
Vietnam Joumal of Mechanics, VAST, Vol. 37, No. 1 (2015), pp, 71 -
DOI:10 15625/0866-7136/37/1/5900 

AN APPROXIMATE SECULAR EQUATION OF RAYLEIGH 
WAVES IN AN ELASTIC HALF-SPACE COATED BY A THIN 

WEAKLY INHOMOGENEOUS ELASTIC LAYER 

Pham Chi Vinh*, Vu Thi Ngoc Anh 
VNU, University of Science, Hanoi. Vietnam 

* E-mail; pcvinh@vnu.edu. vn 
Received February 05,2015 

Abstract. In this paper, the propagation of Rayleigh waves in a homogeneous isotropic 
elastic half-space coated with a thin weakly inhomogeneous isotropic elastic layer is in­
vestigated. The material parameters of the layer is assumed to depend arbitrarily con­
tinuously on the thickness variable. The contact between the layer and the half space is 
perfectly bonded. The main purpose of the paper is to establish an approximate secular 
equahon of the wave By applying the effective boundary condition method an approxi­
mate secular equation of second order in terms of the dimensionless thickness of the layer 
is denved. It is shown that the obtained approximate secular equation has good accuracy. 
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1. INTRODUCTION 

The structures of a thin film attached to solids, modeled as half-spaces coated by 
a thin layer, are widely applied in modem technology. The determination of mechanical 
properties of thin films deposited on half-spaces before and during loading plays an im­
portant role in health monitoring of these sttuctures [1,2]. Among various measurement 
methods, the surface/guided wave method is most widely used [2], and for this method 
the Rayleigh wave is a versatUe and convenient tool [3,4]. 

For the Rayleigh-wave approach, the explicit dispersion relations of Rayleigh waves 
supported by thin-film/substtate interactions are employed as theoretical bases for ex-
ttacting the mechanical properties of the thin films from experimental data. They are 
therefore the mam purpose of any mvestigation of Rayleigh waves propagating m half-
spaces covered with a thin layer. Taking the assumption of thin layer, explicit secular 
equations can be derived by replacing the entire effect of the thin layer on the half-space 
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with the so-called effective boundary conditions zohich relate the displacements with the stresses 
of the half-space at its surface. 

For obtaining tiie effective boundary conditions, Achenbach and Keshava [5], Tier-
sten [6] replaced tiie ttiin layer with a plate modeled by different tiieories: Mmdlm's plate 
theory and the plate theory of low-ttequency extension and flexure, whUe Bovik [7] ex­
panded tiie sttesses at the top surface of the layer into Taylor series m its thickness. The 
Taylor expansion technique was then developed by Rokhim and Huang [8,9], Niklas-
son [10], Benveniste [11], Steigmann and Ogden [12], Tmg [13], Vmh and Linh [14,15], 
Vinh and Anh [16,17], Vinh et al. [18]. 

Achenbach and Keshava [5], Tiersten [6], Bovik [7] assumed that the layer and 
the substrate are botii isottopic and derived approximate secular equations of second-
order. In [12] Steigmaim and Ogden considered a ttansversely isottopic layer with resid­
ual stress overlying an isottopic half-space and he obtained an approximate second or­
der dispersion relation. In [19] Wang et al. considered an isottopic half-space covered 
by a thin electrode layer and the authors obtained an approximate secular equation of 
first order. In [14] the layer and the half-space were both assumed to be orthottopic and 
an approximate secular equation of third order was obtained. In [15] the layer and the 
half-space were both subjected to homogeneous pre-stams and an approximate secular 
equation of third order was established wfiich is valid for any pre-strain and for a general 
sttain energy function. In [17] the layer and the half-space are both isotropic and are per­
fectly bonded and an approximate dispersion relation of fourth order was established. 
In [16,18] the layer and the half-space are in sliding contact and approximate secular 
equations of third order [18] and fourth order [16] were obtained. 

