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Abstract. General Duffing equations occur in many problems of Mechanics and Dy­
namics. These equations mclude nonlinear terms of second an third order, their coeffi­
cients are finite but not small parameters. For finding analytical approximate solutions of 
the general Duffing equation the coupling successive approximation method (CSAM) has 
been proposed by the authors. In the present paper the convergence of mentioned method 
is proven and a condition relating coefficients of Duffing equation to provide the conver­
gence procedure is formulated Emphasize that the assumption of small parameters is 
not used in the proving. Some examples are presented to illustrate the proposed method, 
particularly exact solutions of some problems are compared with analytical approximate 
ones found by CSAM 

Keywords. General Duffing equation, coupling successive approximation method, 
convergence, complex valued solution, chaotic solution. 

1. INTRODUCTION 

General Duffing equations appear in formulating and solving many problems of Me­
chanics and Dynamics, for example [1-7]. Different methods for finding analytical approxi­
mate solutions to nonlinear differential equations have been proposed, but the convergence 
are not to be established for all these methods 

For the successive approximation method to nonlinear differential equation of first 
order [8] (p. 270) and linear differential equation of second order with functional coefficients 
[9] (p. 317) the convergence condition was indicated, but for nonhnear ones it is still open. 

Elastic solution method [10] applying to an elastic-plastic problem leads to solve 
successive elastic problems. The convergence of the method was proven [11]. 

Averaging methods are analytical approximate methods for that the convergence 
was proven using assumption of small parameters [12]. 

Homotopy analysis method (HAM) [13] is based on the expansion of solution into 
Taylor series, the convergence was proven by comparison of HAM solution with solution 
obtained by numerical method. 
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The convergence of energy balance method (EBM) [14], variational approach method 
(VAM) [15], parameter expansion method (PEM) [16] was proven by comparison of these 
solutions with exact solution in particular cases. 

The convergence of coupling successive approximation method (CSAM) will be 
proven analytically based on two propositions. 

The focus of interests in this paper includes: 
- To prove the convergence of CSAM, not using the assumption of small parameters 

in solving ajid proving procedure and to indicate the condition providing convergence 
process. 

- To solve some particular problems by CSAM and to investigate the characteristics 
of solutions. Particularly exact solutions found for some problems are compared with 
analytical approximate solutions by CSAM, firom that one can estimate the accuracy of 
CASM. 

2. THE ALGORITHM TO T R A N S F O R M THE INITIAL EQUATION 
TO THE RESULTING EQUATION 

Consider a general Duffing equation as 

X + 2vx -\- Xx^ + 2qx'^ + kx =pcosuj t. 

Based on [1] a transformation is considered as 

The resulting equation is obtained 

A? 

(1) 

(3) 

4 Q ' 
K 

3X 

1+ / {a+ pf^ostjjt)--^dt 

3 A 

q + if q-2v 

(4) 

(5) 

D2 is an integral constant. The formula (2) and Eq. (3) are the transformation and re­
sulting equation that the present paper is looking for. In order to formulate a successive 
approximation method, the right hand side of Eq. (3) is rewritten as 

/K ,* )=2 V(i,t)i, {^) 



O n the convergence of a coupling approximation method for solving Duffing equation 

v(.i,t)=e D2+ (a-\-p cos Ljt)--^c (8) 

3. EQUATION SOLVING B Y THE COUPLING SUCCESSIVE 
APPROXIMATION METHOD 

An analytical approximate solution to Eq. (3) by the coupling successive approxima­
tion method is carried out by continuous loops of iteration. Each loop contains continuously 
iterative steps. 

3.1. Loops of iteration [1] 

In the loop "O""̂ ,̂ we solve the linear differential equation (3) without the right hand 
side to find the solution ^0 (*)• In the first loop, substituting ^ (t) = ^0 (i) in the right hand 
side of Eq. (3) and solvmg the obtained linear differential equation we find f 1 (t) and so 
on. In loop rt — 1***, the value ^n-i (i) is found. The function r/(^„_i,t) is computed by the 
formula (8) 

'7tt„-i.«) = K„-i)' D2+I ((7 +pCOSUJt) - s * 

The iteration scheme of successive approximation method is introduced as follows 

(9) 

VKn-l,t)in-l- (10) 

By solving Eq. (10), where the right hand side is a known function, the analytical 
approximate solution in n*^ loop of iteration is obtained 

where 

Vn-l (() = 

-z„_, + Dae-'"-"" - D4e-f-+'1', 

j 7,(i„-i,t)in-ie^-'^'dt 

t 

= e-(''+»)' / ' , «„_ l , i ) ?„_ ie ( ' '+ ' ' "* , 

V _2 
' 3 A 3 " 

(11) 

(12) 

(13) 

(14) 

Examining Eq. (11) we can predict some characteristics of solution. 

