A MEAN CONVERGENCE THEOREM FOR TRIANGULAR ARRAYS OF ROWWISE AND PAIRWISE m_{n}-DEPENDENT RANDOM VARIABLES

Le Van Thanh ${ }^{1, *}$, Pham Nhu $\mathbf{Y}^{\mathbf{2}}$
${ }^{l}$ Department of Mathematics, School of Education, Vinh University, Vietnam
${ }^{2}$ Kiem Tan High School, Gia Tan 2, Thong Nhat district, Dong Nai province, Vietnam

ARTICLE INFORMATION

Journal: Vinh University Journal of Science ISSN: 1859-2228

Volume: 52
Issue: 4A *Correspondence: levt@vinhuni.edu.vn

Received: 15 August 2023
Accepted: 11 September 2023
Published: 20 December 2023
Citation:
Le Van Thanh, Pham Nhu Y (2023). A mean convergence theorem for triangular arrays of rowwise and pairwise m_{n} dependent random variables. Vinh Uni. J. Sci.
Vol. 52 (4A), pp. 5-11
doi: 10.56824/vujs.2023a090

OPEN ACCESS
Copyright © 2023. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (CC BY NC), which permits non-commercially to share (copy and redistribute the material in any medium) or adapt (remix, transform, and build upon the material), provided the original work is properly cited.

ABSTRACT

This paper establishes a mean convergence theorem for triangular arrays of rowwise and pairwise m_{n}-dependent random variables. Some authors studied limit theorems for sequences of pairwise m-dependent random variables where m is fixed (see, e.g., Quang and Nguyen [Applications of Mathematics, 2016] and Thanh [Bulletin of the Institute of Mathematics Academia Sinica, 2005]). In this paper, we establish a limit theorem for triangular arrays of rowwise and pairwise m_{n}-dependent random variables, where m_{n} may approach infinity as $n \rightarrow \infty$. The main theorem extends some results in the literature, including Theorem 3.1 of Chen, Bai and Sung in [Journal of Mathematical Analysis and Applications, 2014].
Keywords: Convergence in mean; Pairwise m_{n}-dependence, Uniform integrability in the Cesàro sense; Triangular array of random variables.

1. Introduction

In [4], Pyke and Root proved a theorem on mean convergence for sequences of independent identically distributed (i.i.d.) random variables. Their result reads as follows.
Theorem 1.1 (Pyke and Root [4]). Let $1 \leq p<2$ and let $\{X n, n \geq 1\}$ be a sequence of i.i.d. mean zero random variables. Then

$$
\frac{1}{n^{1 / p}} \sum_{i=1}^{n} X_{i} \xrightarrow{\mathcal{L}_{p}} 0 \text { as } n \rightarrow \infty
$$

if and only if $\mathrm{E}|X 1|^{p}<\infty$.
Chow [2] gave an extension of the sufficiency part of Theorem 1.1 by establishing a meanconvergence theorem under a uniform integrability condition. A special case of Chow's result reads as follows.
Theorem 1.2 (Chow [2]). Let $1 \leq p<2$ and let $\left\{\mathrm{X}_{n}, n \geq 1\right\}$ be a sequence of independent random variables such that the sequence $\left\{\left|\mathrm{X}_{n}\right|^{p}, n \geq 1\right\}$ is uniformly integrable. Then

$$
\frac{1}{n^{1 / p}} \sum_{i=1}^{n}\left(X_{i}-\mathbb{E} X_{i}\right) \xrightarrow{\mathcal{L}_{p}} 0 \text { as } n \rightarrow \infty .
$$

Theorem 1.2 was extended and improved in many directions. We refer to [1, 3, 7] and the references therein. A crucial tool in the proof of Theorem 1.2 and its extensions is a von Bahr-Esseen-type inequality which states that

$$
\mathbb{E}\left|\sum_{i=1}^{n} X_{i}\right|^{p} \leq C_{p} \sum_{i=1}^{n} \mathbb{E}\left|X_{i}\right|^{p}
$$

where $1 \leq p \leq 2,\left\{X_{i}, 1 \leq i \leq n\right\}$ is a collection of mean zero random variables satisfying a certain dependence structure, and C_{p} is a constant depending only on p. Chen, Bai and Sung [1], Theorem 3.1] extended Theorem [1.2] to the case where the underlying random variables are pairwise independent. This note aims to extend Theorem 1.2 to triangular arrays of rowwise and pairwise m_{n}-dependent mean zero random variables, thereby extending Theorem 3.1 of Chen, Bai and Sung [1].