In all investigations mentioned above, the layer and the half-space is assumed to 
be homogeneous. However, it is often the case that after bemg deposited to the half-
space, the homogeneous layer becomes heterogeneous, as mentioned tn [20], and the 
heterogeneity is usually weak. It is necessary to re-evaluate the mechanical properties 
of the deposited layer. The propagation of Rayleigh waves in half-spaces covered with a 
thin inhomogeneous layer is therefore becomes significant. In [20] the layer and the half-
space are both isotropic and the material parameters of the layer continuously depend 
on the thickness coordinate. The inhomogeneity of the layer is assumed to be weak and 
its effect on the frequency dependence of the Rayleigh wave velocity was studied. At 
low-frequencies, an approximate formula of first order for the Rayleigh wave velocity 
was derived using the Peano expansion. 

In this paper, we consider the propagation of Rayleigh waves in a homogeneous 
isotropic elastic half-space coated with a thin weakly inhomogeneous isotropic elastic 
layer. The material parameters of the inhomogeneous layer depend arbittarily continu­
ously on the thickness coordinate. The layer and the half space are in welded contact. 
The main purpose of the paper is to create an approximate secular equation of the wave. 
By applying the effective boundary condition method a second-order approximate secu­
lar equation in terms of the dimensionless thickness of the layer is derived. It is shown 
that the obtained approximate secular equation is a good approximation. 
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2. EFFECTIVE BOUNDARY CONDITION OF SECOND-ORDER 

Consider a homogeneous, isottopic elastic half-space X3 > 0 coated by a thin 
weakly inhomogeneous, isottopic elastic layer —h < :t3 < 0. The layer and the half-
space are in perfectly bonded contact. We assumed that the material parameters of the 
inhomogeneous layer depend on only the thickness variable. In particular, the Lame 
constants A(;C3),/((X3) and the mass density p(.r3) of the layer are defined as 

A = Ao/i(2i), Ao: -A(0) , / i(0) = l 

ii = flof2iz2), tio:=}i{0), / i W = 1, Zk^S,,^, fc-1,2,3 (1) 

P = PQf3{Z3). po := p{0), /3(0) = 1 

where fk{.), k = 1,2,3 are arbitrary differentiable functions, 5 ,̂ k = 1,2,3 are dimen­
sionless parameters characterizing the inhomogeneity of the layer and being assumed 
to be small due to the assumption of weak inhomogeneity. Note that the same quanti­
ties related to the half-space and the layer have the same symbol but are systematically 
distinguished by a bar if pertaining to the layer. 

We consider a plane motion m the (xi,3:3)-plane with displacement components 
(MI,U2, ^3) such that 

Ui = Ui{Xi,X3,t), Ui = U,{Xi,X3,t). i = 1,3, W2 = "2 = 0, (2) 

where t is the time. Since the layer is made of isottopic elastic materials, the strain-stress 
relations take the form 

^11 = {X-\-2fi)fii^i + Xuj^3, 

P33 = Ai7i,i + (A -i- 2^7)173,3, (3) 

0-13 = fi{iii.3 + Hi)' 

where aj, is the sttess of the layer, commas indicate differentiation with respect to spatial 
variables x^, A and fi are Lame constants. In the absent of body forces, the equations of 
motion for the layer is 

1̂1,1 + ^̂ 133 = P^'l' 
(4) 

0-13,1 + 0-33.3 = ptl3, 

where a dot signifies differentiation with respect to t. 
Now we consider the propagation of a Rayleigh wave, ttaveUing (in the coated 

half-space) with velocity c (> 0) and wave number fc (> 0) in the xj-direction and de­
caying in the X3-direction. The displacements and the sttesses of the wave are sought in 
the form 

uj = a,(:t3)e"^<^'-^'), U3 = U3{x3)e"''-''-''K 

^13 = ikTi(xs)e"^'^-'^l 0-33 = ikUx3)e''^'^-'^K ^^^ 
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for the layer, and 

= i;i(x3)c*l"'-"', U3 = U3{x3)e'"-"-"K 

<ri3 = *Ti ( j :3 )e ' t(.v,-rt) a33 = ikT3{x3)e"^'-"-"1, 
(6) 

for the half-space. Form Eqs. {2)-(5), it is not difficult to verify that the imknown functions 
Ul, U3, fl and T3 satisfy the following matrix equation 

