K — 0, K] x [0,9) x M, we have

) ; — >1_
Py {}5& o(t) = (K, 0)} >1-c. (2.5)
Proof. Since A < 0, we can choose sufficiently small k > 0 such that

> (9(K,0,4) + r)m; < 0.
JEM
Consider the Lyapunov function V(z,y,i) = (K — 2)? 4+ y”, where p € (0,1) is a constant
to be specified. By direct calculation we have for (z,y,7) € A x M that
ﬁZV(Jf, Y, 'l)
P*F3 (w,y,i)a’y”
2

= _2(K - $)[—F1(.CL‘, y7i)$y + /’L(l)(K - x)] —l-pypg(SU, y’i) + 1:2y2F22(33,y,i) +

P23 (z,y,i)z%yP

Because of the continuity of g(-), Fi(+), F2(-), the compactness of A x M and the fact
that y'™” — 0 as y — 0, we can choose p € (0,1) and &; € (0,K) such that for any
(x,y,1) € Us, x M,

PPE3 (z,y,1)z%yP
2

py(.y.i) +y (20K — ) Fie.y, i) + 2y (,y,0)) +
< p(9(K,0,7) + K)y".

When p is sufficiently small, we also have

Therefore,
LiV(x,y,i) < plg(K,0,i) + K]V (x,y,1) V(z,y,i) € Us, x M.
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By [17; Theorem 5.36], for any € > 0, there is 0 < < d; such that

Py { lim (S(¢), (1)) = (K, o)} >1—c for (¢,i) € Us x M. (2.6)

t—00

The proof is complete. For any 6 > 0, (¢,i) € A x M, set the first entrance time of ®(¢)
into the set Us by
7s = inf{t > 0: ®(t) € Us}.

Lemma 2.3. For all § > 0, for each initial data (¢,i) € A x M, we have 7§ " < o0 almost
surely.

Proof. Consider the Lyapunov function U(¢,i) = ¢; — (x4 1)°2, where ¢ and ¢y are two
positive constants to be specified. We have

02—1

LU(¢,1) = —co(x +1)272 [(:v + 1) (p(i) (K —2) — zyFi(z,y,1)) + 7x2y2F22(x,y,i)].

Let pm, = min{u(i) : i € M}. Since (z + 1)u(i)(K — ) > ppd for any =z € [0, K — 0] and
inf{Fs(z,y,i) : (z,y,1) € A x M} > 0, we can find sufficiently large co such that

-1
Lm%ﬁf&(m,y,i) > —0.5um6 for (¢,i) € Ax M,z < K — 9.

—$yF1(.T,y,Z) + 9

Hence
-1
(w+1>u(i>(K—w>—xyF1<x,y,i>)+@7x2y2F2(x,y,z‘> > 0.5um0 for (¢,i) € Ax M,z < K-,

LU(p,i) < —0.5copm0 given that (z,y,7) € A x M,z < K — 0.

Let ¢; > 0 be chosen such that U is positive on A. By Dynkin’s formula, we obtain
Ts N\t
Eg U(P(15 A1), rr5n¢) = U(, %) + Eg 4 / LU(®(s),r5)ds < U(p,i) —0.5¢optm0Eq ;75 At
0

Letting ¢t — oo and using Fatou’s lemma yields that
EgiU(®(75),77;) < U(¢, 1) — 0.5c241m0E g, Ts.

Since U is positive on A x M, we deduce that Ey;7s < oo. This implies that 75 < oo
almost surely. The proof is complete. We now provide condition for the disease-free globally
asymptotic stability.

