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Abstract. This paper presents an algorithm for solving the inverse dynamics problem
of redundant manipulators using MAPLE software. The method has the advantage of
generating efficient symbolic solutions which reduces the computational cost. The influence
of trajectories on the joint torques of redundant manipulators is considered. The theory is
illustrated by the numerical simulation of a redundant four-link planar manipulator.
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1. INTRODUCTION
The operation tasks of today’s robot manipulators become more sophisticated and

require that manipulators possess more and more degrees of freedom (DOF) to offer greater
flexibility. The kinematic redundancy occurs when the DOF of a manipulator is more
than the minimum number necessary for executing a given operation task [1]. The extra
DOF presented in redundant manipulators can be used to avoid obstacles and kinematic
singularities, to increase the workspace or to optimize the motion of the manipulator
relatively to a cost function. There is widespread interest in redundant manipulators due
to such advantages.

A significant number of paper has been published concerning the problems of kinematic
redundancy and much achievement has been reviewed by [2]. Recently, there have been
several scientific papers focused upon kinematic analysis, motion planning and controls of
redundant robot manipulators [1-9]. However, it should be pointed out that the develop-
ment on the theory for solving the inverse dynamic problem of redundant manipulators is
still limited and the literature on this respect therefore is little.

In this paper, the inverse problem of kinematics of redundant manipulators is briefly
addressed. We have proposed an efficient calculating method to find the joint variables
which give the desired workspace trajectory of the end-effector. The inverse dynamics
problem is considered to study the influence of trajectories on the joint torques of re-
dundant manipulators. In the example, the developed method is employed to the inverse
dynamic analysis of a redundant four-link planar manipulator. A specialized program has
been developed on the MAPLE computing environment for this study.
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2. INVERSE DYNAMICS OF REDUNDANT MANIPULATORS
The robotic systems under study are n DOF serial manipulators. We consider the

redundant systems which have more DOF than needed to accomplish the operation task,
i.e. the dimension of the joint space n exceeds the dimension of the task space m. Let
the configuration of the manipulator be represented by vector q of n joint positions, and
the end-effector position and orientation by m-dimensional vector x of task positions and
orientations. The joint and task positions are related by the following expression

x = f(q), (2.1)

where f is m-dimensional vector function representing the manipulator forward kinematics
and the vectors q and x are defined by

x = [x1, ... , xm]T , q = [q1, ... , qn]T . (2.2)

Differentiating Eq. (2.1) with respect to time, we obtain the relation between velocities

ẋ = J q̇, (2.3)

where J =
∂f
∂q

is the m × n manipulator Jacobian matrix.

In the case of redundant manipulators, there can exist also an internal motion which
does not contribute to the motion of the end-effector. Hence, the general solution of Eq.
(2.3) can be given as follows [4], [7]

q̇ = J+ẋ +
(
En − J+J

)
y, (2.4)

where J+ ∈ Rn×m is the pseudo-inverse of matrix J [6], y ∈ Rn is an arbitrary vector,
and En ∈ Rn×n denotes an identity matrix. If the exact solution does not exist, Eq. (2.4)
covers all the least-squares solutions that minimize ‖ẋ− Jq̇‖. Therefore, J(q) will always
have a full rank, so that rank (J) = m. Note that the solution according to Eq. (2.4) gives
the minimum joint velocities for the desired workspace velocity [4].

Differentiating Eq. (2.3) again with respect to time, we obtain the relation between
joint space and task space accelerations as

ẍ = J q̈ + J̇ q̇. (2.5)

Hence, Eq. (2.5) becomes [4], [7]

q̈ = J+
(
ẍ− J̇ q̇

)
+

(
En − J+J

)
z, (2.6)

where z ∈ Rn is an arbitrary vector. The joint angles can then be calculated by the finite
difference methods. For example, using the difference approximation produces

q̇k =
qk+1 − qk

∆t
, (2.7)

ẋk =
xk+1 − xk

∆t
· (2.8)

Substituting Eqs. (2.7) and (2.8) into Eq. (2.4), one obtains

qk+1 = qk + J+(qk) (xk+1 − xk) +
[
En − J+(qk)J(qk)