Laws of large numbers for sequences of pairwise m-dependent random variables were studied by Quang and Nguyen [5] and Thanh [8]. Let m be a nonnegative integer. A collection $\left\{X_{i}, 1 \leq i \leq n\right\}$ of random variables is said to be pairwise m-dependent if either $n \leq m+1$ or $n>m+1$ and X_{i} is independent of X_{j} whenever $|i-j|>m$. When $m=0$, this reduces to the concept of pairwise independence. If $m^{\prime}>m$, then pairwise m-dependence implies pairwise m^{\prime}-dependence.

Let $\left\{m_{n}, n \geq 1\right\}$ be a sequence of nonnegative integers. A triangular array $\left\{X_{n, i}, 1 \leq\right.$ $i \leq n, n \geq 1\}$ of random variables is said to be rowwise and pairwise m_{n}-dependent if for each $n \geq 1$, the n-th row $\left\{X_{n, i}, 1 \leq i \leq n\right\}$ is pairwise m_{n}-dependent.

2 Main result

In this section, we will extend Theorem 1.2 by establishing a mean convergence theorem for triangular arrays of rowwise and pairwise m_{n}-dependent random variables. Firstly, we will need the following lemmas. The first lemma is Theorem 2.1 of Chen, Bai and Sung [1].

Lemma 2.1. Let $1 \leq p \leq 2$. Let $\left\{X_{i}, 1 \leq i \leq n\right\}$ be a collection of pairwise independent mean zero random variables satisfying $\mathbb{E}\left|X_{i}\right|^{p}<\infty, 1 \leq i \leq n$. Then

$$
\mathbb{E}\left|\sum_{i=1}^{n} X_{i}\right|^{p} \leq C_{p} \sum_{i=1}^{n} \mathbb{E}\left|X_{i}\right|^{p}
$$

where C_{p} is a constant depending only on p.

Remark 2.2. In the case where $p=1$ or $p=2$, it is clear that we can choose $C_{p}=1$.

The next lemma is a consequence of Hölder's inequality (see, e.g., Lemma 2.4 in Rosalsky and Thanh [6]).

Lemma 2.3. Let $p \geq 1$ and let $\left\{a_{i}, 1 \leq i \leq n\right\}$ be a collection of real numbers. Then

$$
\left|\sum_{i=1}^{n} a_{i}\right|^{p} \leq n^{p-1} \sum_{i=1}^{n}\left|a_{i}\right|^{p}
$$

The following lemma extends Lemma 2.1 to the case pairwise m-dependent.

Lemma 2.4. Let m be a nonnegative integer and $1 \leq p \leq 2$. Let $\left\{X_{i}, 1 \leq i \leq n\right\}$ be a collection of pairwise m-dependent mean zero random variables satisfying $\mathbb{E}\left|X_{i}\right|^{p}<\infty$, $1 \leq i \leq n$. Then

$$
\begin{equation*}
\mathbb{E}\left|\sum_{i=1}^{n} X_{i}\right|^{p} \leq C_{p}(m+1)^{p-1} \sum_{i=1}^{n} \mathbb{E}\left|X_{i}\right|^{p} \tag{2.1}
\end{equation*}
$$

where C_{p} is a constant depending only on p. In the case where $p=1$ or $p=2$, we can choose $C_{p}=1$.