If t 1/2> 0 tlien ^ is a real number, the solution describes an oscillation 
3 A 3 

depending on the excitation frequency L^J. 



iti' 

Dao Huy Bich, Nguyen Dang Bich 

-v^< 0 then 6 is an unaginary number, i.e 

') = iip with lp = '&')]' 
where tp plays the role of the new fi:equency of a nonlinear vibration. The solution (11) 
describes a complex oscillation with many frequencies: excitation frequency ui, vibration 
frequency (p and combined frequency of LO and ip, so that the chaotic characteristics of 
solution may be predicted. 

Each function in the sequence ^o(*),Ci(*)i---)fn-i(i),^n(t) can be determined from 
the one immediately proceeding it by solving the respective linear differential equation (10). 

The process is stopped when the condition max ||^n (t) — ^n-i (*)|| < £ is achieved, 
where £ is a small positive number as required. But the convergence proving of this process 
is very complicated. Thus, a coupling successive approximation method based on Eqs. (3) 
and (7) must be developed with the iterative steps as follows: in each loop of iteration, 
continuously iterative steps are carried out. 

3.2. I tera t ive steps in each loop [1] 

In the loop n*^, when the iterative step m^^ is carried out, the value Tj(^n-i,t) is 
known. This value is taken at the end of the previous loop (loop {n — 1^^)). At this point, 
the iteration scheme of the coupling successive approximation method for the loop n*̂ ^ and 
the iterative step m*^ is expressed as 

Um + 2l^in,m-^KU, Tj {in-i,t) (n,m-l, n = 1 ,2 ,3 . . . , m = 1,2,3. . . (15) 

where n denotes the munber of loop and m - the number of iterative step. 
The approximate solution £,n-i it) in the last loop n — l '^ is taken as an initial 

approximation at the iterative step "O"**̂  of the loop v}"^, denoted as ^nO {t)- Thus, that 
requires 

?„ - ! (t) = ?„,0 (() . 

Solving Eq. (15), where the right hand side is a known function, we have 

(,n.ru 

where 

»„,m-l (t) = e -

-2„,„_i + Bae-f"-"" - Die-^"+'1\ 

y'>7(fn,o,f)e„,^-ie(''-")'A 

Zn.n,-, (t) = 6^"+")' j n (Uo.t) «„,„_iC<''+'')'rft. 

(16) 

(17) 
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FVom which 

4,m = - (f - 9) ^ y „ , ™ - i + {1^ + 0) i ^ z „ , „ _ , -(„-e) £ )3e-( -«" 

+ (i/ + 9)£)4e-'''+*", 

e„,™ = (^ - ») ' ^yn.nt-1 - (f + «)" ^ . z „ , „ . - i + (i' - «) ' Bae- ' " - "" 

- (^ + «)^ D4e-C+»)' + 2 ^ ^ , («„,„,«) f„,„_,. 

Remarks: If each loop is carried out with only one step, the couphng successive method 
will return to the single successive method as mentioned in Section 3.1. 

4. CONVERGENCE OF THE COUPLING SUCCESSIVE 
APPROXIMATION METHOD 

In order to prove the convergence of the method, it need to prove the following two 
propositions: 

Proposition 1 
Un{^,'t) obtained from Eq. (8) and \i{t)\ < M, then \v{^,t)\ < N. 

Proof: 
In o rder t o prove t h i s p ropos i t ion t h e m e t h o d of con t rad ic t ion is used: 
Different iat ing w i t h respec t t o t b o t h sides of Eq . (8), we have 

• [ f- 1 1 
rj = 2£,^\D2+ / (cT + p c o s w t ) -T^dtl -t-cT-l-pD 

L ^0 ^ J 

Using Eq . (8) t h i s e q u a t i o n can b e r e w r i t t e n as 

V 
7] i V 

Integrating both sides with respect to t yields 

7/(f) _ f f a-\-pcost ] 
' , , = Cexp I T-T—dt\ , 

coefficient C is a positive number, from which 

The inequality obtained can be rewritten as 

""''i-H'Tir^^^ î̂ '̂''!- '"' 
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PVom the inequality (19) it can be concluded that if [̂  (t)| < M then [77 (^, t)\ < N, 
because if \rj (^, t) | —» -l-oo, the left hand side of the inequality leads to the infinity, which 
is contradictory with the assumption that ^(t) is bounded. 