?' = *Nf , (7) 

where 

f = N = 
' Ni N2 

N3 Nt 
0 = [ Ol Q3 I'" T = [ fl T3 ] " (8) 

the symbol "T" indicate the transpose of a mattix, the prime signifies differentiation with 
respect to X3 and 

^ > = l 2 7 - l "o'J' ^̂  = 
-F 
0 

0 

1 
A + 2fi (9) 

N3 = 
m-i)fl+pc- 0 1 , 

0 pc^ J 1 

where 7 = ^ JL 
A + 2/1 

Let h be small (i.e the layer is thin), then expanding T{-h) into Taylor series at 
:J:3 = 0 up to the second order of h we have 

From (7) we have 

T{-h) = T{0)-r(0)h+^j"{0)h^ 

?" = * N ' f - k^N^i, 

(10) 

(U) 

Suppose that surface x, = -h of the layer is free of traction, i.e T(-ft) = 0. Using Eqs 
(7), (8) and (11) at :t3 = 0 into (10) yields 

[7-iJ:fcN4(0) + * - - N ' 4 ( 0 ) - 'L/LAf,(0)|f(0) : 
2 " ' 2 

= [ikhNiiO) - a - N ' 3 ( 0 ) + ^ N 5 ( 0 ) 10(0), 
(12) 

where I is the identity matrix of order 2, matrices N3 and N4 are defined by (9) and 

N ' 3 = I ' ^ ' ^ ' f " ^ ' f T P ' . ^ ^ |_ ^-^ 4 ( 7 - l ) f i ' + 4p7' + p'c^ 0 
0 p'c^ _ 

N5 = N3N1 + N4N3, Ni = N3N2 + N | , 

0 27' 
0 0 

(13) 
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in which, according to Eqs. (1), 7', ft' and p' and are calculated by 

, _ ^01^2/2(^2) , _ ^0^3/3(23) 

^ ~ h • ^ ' h ' 

, ^ floiif2{zi){h+2po) - y o [ V i / ; ( z i ) +2/10^2/2(^2)] 1 , , 
' (A„ + 2;i„)2 h' ^'*' 

Since the layer and the half-space are bonded perfectly to each other at the plane X3 = 0, 
it follows Q(0) = U(0) and f (0) = 7(0). Thus, from Eq. (12) we arrive at 

I - ,ttN4(0) + ft-N'4(0) - !^^N6(0) 7(0) = 

= [;ttN3(0) - ik-N'3(0) + ^ - N 5 ( 0 ) ] U(0). 

The relation (15) between the traction vector and displacement vector of the half-space at 
its surface jra = 0 is called the effective boundary condition of second order in the mattix 
form. Substituting (9) and (13) into (15) yields the effective boundary conditions in the 
components form, namely, 

Ti(0) + « { (1 - 270 -I- /J7j)T3(0) + [4(1 - 7o) - rlx] f!„(Ji(0) + h [2(70 - l)fl'„ + 2flof'o 

+ ^ ] Ul(0)} + i j l (270 - 3 + rlx)iTi{0) + [4(1 - 7o)fio +2(70 - l)poc^]iU3(0)'} = 0, 

(16) 

73(0) + .-£ [TI(0) + ( jp ic^ - poc^) 03(0)] -I-iy {(1 - 270 + rhx) i r3(0) 

+ [4( l -7o) / io-12(7o- l )poi ;^]HoiOi(0)}=0, 

where e = kh is the dimensionless thickness of the layer, and 

r, = ^,C2= ,[^, c-20 = 1 / ^ , x=tr,Q<x<l (18) 
C20 V p V p° ^^ 

Here we use the notations: AQ := A'(0), ^Q := ^'(0),pQ := |0'{0). 