]
zk∆t. (2.9)

Eqs. (2.4), (2.6) and (2.9) form a basis of the inverse kinematics of a redundant
manipulator.
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Fig. 1. A redundant four-link planar manipulator

The dynamics of robot manipulators is generally represented by the following equation
[10-12]

M(q) q̈ + h(q, q̇) + g(q) = τττ , (2.10)
where M(q) ∈ Rn×n denotes an inertia matrix, h(q, q̇) ∈ Rn is a torque vector caused by
centrifugal and Coriolis forces, g(q) ∈ Rn is a gravity torque vector, and τττ ∈ Rn represents
a joint torque vector.

Let x ∈ Rm define the position and orientation of the end-effector in the task space.
The joint angle, velocity and acceleration vectors can be determined by using Eqs. (2.4),
(2.6) and (2.9). The joint torque vector τττ can then be calculated by Eq. (2.10).

3. ILLUSTRATING EXAMPLE FOR THE INFLUENCE OF
TRAJECTORIES ON THE JOINT TORQUES

In the following example we introduce the application of the theory described above to a
four-link planar robot manipulator shown in Fig. 1. The manipulator is connected directly
to four high torque actuators. The first actuator drives link 1 and the fourth actuator
drives link 4. As can be seen from the figure, the manipulator has two redundant DOF.

The configuration of the manipulator can be described by four relative rotation angles
q1, q2, q3 and q4. The kinematic relationships for the links of the manipulator can then
be expressed in the form

xE = l1 cos(q1) + l2 cos(q1 + q2) + l3 cos(q1 + q2 + q3) + l4 cos(q1 + q2 + q3 + q4),
yE = l1 cos(q1) + l2 sin(q1 + q2) + l3 sin(q1 + q2 + q3) + l4 sin(q1 + q2 + q3 + q4),

(3.1)

where li denotes the length of the ith link, xE and yE are workspace coordinates of the end-
effector E in the fixed coordinate frame {Oxy}. Using Eq. (3.1) we obtain the relationship
between velocities in matrix form as

ẋ = J q̇, (3.2)

in which ẋ =
[

ẋE ẏE

]T , q = [q1, q2, q3, q4]
T and the manipulator Jacobian matrix

J is given by

J =
[

J11 J12 J13 J14

J21 J22 J23 J24

]
, (3.3)
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where
J11 = −l4 sin(q1 + q2 + q3 + q4) − l3 sin(q1 + q2 + q3)− l2 sin(q1 + q2) − l1 sin q1,

J12 = −l4 sin(q1 + q2 + q3 + q4) − l3 sin(q1 + q2 + q3)− l2 sin(q1 + q2),

J13 = −l4 sin(q1 + q2 + q3 + q4) − l3 sin(q1 + q2 + q3),

J14 = −l4 sin(q1 + q2 + q3 + q4),

J21 = l4 cos(q1 + q2 + q3 + q4) + l3 cos(q1 + q2 + q3) + l2 cos(q1 + q2) + l1 cos q1,

J22 = l4 cos(q1 + q2 + q3 + q4) + l3 cos(q1 + q2 + q3) + l2 cos(q1 + q2),

J23 = l4 cos(q1 + q2 + q3 + q4) + l3 cos(q1 + q2 + q3)

J24 = l4 cos(q1 + q2 + q3 + q4).

(3.4)

Based on the recursive rule expressed by Eq. (2.9) in the previous section, we can
calculate the joint angles q for a given workspace position x of the end-effector. The
angular velocities q̇ and angular accelerations q̈ can then be numerically determined by
using Eqs. (2.4) and (2.6). Hence, the inverse kinematics problem for the four-link planar
manipulator is essentially resolved.