Proposition 2 
//" l^(Ci*)l < ^! *^^^ ^^^ sequence of functions obtained in iterative steps of each 

loop will converge and converge on function ^{t) with \^{t)\ < M. 

Proof: The recurrence method to prove this proposition is used as following. First, prove 
the convergence of the method in the first loop [n = 1). 

The 0-th approximation can be selected: ^0 = Pae" ' ""^ ' ' with |̂ ol < l-^al e~^ or 

^Q = D^e-^'+'^' with M<\D4\e~''\ 
where ^0 {t) is the solution of the homogenous equation (3), which is taken as the initial 
approximation solution of the first loop, i.e. ^0 = ?i,o (it is considered as an approximation 
in the "0"'^'' step of the first loop). 

Prom Eq. (16), with n = l,m = 1 we have 

6.1 = - ^ J / 1 , 0 {t) - ^ 2 1 , 0 (t) + 6,0 - D^e-^-^'^K (20) 

Similarly, with TI = 1, m = 2 we obtain 

6.2 = ^ y i , , (f) - V - ^ i . ' W + «ifl - C4e-<''+»»', (21) 

yi,o («) = e-f"-"" j r, (6,0, t) a.oef"-""*, 

0 

vu m = e-f"-"!' / ' , (6,0, i) 6 ,16 ' " -""* , 
Jo 

^1,0 (t) = 6^"+"" / " „ (ft,o, t) 6,06'"+""*, 
Jo 

^1,1 W = e - ( ' ' + ' ' " / ' , (6,0,*)6,16' '-+'"'*. 
Jo 

(22) 

(23) 

(24) 

(25) 

Because |^i_o| is bounded, according to Proposition 1 \ri{(ifl,t)\ -. N, two ci 
would exist: 
a) Case 1: ̂  = itp, ip is real. 

To facilitate the approximation process, the following equivalence relations are u 

|e±i'^f| ^ \cos{ipt) ±ism{ipt)\ = cos'^ {ipt)-\-s'm^ (ipt) = 1. 

Eqs. (20), (22) and (24) give 

16.1 - 6,o| < (\D3\ ^ -\- \DA e-^^ p = 2 (26) 
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Subtracting each side of Eqs. (20) and (21) respectively, taking into account Eqs. 
(23) and (25), we have 

(27) 
6,2 - 6,1 = i^e-f"-"" I n (6,0, t) (6,1 - 6,0) e*-""* 

- \LKe-("«>' 1^ n (6,0, t) (6,1 - 6,0) e<-+»)'d(. 

FVom Eqs. (26) and (27) one can evaluate 

16,2 - 6 , i | < ^ {\D,\ ~ + \Di\ t ) c-" ' (28) 

Repeating the next steps in the first loop based on Eq. (28), leads to 

16,™ - 6,™-ll < ( ^ ) " " ' (m ^ ^ + m ^ ^ ) e - (29) 
\ ip J V ip m\ p {m — ly.J 

I6,„.l-6,™l< ( ' ^ ) 7 | f l 3 l ^ ^ +1/5.1 ^ ^ ) e - (30) 
\ <p J \ lp [m+iy. ip m\J 

The terms of the series are directly obtained 

6,0 + (6,1 - 6,o) + (6,2 - 6, i) + • • • + (6,m+i - 6 , - ) + - - • (3i) 

As can be seen that with t < R each term of series (31) has a module which is 
smaller than a positive number. These positive numbers form a numerical convergent 
series, according to J. d'Alembert criterion 

( f ) " ' [P3i f (gg), + io4i s ] pjvt io3i f^, + m ^ 
{fy"[mf5. + m^]~^ iftif^ + ifl4i 

when m —* -l-oo. 
That means the series (Bl) is absolutely convergent when t < R. The sum of the 

first m -h 1 terms of the series is 6,m+i • Thus, 6,m+i converges on the function ^i (t) with 
16 (t)| < M when t < R, and Proposition 2 is proved in the first loop. 

^1 (t) is an approximate solution obtained when the first loop ended, which is then 
used as the initial approximation in the second loop, i.e. ^i = 2̂,0 (which is considered as 
an approximation in step "0"*'' of the second loop). 