3. AN APPROXIMATE SECULAR EQUATION OE SECOND ORDER 

Now we can ignore the layer and consider the propagation of Rayleigh waves in 
the isottopic elastic half-space 3:3 > 0 whose surface X3 — 0 is subjected to the bound­
ary conditions (16), (17). According to Achenbach [21], the displacement components of 
a Rayleigh wave ttavelling with velocity c and wave number fc in the xi-direction and 
decaying in the jvs-direction are determined by (6)1,2 in. which Uiix^) and (i3(x3) are 
given by 

Iii(;t3) = ^^e'^'^^^ + B2e-''^'''\ 
(19) 

U3{x3) = cciBie-^'^'' + cczBie-^"-^"', 
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where Bi and Bz are constant to be determined and 

()j = ^ 1 — -yx, 2̂ = V 1 — ^' ^1 = ~~' "2 = Tp/ T = A -h 2/r 

Substituting (6)1,2 and (19) into the sttess-strain relations (3) without the bar yields that 
the sttesses 1T13 and 0̂33 are given by (6)3,4 in which 

ri(.i3) = if [(61 + MBte-"'"" + {h + /i2)B2e-'''*"], 

r3(x3) = ,, [ ( i - 2 - i&i f t ) B , . - ' ' " ' + ( i - 2 - 1 ^ 2 ) B2<^-'''«] , 

where ^^ = —ia ,̂ k = I, 2. Introducing (19) and (20) into the effective boundary condi­
tions (16) and (17) leads to the following equations for Bi, B2 

/ (6,)B,-1/(62)82 = 0 

F((il)Bi+F(62)B2 = 0 
(21) 

f(b„) = ((.„ + M + £{ (1 - 270 + hy'o) ( - - 2 - ib„/ i„) + r,,(4 - 470 - rjx) 

- 1 A [ 2 ( 7 0 - 1 ) ^ - I 2 r „ 7 ; + ^ ^ x ] } + ^ [(3 - 270 - rlx){bn + p„) 

- 2 r „ ( l - 7 o ) ( 2 - r 5 , r ) / 5 „ ] , (22) 

nbn) = {^-2-\li,i) +e[-(b„+li„)+r„rlxli, - Ift^^x/i,,] 

- l ^ [ ( 2 7 „ ^ l - r 5 7 o x ) ( i - 2 - l M ~ ) - % { l - T o ) ( 2 - r ; x ) ] , 

in which 'p = —-• For a non-trivial solution, the determinant of the system (21) must 

vanish. This provides 

/(f ' i)F(/72)-/(&2)F(fei)=0. (23) 

Using (22) into (23), we arrive at the approximate secular equation of second order in 
terms of f of Rayleigh waves, namely, 

(24) 
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where 

A„ = (2-x)^-ibib2, 

Ai=xrp[lrlx-i{l--yo)]b2 + rlxbi}, 

A^ = >'{-l^jx\ + xb2[2{l-yo)^-2rpj',-Yjx]}, 

A2 = -Ao [xrl(\ + 70) - 4(1 - 70)] + 2rlrlx[i{l - 7„) - rlx] (1 - (-,(-2) 

-1 2rp(2bib2 -2 + x) [4(1 - 70) - 2r?x7o], 

A2 = h{2'f'„Ao + 2^7ox2 + 2r,,tif'„x^ -14(70 - l ) ^ x -14r„7;x 

+ [2jAvlx - 270 - 2 r , ( l - 7o)l -14r„7;[r;x(r,, - 1) - 2] 

(25) 

+ 4̂  ( l - 7 o ) ( 2 - r , , r 5 x ) ] ( 1 - 6 , 6 2 ) } , 

A2 = ft^{|x[47j(l - r„) -f 4(1 - 7 0 ) ^ - ^ x ] (1 - 6,62) - ^p'^x^} , 

in which, from (14), the quantities h'fQ. hfiQ and hp'^ in the expressions of Ai, A2 and A2 
are given by 

hfo = Pohf2iG)> hp'o = PohfiiO), 

. - , _ M2/2(0)(Ao + 2;lo)-;lo[Ai^-i/;(0)-K2^0^2/^(0)] 

(Ao + 2;(o)^ 

Eq. (24) is the desired second-order approximate secular equation. This equation is to­
tally explicit. Left-hand side of Eq. (24) is an explicit function of x (the squared dimen­
sionless Rayleigh wave velocity), 7, 7, r̂ ,, r^ (the dimensionless material parameters of 
the layer and the half-space). Si, 82, S3 (the inhomogeneity dimensionless parameters) 
ande (the dimensiordess thickness of the layer), provided the functions/i(zi), 72(22) and 
73(23) are given. 

