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ABSTRACT

This paper establishes a mean convergence theorem for triangular
arrays of rowwise and pairwise my-dependent random variables.
Some authors studied limit theorems for sequences of pairwise
m-dependent random variables where m is fixed (see, e.g., Quang
and Nguyen [Applications of Mathematics, 2016] and Thanh
[Bulletin of the Institute of Mathematics Academia Sinica,
2005]). In this paper, we establish a limit theorem for triangular
arrays of rowwise and pairwise my-dependent random variables,
where m, may approach infinity as n — oo. The main theorem
extends some results in the literature, including Theorem 3.1 of
Chen, Bai and Sung in [Journal of Mathematical Analysis and
Applications, 2014].

Keywords: Convergence in mean; Pairwise m,-dependence,
Uniform integrability in the Cesaro sense; Triangular array of
random variables.

1. Introduction

In [4], Pyke and Root proved a theorem on mean
convergence for sequences of independent identically
distributed (i.i.d.) random variables. Their result reads as
follows.
Theorem 1.1 (Pyke and Root [4]). Let 1 <p < 2 and let
{Xn,n > 1} be a sequence of i.i.d. mean zero random
variables. Then

# ; X %0 asn— oo
if and only if E|X1|° < oo
Chow [2] gave an extension of the sufficiency part of
Theorem 1.1 by establishing a meanconvergence theorem
under a uniform integrability condition. A special case of
Chow’s result reads as follows.
Theorem 1.2 (Chow [2]). Let 1 <p < 2 and let {Xn, n> 1}
be a sequence of independent random variables such that
the sequence {|Xn[°, n > 1} is uniformly integrable. Then
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1 n
7 E (Xi—EXi)%Oasn%oo.
n
i=1

Theorem [I.2] was extended and improved in many directions. We refer to [1}, 3 7] and
the references therein. A crucial tool in the proof of Theorem [I.2] and its extensions is a

von Bahr—Esseen-type inequality which states that

>
i=1

where 1 < p < 2, {X;,1 < i < n} is a collection of mean zero random variables sat-

p n
E < Cp ) EIXP,
=1

isfying a certain dependence structure, and C;, is a constant depending only on p. Chen,
Bai and Sung [[I, Theorem 3.1] extended Theorem [I.2] to the case where the underlying
random variables are pairwise independent. This note aims to extend Theorem[I.2]to trian-
gular arrays of rowwise and pairwise m,,-dependent mean zero random variables, thereby
extending Theorem 3.1 of Chen, Bai and Sung [[1]].

Laws of large numbers for sequences of pairwise m-dependent random variables were
studied by Quang and Nguyen [S] and Thanh [8]. Let m be a nonnegative integer. A col-
lection {X;,1 < i < n} of random variables is said to be pairwise m-dependent if either
n < m+1lorn > m+ 1and X, is independent of X; whenever |i — j| > m. When
m = 0, this reduces to the concept of pairwise independence. If m’ > m, then pairwise
m-dependence implies pairwise m’-dependence.

Let {m,,n > 1} be a sequence of nonnegative integers. A triangular array {X,,;, 1 <
i < n,n > 1} of random variables is said to be rowwise and pairwise m,-dependent if

for each n > 1, the n-th row {X,,;, 1 < i < n} is pairwise m,,-dependent.

2 Main result

In this section, we will extend Theorem by establishing a mean convergence theorem
for triangular arrays of rowwise and pairwise m,,-dependent random variables. Firstly, we

will need the following lemmas. The first lemma is Theorem 2.1 of Chen, Bai and Sung

[L].

Lemma 2.1. Let 1 < p < 2. Let {X;,1 < i < n} be a collection of pairwise independent
mean zero random variables satisfying E| X;|P < oo, 1 < i < n. Then

>
i=1

p n
E < C, ) E[X],
=1
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where C,, is a constant depending only on p.
Remark 2.2. In the case where p = 1 or p = 2, it is clear that we can choose C,, = 1.

The next lemma is a consequence of Holder’s inequality (see, e.g., Lemma 2.4 in Ros-
alsky and Thanh [6]]).

Lemma 2.3. Let p > 1 and let {a;,1 < i < n} be a collection of real numbers. Then

Zal < nP! Z la;|P.

i=1
The following lemma extends Lemma 2.1] to the case pairwise m-dependent.

Lemma 2.4. Let m be a nonnegative integer and 1 < p < 2. Let {X;,1 < i < n} be a
collection of pairwise m-dependent mean zero random variables satisfying E|X;|? < oo,
1 <i<n.Then

n D
E ZXi
=1

where C,, is a constant depending only on p. In the case where p = 1 or p = 2, we can
choose C, = 1.

< Cpm+ 177 R, (2.1)
=1

Proof. If n < m + 1, then (2.1) follows immediately from Lemma Suppose that
n > m + 1. Then

m+1

=E Z Z Xi(ma1)+k

k=1 0<i(m+1)<n—k

m+1

< (m+ 1)t Z E Z Xi(ma1)+k
k=1

0<i(m+1)<n—Fk
m+1

(m+1P"' > Y E| X

k=1 0<i(m+1)<n—k

= Cp(m + 1)P~! ZE|X1»|”,
=1

where we have applied Lemma [2.3]in the first inequality, Lemma [2.1] and Remark [2.2]in
the second inequality. The proof of Lemma [2.4]is completed. ]
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Remark 2.5. Let {m,,n > 1} be a sequence of nonnegative integers and let {X,,;, 1 <
i < mn,n > 1} be a triangular array of rowwise and pairwise m,,-dependent mean zero

random variables. Then for each n > 1, we have

g (i, + 1)P” 1ZE]XMV°

=1

TL’L

where C), is a constant depending only on p.