According to Proposition 2, ^2,0 obtained in the first loop is bounded |̂ 2,o (*)| < M. 
Thus, according to Proposition 1, i?(6,o-^) from Eq. (8) with n = 2 is also bounded 
\vi^20^i)\ < ^- When 7?(C2,o,*) is bounded, according to Proposition 2, ^3,0 obtained 
when' the second loop ended is also bounded. Thus, proposition 2 is proved for the second 
loop, and similarly, for the n"" loop, 
b) Case 2: 9 is real, 1/- 6 > 0. 
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In this case, in order to facihtate the approxunation process, the following inequal­

ities are used 

jflse-f"'""! < Iflsl. |r '4e-(' '+'"' | < IDil, 1 - e - * - " " < 1,1 - £-("+"'' < 1. (32) 

From Eqs. (20), (22) and (24) one can assess 

Based on Eqs. (27) and (33), it leads to 

i«--^-i<^[?(^i^^i+H- ««' 
Conducting similar steps with reference to (34), we obtain the following evaluation 

l 6 , . - 6 , ™ - i l < ( ^ ) " " ' ( ^ ' " ^ ' + '"^l)' '"' 

I6,.« - 6,„l < ( j ( ^ ) " ( ^ W + P̂ l) • (38) 

From Eqs. (33)-(36), it can be directly inferred that the coefficients of the series (31) 
have module smaller than positive numbers. These positive numbers form a convergent 
series with the condition as following 

( » i S l ) ' " ( ^ | J 3 l + P 4 | ) ,M ^^ 

( ^ ) " " ' ( ^ P 3 l + lP4l) " " " - « ) 

The condition (37) is satisfied, meaning that the absolute convergence of the series 
(31) according to d'Alembert criterion in Proposition 2 with ^-real, i/ — ^ > 0 is proved 
for the first loop. Similarly, it can be proved for the second loop and the n*^ loop. 

When 9 is real, î  — ^ < 0, the convergence of the method has not been proven yet. 

Remarks: 
Through proving the convergence of the coupling successive approximation method, 

the following conditions for convergence are acknowledged 

, 4g2 2 ^ , 4g2 2 , . pN 

'--3j-r "^ " *='5T-r >°'^>*'?(^<i' 
the condition of small parameters is not necessary 

Particular case: To simplify process for seeking an analytic approximated solution, we can 
use a 'roughly' single successive method as follows. 

Finding an approximate solution in the step n*^ can be based on the equation 

L + Mn - i^fn = 2\/^7)(&,()f„-l. 
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where ^0 is a solution to the Unear differential equation (3) without the right hand side. 
Thus, using Propositions 1 and 2, the convergence of the 'roughly' single successive ap­
proximation method can be proved. 

5. APPLICATIONS A N D ASSESSMENT OF SOLUTION PROPERTIES 

5.1. Exact solution 

The proposed method can be used to find exact solutions in some particular cases: 

a. Case 1 

Consider an initial equation (1) 

I -I- Ax^ + 2qx^ -I- fcx - 0, (38) 

where: i/ = 0,p = 0. 
Based on Eq. (2), the transformation can be written as 

3A 2 ^ « 

Prom Eq. (3), with cr = 0,p = 0, the resulting equation now can be written as 

i-\Kl, = 2C2e, 

where, C2 = y -^D2 is an arbitrary constant. 

'^-^--^(IJ-)-. 
'==9X-

9A; 
The resulting equation gives an exact solution. 

in which en is an elli 

a = ^ 

i = Hen [(-

Dtic function. 

K 1 K^ Cl 
4C2 ^ V 16C| Cl 

\j\6Cl C2' 

at + 4>), kl], 

2 K 

" = ^ 2 ^ \ 

k- " ' 

16C| ~ Cl 

(40) 

where: 4>,Ci,C2 - integral constants and ki is a modulus of elliptic function. 

file:///j/6Cl
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Substituting Eq. (40) into Eq. (39) yields 

2q V - 2 \ / ' S - CiC^dn l{at + 4>), ki] sn [{at + ^ ) , fci] 

3A en [iat + lp), fei] 
(41) 

where dn, sn are elliptic functions. 
Because of complexity of the exact solution (41) illustrated in elliptic function we 

consider the particular solution (41) where A - 0.24,q - 0.66,<p = 2,Ci = -0.125,C2 = 2. 
This solution corresponds to initial conditions 

XQ= x(t)|(^Q = 4.76919, i o = ^{i)\t=o = -14.1262t. 
Solving the initial equation (38) with the same set of parameters:, A = 0.24, q = 0.66, 

k = %^,dxQ ^ 4.76919, XQ = -14.1262z by the CSAM, and comparing the obtained 
corresponding results with the exact solutions (38) as demonstrated in Figs, la, lb and 
Ic. one can see that a very good agreement is obtained. 