The next step will be the formulation of the differential equations of motion of the
manipulator according to Eq. (2.10). Let Ii and rrri be, respectively, the inertia matrix
of the ith link referred to the center of mass Ci and the position vector of Ci in the fixed
coordinate frame, and let mi be the mass of the ith link. The reduced inertia matrix M
is given by [12]

M =
4∑

i=1

[
JT

T imi JT i + JT
Ri Ii JRi

]
, (3.5)

where JJJT i(q) and JJJRi(q) denote the Jacobian matrices that relate velocity ṙi and angular
velocity ωωωi of the ith link to the joint velocity q̇

JJJT i(qqq) =
∂rrri

∂qqq
, JJJRi(qqq) =

∂ωωωi

∂q̇qq
. (3.6)

For simplicity, we assume that the center of mass Ci of ith link is positioned in the
middle of the link line. Then, the matrix M can be determined without difficulty by using
Eq. (3.5). For example, we obtain the following expressions with link 2

r2 =




l1 cos(q1) +
l2
2

cos(q1 + q2)

l1 sin(q1) +
l2
2

sin(q1 + q2)
0


 , ωωω2 =




0
0
q̇1 + q̇2




JT2 =
∂r2

∂q
=




−l1 sin(q1) −
1
2
l2 sin(q1 + q2) −1

2
l2 sin(q1 + q2) 0 0

l1 cos(q1) +
1
2
l2 cos(q1 + q2)

1
2
l2 cos(q1 + q2) 0 0

0 0 0 0


 ,

JR2 =
∂ωωω2

∂q̇
=




0 0 0 0
0 0 0 0
1 1 0 0


 .



Influence of trajectories on the joint torques ... 69

The total kinetic energy of the manipulator is given by

T =
1
2
q̇TMq̇. (3.7)

The total potential energy stored in the manipulator is

Π = −
4∑

i=1

migTri, (3.8)

where ggg = [0, −g, 0 ]T . We consider the case in which actuators exert torques τ1 =
M0,1, τ2 = M1,2, τ3 = M2,3, τ4 = M3,4 at the joints and an external force F is applied
at the end-effector as shown in Fig. 1. Then the virtual work produced by these forces
and torques is

δA = τ1δq1 + τ2δq1 + τ3δq3 + τ4δq4 + FxδxE + FyδyE . (3.9)

Using Eqs. (3.1) and (3.9), we get the generalized forces as follows

Q∗
1 =τ1 − Fx [l1 sin q1 + l2 sin(q1 + q2) + l3 sin(q1 + q2 + q3) + l4 sin(q1 + q2 + q3 + q4)]

+ Fy [l1 cos q1 + l2 cos(q1 + q2) + l3 cos(q1 + q2 + q3) + l4 cos(q1 + q2 + q3 + q4)] ,

Q∗
2 =τ2 − Fx [l2 sin(q1 + q2) + l3 sin(q1 + q2 + q3) + l4 sin(q1 + q2 + q3 + q4)]

+ Fy [l2 cos(q1 + q2) + l3 cos(q1 + q2 + q3) + l4 cos(q1 + q2 + q3 + q4)] ,

Q∗
4 =τ3 − Fx [l3 sin(q1 + q2 + q3) + l4 sin(q1 + q2 + q3 + q4)]

+ Fy [l3 cos(q1 + q2 + q3) + l4 cos(q1 + q2 + q3 + q4)] ,

Q∗
3 =τ4 − Fx [l4 sin(q1 + q2 + q3 + q4)] + Fy [l4 cos(q1 + q2 + q3 + q4)] .

(3.10)

The dynamic equations of motion of the redundant manipulator can be derived by
using Lagrangian formulation

d

dt
(
∂T

∂q̇i
) − ∂T

∂qi
= −∂Π

∂qi
+ Q∗

i , i = 1, ..., 4. (3.11)

If the solution of the inverse kinematics problem is known, then the joint torques can
be determined from the dynamic equations of motion as

τ1 =
d

dt
(
∂T

∂q̇1
) − ∂T

∂q1
+

∂Π
∂q1

+ Fx [l1 sin q1 + l2 sin(q1 + q2) + l3 sin(q1 + q2 + q3) + l4 sin(q1 + q2 + q3 + q4)]

− Fy [l1 cos q1 + l2 cos(q1 + q2) + l3 cos(q1 + q2 + q3) + l4 cos(q1 + q2 + q3 + q4)] ,
(3.12)

τ2 =
d

dt
(
∂T

∂q̇2
) − ∂T

∂q2
+

∂Π
∂q2

+ Fx [l2 sin(q1 + q2) + l3 sin(q1 + q2 + q3) + l4 sin(q1 + q2 + q3 + q4)]