Proof. If $n \leq m+1$, then (2.1) follows immediately from Lemma 2.3. Suppose that $n>m+1$. Then

$$
\begin{aligned}
\mathbb{E}\left|\sum_{i=1}^{n} X_{i}\right|^{p} & =\mathbb{E}\left|\sum_{k=1}^{m+1} \sum_{0 \leq i(m+1) \leq n-k} X_{i(m+1)+k}\right|^{p} \\
& \leq(m+1)^{p-1} \sum_{k=1}^{m+1} \mathbb{E}\left|\sum_{0 \leq i(m+1) \leq n-k} X_{i(m+1)+k}\right|^{p} \\
& \leq C_{p}(m+1)^{p-1} \sum_{k=1}^{m+1} \sum_{0 \leq i(m+1) \leq n-k} \mathbb{E}\left|X_{i(m+1)+k}\right|^{p} \\
& =C_{p}(m+1)^{p-1} \sum_{i=1}^{n} \mathbb{E}\left|X_{i}\right|^{p}
\end{aligned}
$$

where we have applied Lemma 2.3 in the first inequality, Lemma 2.1 and Remark 2.2 in the second inequality. The proof of Lemma 2.4 is completed.

Remark 2.5. Let $\left\{m_{n}, n \geq 1\right\}$ be a sequence of nonnegative integers and let $\left\{X_{n, i}, 1 \leq\right.$ $i \leq n, n \geq 1\}$ be a triangular array of rowwise and pairwise m_{n}-dependent mean zero random variables. Then for each $n \geq 1$, we have

$$
\mathbb{E}\left|\sum_{i=1}^{n} X_{n, i}\right|^{p} \leq C_{p}\left(m_{n}+1\right)^{p-1} \sum_{i=1}^{n} \mathbb{E}\left|X_{n, i}\right|^{p}
$$

where C_{p} is a constant depending only on p.
The main result of this note is the following theorem. Throughout the proof of Theorem 2.6. C_{p} is a constant depending only on p and is not necessarily the same one in each appearance.

Theorem 2.6. Let $1 \leq p<2$, let $\left\{m_{n}, n \geq 1\right\}$ be a sequence of nonnegative integers and let $\left\{X_{n, i}, 1 \leq i \leq n, n \geq 1\right\}$ be a triangular array of rowwise and pairwise m_{n}-dependent random variables such that $\left\{\left|X_{n, i}\right|^{p}, 1 \leq i \leq n, n \geq 1\right\}$ is uniformly integrable in the Cesàro sense, that is,

$$
\lim _{a \rightarrow \infty} \sup _{n \geq 1} \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(\left|X_{n, i}\right|^{p} \mathbf{1}\left(\left|X_{n, i}\right|>a\right)\right)=0
$$

Then

$$
\begin{equation*}
\frac{1}{n^{1 / p}\left(m_{n}+1\right)^{1 / 2}} \sum_{i=1}^{n}\left(X_{n, i}-\mathbb{E} X_{n, i}\right) \xrightarrow{\mathcal{L}_{p}} 0 \text { as } n \rightarrow \infty . \tag{2.2}
\end{equation*}
$$

Proof. Let $\varepsilon>0$ be arbitrary. Since $\left\{\left|X_{n, i}\right|^{p}, 1 \leq i \leq n, n \geq 1\right\}$ is uniformly integrable in the Cesàro sense, there exists $M>0$ such that

$$
\begin{equation*}
\sup _{n \geq 1} \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(\left|X_{n, i}\right|^{p} \mathbf{1}\left(\left|X_{n, i}\right|>M\right)\right)<\varepsilon . \tag{2.3}
\end{equation*}
$$

For $n \geq 1,1 \leq i \leq n$, set

$$
Y_{n, i}=X_{n, i} \mathbf{1}\left(\left|X_{n, i}\right| \leq M\right)
$$

and

$$
Z_{n, i}=X_{n, i} \mathbf{1}\left(\left|X_{n, i}\right|>M\right) .
$$

Then

$$
\begin{align*}
\mathbb{E}\left|\sum_{i=1}^{n}\left(X_{n, i}-\mathbb{E} X_{n, i}\right)\right|^{p} & \leq 2\left(\mathbb{E}\left|\sum_{i=1}^{n}\left(Y_{n, i}-\mathbb{E} Y_{n, i}\right)\right|^{p}+\mathbb{E}\left|\sum_{i=1}^{n}\left(Z_{n, i}-\mathbb{E} Z_{n, i}\right)\right|^{p}\right) \tag{2.4}\\
& :=2\left(I_{1}+I_{2}\right)
\end{align*}
$$