Im(4 
3 

A. 

V' 
-3 

Mm) 

1 2 4 I 
ReW»)],(»i) 

(a) 

Fig. 1. Comparisons of exact solution with solution (41) at the first approximation for CSAM, 
continuous line-exact solution, dashed line - CSAM solution 

h. Case 2 

Consider an initial equation (1) in the form 

X + 2vx + Ai^ + i i = 0. 

where g = 0,p = 0. 
In this case, according to Eq. (2) the transformation can be written i 

1 

(42) 

(43) 
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Undetermined constant is chosen as £>2 = 4W-g^ and parameters of the initial 

equation are related as fc = ^ such that tJ = 0 and the solving Eq. (3) reduces to 

^+2ui-\-X$^ + k^ = (i. (44) 

Further one can see that according to Eq. (5), k = —\K. 
It can be observed that when g = 0, p = 0, Eq. (44) becomes Eq. (42) with the 

substitution i — x, the transformation (43) now becomes 

1 f2u x\ 

- 2 r i V 3 ' x y (« ' 

After some calculations we can see that the transformation (45) reduces Eq. (42) to 
itself. From Eq. (43) it can be inferred that 

0 

e = e - r < e x p | 2 \ / - - / x d t | . (46) 

Putting the new unknown 

Z = e x p | 2 , / - ^ / x d t l , (47) 

and the new variable r = e 3 , such that ^ — TZ then estabhshing some calculations, we 
transform Eq. (44) into the following equation 

(48) 

where denote 
^, _ dZ „ _ d'Z 

The solution to Eq. (48) is 

Z=^c„V2cn\(-coV2T + A.l\- (49) 
3\/A l^ ' 2J 

Rewriting the above in terms of 6 * we have 

2. r„^--^,^Al ^.r..^t.A 11 
3s/X 

in which: Co, (t> -integral constants. 
The solution (50) of Eq. (42) with condition *: = fi'^ can be found by others 

methods, such as the Lie symmetry method |17|, the elliptic function method |18] and 
Painleve method [19j. The method presented in this paper can be named as substitution 
method. This method transforms the initial equation with the condition k = Sĵ ^ to itself. 
Therefore, it can be inferred that the initial equation has an infinite number of solutions. 

=cov /2e= j "cn [ ( - coy2eT" + 0 ) , ^ l , (50) 
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When a solution is known, other solutions can be found based on the transformation 
function. Erom Eq. (43) it can be inferred that 

1 / 2 . f{rZ + r'Z')\_ -v ^Z'_ 

equation and rewriting it in 

e=r* + 1̂ ) , l ] dn [(-coV2e^ 

a i [ ( ^ c o \ / 2 e T ^ ' - l - , ^ ) , l ] 

Substitutmg Eq. (49) into the equation and rewriting it in terms of t leads to 

-iv ^ , ^ " [(-co^/2e=^" -I-1^) , | ] dn [ ( - c o V 2 e ^ ' -I-.») , j ] 

ImW()],(».) 

Im[i(()],("l/») 

(51) 

(b) 

Im[i(r)],(m&) 

;c) 

Fig. 2. Comparison of exact solution (51) - continuous line, with solution at the first 
approximation of the proposed coupling successive approximation method (CSAM) - dashed Hne, 

k = 8/9^)^ -u = 0.12, A - 1, x[0] = -0.248723i, a;[0] = 0.0587125i 

8(/2 V = 0.12,A = 1,( Now consider a particular solution (51) where: A; = 
Co = 1. This solution corresponds to the initial condition 

^Q= X (f)l(^o = -0.248723Z, x^ = x [t)\^^Q = 0.0597125i. 