Fig. 1 presents the exact curve (solid line) and the second-order approximate curve 
(24) (dashed line) of the dimensiorUess Rayleigh wave velocity -Jx = c/c2. Here we take 

y. = 2.85 X IQ-io N/m^, A = 12.112 x IO"!" N /m^ ,^ = 3.1667 x IQ-^^ k g / m ^ 
/i = 3.1 X IQ-iOe^- N/m^, A = 10.5 x IQ- '̂̂ e''̂  N/m^, p ^ 3.1 x IQ-^^e''- kg/m^, 
^ = 0.1,2= y , i.e.: 4 = ^ = 0.1,2t = ^2, /i-(2fc) = e^«.k= 1,2,3. 
It imphes: 7 = 0.16, 7 = 0.1856, r,, = 1.0877, r̂  ^ 3, S-i = S2 = S3 = 0.1. In Fig. 

2, the material parameters are taken as in Fig. 1, except 3 = —0.1. Note that to draw the 
exact wave velocity curves we replace the inhomogeneous layer by N (being sufficiently 
large) homogeneous layers perfectly bonded to each other, and then apply the ttansfer 
mattix method [22,23]. It is seen from Figs. 1, 2 that the second-order approximate 
velocity curves are close to the corresponding exact velocity curves in the interval £ e 
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Eig. 1. The exact curve (soUd line) and the 
second-order approximate curve (24) (dashed 
line) of the dimensionless Rayleigh wave ve­
locity v ^ = C/C2 {S = 0.1) 

Fig. 2. The exact curve (solid line) and the 
second-order approximate curve (24) (dashed 
line) of the dimensionless Rayleigh wave ve­
locity y/x = C/C2 {S = -0.1) 

[0 1.5]. This says that the obtamed approximate secular equation has good accuracy For 
^ = 0.1 the approximate velocity curve lies above the exact velocity curve, while for 
S = —0.1 the approximate velocity curve lies below the exact one. 

When the layer is homogeneous we have: Si = S2 = S3 = 0, it implies from (14): 
7^ = ^[, = PQ = 0. From these fact and (25) it foUows ^1 = ^2 = ^2 = 0. The equation 
(24) is thus simplified to 

Ao + Ai£+^£^ = 0, (27) 

that coincides with the approximate secular equation of second order of Rayleigh waves 
propagating in an isottopic elastic half-space covered with a thin homogeneous isottopic 
elastic layer, Eq. (40) m Ref. [14]. 

When the layer is absent, i.e.: £ = 0, Eq. (24) is simplified to AQ = 0. By (25)i it is 

(2 - x)^ - 4 \ / l - x ^/l~yx = 0. (28) 

This is the secular equation of Rayleigh waves propagating along the traction-free sur­
face of a compressible isottopic elastic half-space that was obtained by Rayleigh [24] in 
1885. Although this equation was discovered nearly 130 years ago and the explicit analyt­
ical expressions of its (unique) solution corresponding to Rayleigh waves are significant 
in many practical applications, they were derived only recently [25,26]. Before the ap­
pearance of the explicit analytical formulas for Rayleigh waves velocity, the approximate 
Rayleigh wave velocity formulas have been established, see Refs. [27-30]. Tlieir accu­
racy were improved recently, see Refs. [31-33], by using the obtained explicit analytical 
formulas for Rayleigh waves velocity along with the method of least squares. 

4. CONCLUSIONS 

In this paper, the propagation of Rayleigh waves in a homogeneous isotropic elas­
tic half-space coated with a thin weakly inhomogeneous isottopic elastic layer is inves­
tigated. The material parameters of the layer is assumed to depend arbitrarily contm-
uously on the thiclcness variable. The contact between the layer and the half space is 
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perfectly bonded. An approximate secular equation of second order in the dimension­
less thickness of the layer is derived by using the effective boundary condition method. 
It is shown that the obtained approximate secular equation has good accuracy. Since the 
obtained secular equation is totally exphcit, it is a good tool for extracting the mechanical 
properties of the thin films from experimental data. 
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