Applying Jensen's inequality and Lemma 2.4, we have

$$
\begin{align*}
I_{1} & \leq\left(\mathbb{E}\left(\sum_{i=1}^{n}\left(Y_{n, i}-\mathbb{E} Y_{n, i}\right)\right)^{2}\right)^{p / 2} \\
& \leq\left(\left(m_{n}+1\right) \sum_{i=1}^{n} \mathbb{E}\left(Y_{n, i}-\mathbb{E} Y_{n, i}\right)^{2}\right)^{p / 2} \tag{2.5}\\
& \leq\left(\left(m_{n}+1\right) \sum_{i=1}^{n} \mathbb{E} Y_{n, i}^{2}\right)^{p / 2} \\
& \leq\left(m_{n}+1\right)^{p / 2} n^{p / 2} M^{p} .
\end{align*}
$$

Applying (2.3) and Lemma 2.4 again, we have

$$
\begin{align*}
I_{2} & \leq\left(m_{n}+1\right)^{p-1} C_{p} \sum_{i=1}^{n} \mathbb{E}\left|Z_{n, i}-\mathbb{E} Z_{n, i}\right|^{p} \\
& \leq\left(m_{n}+1\right)^{p-1} C_{p} \sum_{i=1}^{n} \mathbb{E}\left|Z_{n, i}\right|^{p} \tag{2.6}\\
& \leq\left(m_{n}+1\right)^{p / 2} C_{p} \sum_{i=1}^{n} \mathbb{E}\left|Z_{n, i}\right|^{p} \\
& \leq\left(m_{n}+1\right)^{p / 2} C_{p} n \varepsilon .
\end{align*}
$$

Combining (2.4)-(2.6) yields

$$
\begin{align*}
\mathbb{E}\left|\frac{\sum_{i=1}^{n}\left(X_{n, i}-\mathbb{E} X_{n, i}\right)}{n^{1 / p}\left(m_{n}+1\right)^{1 / 2}}\right|^{p} & \leq \frac{2\left(I_{1}+I_{2}\right)}{n\left(m_{n}+1\right)^{p / 2}} \tag{2.7}\\
& \leq \frac{2 M^{p}}{n^{1-p / 2}}+C_{p} \varepsilon
\end{align*}
$$

Since $p<2$ and $\varepsilon>0$ is arbitrary, (2.2) follows from (2.7) by letting $\varepsilon \rightarrow 0$ and then $n \rightarrow \infty$. The proof of the theorem is completed.

Remark 2.7. If $m_{n} \equiv 0$, then Theorem 2.6 reduces to Theorem 3.1 of Chen, Bai and Sung [1].

We close the paper by considering a case where $m_{n} \rightarrow \infty$ as $n \rightarrow \infty$. In the following corollary, for $x \geq 0$, let $\lfloor x\rfloor$ denote the greatest integer that is not greater than x and let $\log x$ denote the natural logarithm of $(x+2)$.

Corollary 2.8. Let $1 \leq p<2$ and let $\left\{X_{n, i}, 1 \leq i \leq n, n \geq 1\right\}$ be a triangular array of rowwise and pairwise $\lfloor\log n\rfloor$-dependent random variables such that $\left\{\left|X_{n, i}\right|^{p}, 1 \leq i \leq\right.$
$n, n \geq 1\}$ is uniformly integrable in the Cesàro sense. Then

$$
\frac{1}{n^{1 / p} \log ^{1 / 2}(n)} \sum_{i=1}^{n}\left(X_{n, i}-\mathbb{E} X_{n, i}\right) \xrightarrow{\mathcal{L}_{p}} 0 \text { as } n \rightarrow \infty .
$$

Proof. Applying Theorem 2.6 for the case where $m_{n} \equiv\lfloor\log n\rfloor$, we immediately obtain the conclusion of the corollary.