Solving the initial equation (42) with the same set of parameters:, k ^ ^ , v = 0.12, 
A = l,a:o = -0.248723i, XQ = 0.0597125i by the CSAM, and comparing the obtained 
results with the exact solutions (51) as illustrated in Figs. 2a, 2b and 2c, we can see that 
a good agreement is obtained. 
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5.2. Complex valued solutions 

Complex-valued solutions have two components, the real and imaginary. Re {x (t)\, 
Im. [x (t)]. Differentiated complex-valued solution with respect to time also has two compo­
nents, the real and imaginary, Re[x{t)],Im[x{t)]. FromEq. (1) and the equivalent Eq. (3), 
the initial integral including fom components mentioned above is founded. Therefore only 
three components are independent. These three components form a phase space, which is 
different from a phase plane in the case of real valued solution [20]. 
Consider Eq. (1) with the following set of parameters 

fc == 0 .6 ,9 -0 .64 , A = 1.0, i/ = 0.64, w = 0 . 3 2 , p - 2 . 5 , x o - -0.4, xo = -2.0. 
In this case A > 0, from Eq. (14) 9 can be evaluated as 9 = 0.402244, i.e. 6 is real. 

The results obtained by CSAM are illustrated in Figs. 3-6. 

Fig. 3. Phase space with t(30,1000), based on 
the results at the first approximation 

Fig. I Phase space with ((1000,2000), 
on the results at the first approximation 

lm[x(l)Um) 

Fig. 5. The real component of solution x{t), 
based on the results at the first approximation 

- _ - / , ( 5 ) 

Fig. 6. The imaginary component of solution 
x{t), based on the results at the first approxi­
mation 

Remarks: 
- Phase curves in Fig. 3 intersect, but in Fig. 4 they do not intersect. That means 

at period t(30,400) the unstable motion occurs; at period t > 400 the motion becomes 
toward a periodic one (Figs. 5 and 6). 
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- Fig. 4 shows that phase curves at i > 400 do not intersect. They are intertwined 
and form a closed ring. 

- In this example 9 = 0.402244, A = 1, the solution is a complex-valued one and has 
properties of a stable nonhnear motion. 

5.3. Chaot ic solution 

As can be seen that the indication of the chaotic solution to the Duffing equation 
is shown by the factor 9 (see Eq. (14)), when 9 = iip, ip is real number. 
Consider Eq. (1) with given parameters as follows: 

fc = 0.0, g = 0.0, A = 1.0,1/ = 0.02248, w = 0.44964,p= 1.0,xo = - 0 . 4 , x o = - 1 . 
In this case 9 can be evaluated as ^ = 0.0129788i, the results obtained by CSAM 

are presented in Figs. 7-10. 

Fig. 7. Phasespace with t(150, 2100), 
the results at the first approximation 

Fig. 8. Phase space with t(2000,4000), 1 
on the results at the first approximation 

O.̂ L-

Fig. 9. Poincare section of the phase space in Fig. 10. The real component of solution i((), 
Fig. 7 with Im[x{t)\ = 0 ba/ied on the results at the first approximation 
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Remarks: 

The coefficient A = 1.0 and the coefficient of exciting forces p = 1.0 have limited 
values, meanwhile the coefficient of the linear term A: = 0. Thus, it is not suitable to use 
the assumption of small parameters in solving this problem. 

In this example, 9 = 0.0129788i , the solution is complex-valued and chaotic one. 
The ciurves in the phase space (Fig. 7 and 8) are rough, creased, intersecting and 

intertwined. The space phase has been built for t(150,2100), and for t(2000,4000), and it 
is possible to build a space phase for larger value t. From that, the attracting set can be 
built as the limit of the phase space when t —» -l-oo. 

The phase curves are sensitive with the initial condition. When the initial condition 
changes a little, the corresponding phase curves change a lot. 

The curves of the real-valued component of solution x{i) cluster together (Fig. 10). 
They do not repeat each other, but they have a similar structure. The clusters are thus 
considered sustainable. 

Poincare section (Fig. 9) consists of a set of points. Thus, the chaotic property of 
the solution in this example is proved. 

6. CONCLUSION 

Findings of the paper are summarized as follows: 
1. The convergence of the coupling successive approximation method (CSAM) is 

proved for Eq. (1) without using the assumption of small parameters. 
2. Condition of convergence is obtained as follows 

^ _ l i ^ _ ^ i , 2 0 or fc--^--i/^>0 and u - 9 > Q, 
3 A 3 ' 3 A 3 

where 9 is denoted by (14). 
3. The proposed algorithm is apphed to some examples to verify the method and 

assess the properties of solutions. 
4. Using procedure of CSAM one can find exact analytical solutions for some par­

ticular Duffing equations without right hand side. Comparisons of exact solutions with 
solutions at the first approximation of CSAM, illustrate the accuracy of CSAM. 

5. Procedure of CSAM can be used to general Duffing equations, the analytical 
approximate solutions obtained may be real valued, complex-valued or chaotric ones. 
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