Theorem 2.2 (Condition for extinction of disease). If A < 0, then ®(t) — (K,0) a.s. as
t — oo for all given initial value (¢,i) € A x M, i.e., the disease will be extinct. Moreover,

In I(t)

Pm{ Tim :)\<0}:1f0r (6,i) € A x M,y > 0. (2.7)

t—o00
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Proof. 2.2, we have, if A < 0 then the disease-free is locally stable. Meanwhile Lemma
2.3 implies that for all § > 0 the first entrance time to Us of ®(¢) is finite. Combining these
properties and the strong Markov property, we have

dei{tli)m O(t) = (K,0)} >1—¢ for (¢,i) € A x M,
for any € > 0. As a result,

IP’m{tli)rgo O(t) = (K,0)} =1 for (¢,1) € A x M. (2.8)
Applying 1to’s formula we have
Inl(t) =1InI(0) — G(t)
where . ,
G(t) = —/ g(P(u), ry)du — / S(u)Fa(S(u), I(u),r,)dB(u).
This imlies that 0 0

InI(t) _ In7(0) 1

: . +t/0 g(@(u),ru)du+1/0 S(u)F(S(u), I(u),ry)dB(u). (2.9)

We derive from the ergodicity ¢, (2.8) and (2.3) that
1 t
lim — [ g(®(u),ry)du = A\ (2.10)

By using Remark 2.1 and the strong law of large numbers for martingales, we get

lim ! S(uw)I(u)Fo(S(u), I(u),ry,)dB(u) =0 a.s. (2.11)

t—oo ¢ Jg

Combining (2.9), (2.10) and (2.11) we obtain (2.7). The proof is complete.
We now consider condition for the permanent of disease. As a preparation, we present
the following lemma.

Lemma 2.4. Let 0Ag := {¢ = (z,y) € A : y = 0}. Then there exists T' > 0 such that for
any (¢,1) € 0Ay x M,

T 3\
IEW-/ g(P(u),ry)du > ZT' (2.12)
0

Proof. When 1(0) = 0, we have I(t) = 0 for any ¢ > 0 and lim;_,~ S(¢t) = K uniformly
in the initial values. This and the uniform ergodicity of r; imply that

1 t
tlim tEW’/ g(®(u),ry)du = X\ uniformly in (¢,7) € A x M.
—00 0
Thus, we can easily find a T" satisfying (2.12).
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Theorem 2.3 (Condition for permanent of disease). If A > 0, the disease is strongly
stochastically permanent in the sense that for any € > 0, there exists a § > 0 such that

litmianP’m{I(t) >0} >1—¢ for any (¢,i) € A x M,y > 0. (2.13)
—00

Proof. Consider the Lyapunov function Vp(¢,4) = 4%, where 6 is a real constant to be
determined. We have

LVy(p,1) = 0y°[Fi(x,y,i)x — (u(i) + p(i) + 7(4)) + 2 F3 (x,y,1)].

92;11‘2F22(13, y,i)] : (x,y,1) € A x M}. Let 7, = inf{t > 0: Vyp(®(t),r) > n}. By using [td’s
formula and taking expectation in both sides, we obtain

Ey i Va(®(t A 710 )) = V(6,1) + B /0 T Ve @(s), ) ds
< Vp(6,i) + Hy /Ot By Vo(B(5 A ), Fsnry )ds.
By using Gronwall inequality, we have
EgiI%(t A1) < y¥ exp{Hyt}.
Letting n — oo, we get
Eg:I°(t) < o exp{Hyt} for any t > 0, (¢,7) € (A\ RA) x M. (2.14)

By the Feller property and (2.12), there exists d2 > 0 such that if ¢ = (z,y) € A with
y < 02 we have

T
BoiG(T) = —Eg; [ 9@(0)r)dt < 5T, (2.15)
From (2.14) and G(t) = InI(0) — InI(t), we have
. explG . _g.. Y g 1D
0, €xp{G(T)} + Eg ; exp{—G(T)} = E¢’ZI(T) +Ey; ” <exp{H_ 1T} + exp{H1T}.