Acknowledgements: This work was supported by the Ministry of Education and Training, grant no. B2022-TDV-01.

REFERENCES

[1] P. Chen, P. Bai, S. H. Sung, "The von Bahr-Esseen moment inequality for pairwise independent random variables and applications," Journal of Mathematical Analysis and Applications, 419(2), 1290-1302, 2014.
[2] Y. S. Chow, "On the L_{p}-convergence for $n^{-1 / p} S_{n}, 0<p<2$," Annals of Mathematical Statistics, 42(1), 393-394, 1971.
[3] M. Ordóñez Cabrera, A. Volodin, "Mean convergence theorems and weak laws of large numbers for weighted sums of random variables under a condition of weighted integrability," Journal of Mathematical Analysis and Applications, 305(2), 644-658, 2005.
[4] R. Pyke, D. Root, "On convergence in r-mean of normalized partial sums," Annals of Mathematical Statistics, 39(2), 379-381, 1968.
[5] N. V. Quang, P. T. Nguyen, "Strong laws of large numbers for sequences of blockwise and pairwise m-dependent random variables in metric spaces," Applications of Mathematics, 61(6), 669-684, 2016.
[6] A. Rosalsky, L. V. Thành, "On the strong law of large numbers for sequences of blockwise independent and blockwise p-orthogonal random elements in Rademacher type p Banach spaces," Probability and Mathematical Statistics, 27, 205-222, 2007.
[7] J. Lita da Silva, "Convergence in p-mean for arrays of random variables," Results in Mathematics, 74(1), 1-11, 2019.
[8] L. V. Thành, "Strong laws of large numbers for sequences of blockwise and pairwise m-dependent random variables," Bulletin of the Institute of Mathematics Academia Sinica, 33(4), 397-405, 2005.

TÓM TẮT

MỘT SỐ ĐỊNH LÝ VỀ SỰ HỘI TU
 THEO TRUNG BİNH CỦA MẢNG TAM GIÁC CÁC BIẾN NGẪU NHIÊN m_{n}-PHỤ THUỘC ĐÔI MộT THEO HÀNG

Lê Văn Thành ${ }^{1}$, Phạm Như \mathbf{Y}^{2}
${ }^{1}$ Khoa Toán, Truờng Su phạm, Trường Đại học Vinh, Việt Nam
${ }^{2}$ Truờng Trung học phổ thông Kiệm Tân, Gia Tân 2, Thống Nhất, Đồng Nai, Việt Nam

Ngày nhận bài 15/8/2023, ngày nhận đăng 11/9/2023

Bài báo này thiết lập một định lý về sự hội tụ theo trung bình của mảng tam giác các biến ngẫu nhiên m_{n}-phụ thuộc đôi một. Một số tác giả đã nghiên cứu các định lý giới hạn cho dãy các biến ngẫu nhiên m-phụ thuộc đôi một, trong đó m cố định (xem, chẳng hạn, Quang and Nguyen [Applications of Mathematics, 2016] và Thanh [Bulletin of the Institute of Mathematics Academia Sinica, 2005]). Trong bài báo này, chúng tôi thiết lập một định lý giới hạn cho mảng tam giác các biến ngẫu nhiên m_{n}-phụ thuộc đôi một theo hàng, trong đó m_{n} có thể tiến đến ∞ khi $n \rightarrow \infty$.

Định lý chính của bài báo mở rộng một số kết quả đã công bố trước đó, trong đó có Định lý 3.1 của Chen, Bai và Sung trong [Journal of Mathematical Analysis and Applications, 2014].

Từ khóa: Sự hội tụ theo trung bình; m_{n}-phụ thuộc đôi một; tính khả tích đều theo nghĩa Cesàro; mảng tam giác các biến ngẫu nhiên.