The main result of this note is the following theorem. Throughout the proof of Theorem
C, is a constant depending only on p and is not necessarily the same one in each

appearance.

Theorem 2.6. Let 1 < p < 2, let {m,,,n > 1} be a sequence of nonnegative integers and
let {X,;,1 <i<mn,n>1} bea triangular array of rowwise and pairwise m,,-dependent
random variables such that {|X,,;|P,1 < i < n,n > 1} is uniformly integrable in the

Cesaro sense, that is,

lim sup — Z]E | XiP1(| X pi] > @) = 0.

a—00 n>1 n

Then

n

3 D (Xus —EX,;) % 0asn — oo (2.2)

i=1

1
n'/P(m, + 1)

Proof. Lete > 0 be arbitrary. Since {|X,,;|”, 1 < i < n,n > 1} is uniformly integrable in

the Cesaro sense, there exists M > 0 such that

sup — ZIE |1 X, P1(| Xs] > M)) < e. (2.3)

n>1 N i1

Forn > 1,1 <i<n,set
Yn,i = Xn,zl(|Xn,7,| S M)

i=1 =1

=2(1 + I1).

and
Znﬂ' = Xn,z]-(|Xn,z| > M)
Then
n p n p n p
> (- w300 <2 (23 00| + £S5z | o,

=1
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Applying Jensen’s inequality and Lemma[2.4] we have

p/2

n 2
L<|E <Z<Ym - EYn,o)

i=1

IN

n p/2
(i +1) > E(Y,.: — IEYWZ-)Q)
=1

n p/2
=1

< (my, + 1)P/2nP/2 P

IN

Applying 2.3 and Lemma [2.4] again, we have

L < (mo+1)P7'Cy Y El|Zy; —EZy P

i=1

< (mp +1)P7'Cp Y B[ Zyl”
i=1

< (my + 1)"2C, > K| Zol?
=1

< (m, + 1)p/26’pn5.
Combining 2.4)-(2.6) yields

E Z?:l(Xn,i - EXn,z) b < 2([1 + ]2)

n'/?(m, + 1)1/2 ~ n(m, + 1)p/2

2MP

< —— + Che.

— nl-p/2

(2.5)

(2.6)

2.7

Since p < 2 and € > 0 is arbitrary, (2.2)) follows from (2.7) by letting ¢ — 0 and then

n — 00. The proof of the theorem is completed.

]

Remark 2.7. If m,, = 0, then Theoremreduces to Theorem 3.1 of Chen, Bai and Sung

[1].

We close the paper by considering a case where m,, — oo as n — co. In the following

corollary, for z > 0, let || denote the greatest integer that is not greater than x and let

log = denote the natural logarithm of (z + 2).

Corollary 2.8. Ler 1 < p < 2 and let {X,,;,1 < i < n,n > 1} be a triangular array

of rowwise and pairwise |logn |-dependent random variables such that {|X,,;|P,1 < i <

9
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n,n > 1} is uniformly integrable in the Cesaro sense. Then

1
n'/?log'/?(n)

n

Z(Xm- —EX,;) 5% 0asn — .

i=1

Proof. Applying Theorem 2.6| for the case where m,, = |logn ], we immediately obtain
the conclusion of the corollary. ]
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TOM TAT

MOT SO PINH LY VE SU HOI TU
THEO TRUNG BINH CUA MANG TAM GIAC
CAC BIEN NGAU NHIEN m,,-PHU THUOQC POI MOT THEO HANG

Lé Van Thanh', Pham Nhu Y2
L Khoa Todn, Truong Su pham, Truong Pai hoc Vinh, Viét Nam
2 Truong Trung hoc phé thong Kiém Tan, Gia Tdn 2, Théng Nhdt, Pong Nai, Viét Nam
Ngay nhén bai 15/8/2023, ngay nhan dang 11/9/2023

Bai bao nay thiét 1ap mot dinh ly vé su hoi tu theo trung binh clia mang tam gidc cic
bién ngiu nhién m,,-phu thudc doi mot. Mot sb tac gia da nghién cifu cc dinh ly gidi han
cho diy cac bién ngiu nhién m-phu thudc doéi mot, trong dé m cb dinh (xem, chang han,
Quang and Nguyen [Applications of Mathematics, 2016] va Thanh [Bulletin of the Institute
of Mathematics Academia Sinica, 2005]). Trong bai bdo nay, chiing tdi thiét 14p mot dinh
ly gidi han cho méang tam gidc cac bién ngau nhién m,,-phu thudc ddi mot theo hang, trong
do6 m,, c6 thé tién dén oo khi n — oo.

Dinh 1y chinh ctia bai bio md rong mot s két qua da cong bd trude do, trong dé c6 Dinh
ly 3.1 cta Chen, Bai va Sung trong [Journal of Mathematical Analysis and Applications,
2014].

Tir khéa: Su hoi tu theo trung binh; m,,-phu thudc ddi mot; tinh kha tich déu theo nghia

Cesaro; mang tam gidc cic bién ngau nhién.
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