− Fy [l2 cos(q1 + q2) + l3 cos(q1 + q2 + q3) + l4 cos(q1 + q2 + q3 + q4)] ,

(3.13)
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τ3 =
d

dt
(
∂T

∂q̇3
) − ∂T

∂q3
+

∂Π
∂q3

+ Fx [l3 sin(q1 + q2 + q3) + l4 sin(q1 + q2 + q3 + q4)]

− Fy [l3 cos(q1 + q2 + q3) + l4 cos(q1 + q2 + q3 + q4)] ,

(3.14)

τ4 =
d

dt
(
∂T

∂q̇4
) − ∂T

∂q4
+

∂Π
∂q4

+ Fx l4 sin(q1 + q2 + q3 + q4) − Fy l4 cos(q1 + q2 + q3 + q4).
(3.15)

Table 1. Parameters of the manipulator

m1 l1 Iz1 m2 l2 Iz2 m3 l3 Iz3 m4 l4 Iz4

(kg) (m) (kgm2)
4.0 0.3 0.03 3.0 0.5 0.06 2.0 0.4 0.03 2.5 0.5 0.05

A computer program on the MAPLE environment is developed to solve the inverse
dynamics of the manipulator. The manipulator parameters are given in Table 1.

For the first case, the end-effector is assumed to move along the y-direction from point
A to point B with a constant velocity (see Fig. 1) for a period of 10 seconds. A constant
external force F is applied at the end-effector, that is, Fx = -5 (N), Fy = - 4 (N). The
workspace coordinates of the end-effector Eare given by

xE = 0.9,
yE = 0.2 + 0.1t,

(3.16)

The following initial values are chosen for the joint angles q: q1(0) = 0.524, q2(0) =
1.047, q3(0) =3.516, q4(0)=1.040 (rad). Fig. 2 shows the calculating results of the inverse
dynamics corresponding to the given trajectory of the end-effector.

Fig. 2. Joint torques versus time for the first case Fig. 3. Trajectory of the end-effector

For the second case, the end-effector moves along a circular trajectory as shown in
Fig. 3. The workspace coordinates of the end-effector are given by

xE =0.8 + 0.1 cos(t),

yE =0.8 + 0.1 sin(t).
(3.17)
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The initial values of the joint angles q are chosen as
q1(0)= 1.048, q2(0)= 0.582, q3(0)=4.118, q4(0) =1.048 (rad). Fig. 4 displays calcu-

lating results of the joint torques for this case.

Fig. 4. Joint torques versus time for the second case

4. CONCLUSIONS
A kinematically redundant manipulator is a robot system that has more than the

minimum number of DOF which are required for a specified task. In the paper, the
influence of trajectories on the joint torques of redundant manipulators was considered.
The manipulators under study are redundant with n DOF. The torques in the joint space
and in the null space were defined corresponding to the desired trajectories of the end-
effector.

The influence of trajectories on the joint torques is illustrated using the numerical
simulation with a redundant four-link planar manipulator. The obtained results may be
a base for motion controls of kinematically redundant manipulators.
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A’NH HU.O
.’ NG CU’ A CÁC DA. NG QUỸ DA. O DẾN MÔMEN PHÁT DÔ. NG CU’ A

TAY MÁY RÔBỐT DU
.
DÃ̂N DÔ. NG

Bài báo này tr̀ınh bày mô.t thuâ.t toán gia’i bài toán dô.ng lu..c ho.c ngu.o..c cu’a Rôbốt du. dẫn
dô.ng, trong dó có su.’ du.ng phà̂n mè̂m MAPLE. Phu.o.ng pháp nêu ra có u.u diê’m là gia’m du.o..c
khối lu.o..ng t́ınh toán. A’nh hu.o.’ ng cu’a các quỹ da.o lên các mômen phát dô.ng dã du.o..c kha’o sát.
Các kết qua’ lý thuyết du.o..c minh hoa. bằng mô.t th́ı du. t́ınh toán mô pho’ng số vó.i Rôbốt phă’ng 4
khâu du. dẫn dô.ng