Applying [6; Lemma 3.5; pp. 1912], we deduce that
0G(T) MG 2
InE, ;e < —?T + HO* for 0 € [0,0.5],
where H is a constant depending on 7', H_; and H;. For sufficiently small 6, we have
0G(T) A .
Egy e Sexp{—ZT} for o € A,y < §a,7 € M.
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Or equivalently
qu’iI_G(T) <qy? for ¢ = exp{ — %T} for p € Ay < 99,7 € M.
This and (2.14) imply that
E(z,’iI*e(T) <qy P+ C for C =06 exp{H_yT} for p € A,ie M.
By the Markov property, we deduce that
Egi I 0((k+1)T) < qEy I (KT) + C for p € Aji € M,k € Z.

Using this recursively we obtain

C(1—qg™
qu,if_e(nT) <qy I+ (1_5> forp € Ayie M,n € Zy. (2.16)
This and (2.14) imply
1 _ N
EgI70(t) < (q"yig + C(1Q)> exp{H_¢T} forte [nT,nT +T). (2.17)
—q

Letting n — co we obtain limsupEg,;17%(¢) = 1 exp {H_¢T'}, which leads to (2.13).

t—o00

3 Numerical Examples

In this section we providing some numerical examples to illustrate our results. We consider
the Holling II functional responses; that is

,31(7})5[
1 + al(rt)S’

,32(7})5[

Fi(S,I,r) = T+ a(m)S

F2 (Sv Ia Tt) =
The process {r¢,t > 0} is a right continuous Markov chain taking values in M = {1,2}.
The transition rate from state 1 to 2 is g2 = 0.5 and state 2 to 1 is go; = 0.8, then the
stationary distribution m = (m1,m2) = (3, )

Ezample 3.1. We assume that the capacity of the environment K = 4 and the coefficients
of the Equation (1.1) are given in Table 1 below.

Coeflicients
ap | ax | B1 | B2 | v j p

1 1.5 | 0.1 8 1 0.5 2 1
1 0.3 ) 1.5 102 |15 | 0.2

States

Table 1: Values of the coefficients in Example 3.1
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By using formula (2.3), we have A = —0.6916 < 0. As a result of Theorem 2.2,
limy_o0 I(t) = 0 and lim;_,o S(t) = 4. That is, disease will eventually be extinction. This
claim is illustrated by Figure 1.

Sample path of I(t) Sample path of S(t)

It S(t)

.
't

I | | O I N | O

Fig.1: Sample paths of 1(t) (on the left), S(t) (on the right), and r¢ in Example 3.1.

Ezxample 3.2. We assume that the capacity of the environment is K = 20. The table of
parameter values is given below.

Coefficients
ap | az | Br | B2 | v | m p
States
1 2 1.7 5 1 0.5 1 0.7
0.8 1 3 3 1.5 1 0.5 1

Table 2: Values of the coefficients in Example 3.2

Detailed computations give us that A = 2.2564 > 0. Thus, by Theorem 2.3, I(t) is
permanent. That result can be described in Figure 3.2.

Sample path of Ijt) Sampgle path of Sit)

=

R T I R e - T ]

B
~
w
=
s
>
-~
@
©
E

Fig.1: Sample paths of I(t) (on the left) and S(t) (on the right) and ry in Ezample 3.2.
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TOM TAT

PONG HOC CUA MO HINH DICH TE NGAU NHIEN
VOI BUGC CHUYEN MARKOV VA HAM DAP UNG TONG QUAT

Trong bai bao nay, mo hinh dich t& SIR ngau nhién véi bude chuyén Markov va ham
dap ting dang tong quat dudc quan tam nghién ctu. Ching t6i phan loai mo hinh bing
cach dua ra mot gia tri ngudng \. Cu thé, ching toi chi ra ring néu A < 0, diém can bing
sach benh dn dinh tiém can toan cuc nghia la vé lau dai mo hinh sé sach bénh; mo hinh sé
ton tai dich bénh theo nghia ngdu nhién manh khi A > 0. Ching to6i ciing dua ra mot vai
vi du s6 dé minh hoa cho két qua 1y thuyét dat dugc trong bai bao.
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